A systematic review on experimental multi-label learning.

dc.contributorInstituto de Ciências Matemáticas e de Computação – ICMC/USPpt_BR
dc.contributor.authorSpolaôr, Newton
dc.contributor.authorCherman, Everton Alvares
dc.contributor.authorMetz, Jean
dc.contributor.authorMonard, Maria Carolina
dc.date.accessioned2017-12-14T14:18:35Z
dc.date.available2017-12-14T14:18:35Z
dc.date.issued2013-02
dc.description.abstractMulti-label learning deals with the classification problem where each example is associated with a set of labels, which are usually dependent. This research topic has emerged in recent years due to the increasing number of applications where examples are annotated with more than one label. However, there is a lack of reviews focusing on pieces of work which report experimental results for multi-label learning. To this end, the systematic review process can be useful to identify related publications in a wide, rigorous and replicable way. This work uses the systematic review process to answer the following research question: what are the publications which report experimental results for multi-label learning research? The systematic review process carried out in this work included the application of 16 selection criteria to narrow the literature review, as we are interested in papers which report specific classifier evaluation measures using datasets publicly available. Moreover, these datasets cannot be preprocessed. In the end, this process enabled us to select 64 relevant publications, as well as identify some interesting facts in the current literature.pt_BR
dc.description.notesRelatórios Técnicos do ICMC; 392pt_BR
dc.format19 p.pt_BR
dc.identifier.urihttp://repositorio.icmc.usp.br//handle/RIICMC/6675
dc.language.isoengpt_BR
dc.publisher.citySão Carlos, SP, Brasil.pt_BR
dc.subjectInteligência artificialpt_BR
dc.titleA systematic review on experimental multi-label learning.pt_BR
dc.title.alternativeUma revisão sistemática sobre o aprendizado experimental multi-rotulagem.pt_BR
dc.type.categoryRelatórios técnicospt_BR
usp.description.abstracttranslatedO aprendizado de etiquetas múltiplas trata do problema de classificação em que cada exemplo está associado a um conjunto de rótulos, geralmente dependentes...pt_BR
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Relatórios Técnicos_392_2013.pdf
Tamanho:
415.56 KB
Formato:
Adobe Portable Document Format
Descrição:
Licença do Pacote
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.29 KB
Formato:
Item-specific license agreed upon to submission
Descrição: