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STRONGLY DAMPED WAVE EQUATION AND ITS YOSIDA
APPROXIMATIONS

M.C. BORTOLAN! AND A.N. CARVALHO?

ABSTRACT. In this work we study the continuity for the family of global attractors of the
equations uy — Au — Auy — €eAuyy = f(u) at € = 0 when  is a bounded smooth domain
of R™, with n > 3, and the nonlinearity f satisfies a subcritical growth condition. Also, we

obtain an uniform bound for the fractal dimension of these global attractors.

1. INTRODUCTION

We study the continuity of global attractors of the following semilinear evolution equation of

second order in time
Uy — Au — Auy — eAuy = f('LL), t >0,

(1.1) (w(0),u(0)) = (uo,v0),
ulpn = 0,

and we give an uniform bound for the fractal dimension of these global attractors.

We know that, for e = 0, this equation is the usual strongly damped wave equation, and its
asymptotic dynamics - related to global atrtactors - has already been vastly explored; see for
instance [6l [7, 9] [12] 15, 22] 23] 26l 27, 28]. However, for each ¢ > 0 fixed, we have a special form
of the improved Boussinesq equation (see [4} 19 20, 25]) with damping —Awu;, which, among other
things, is used to describe ion-sound waves in plasma (see [20, 21]).

For each e > 0 fixed, this equation has been studied in [§], in terms of existence and uniqueness
of solutions, existence of global attractors and asymptotic bootstrapping; in this case, the linear
part of the equation (after a change of variables) is a bounded operator. Here, since we want to
study the continuity of attractors at e = 0, we will use the properties of the limiting problem with
e = 0 (local and global well posedness, regularity and existence of global attractors) as reported in

6L 7).

'Partially supported by FAPESP 2012/23724-1. 2Partially supported by CNPq 305230/2011-5.
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2 M.C. BORTOLAN AND A.N. CARVALHO

Throughout this paper, we will assume that f : R — R is a continuously differentiable function,
respecting a growth condition with subcritical exponent; that is, there exist constants ¢ > 0 and

p < z—fg such that for all s1,s90 € R
(1.2) £ (s1) = fs2)| < cls1 = sa (1 + [s1]7~" + [s2]P7 ),

and also, if A\; denotes the first eigenvalue of —A with Dirichlet boundary conditions in 2, we

assume the following dissipation condition

(1.3) limsupfis) < A1

|s|—o0

To begin our study, we will write further A for —A with the Dirichlet boundary conditions. Our
problem then takes the form
uy + Au+ Aug + eAuy = f(u), t >0
(1.4)
(u(0),v(0)) = (uo, vo)-
and it is well-known that A : HE (Q)NH?(Q) C L*(Q) — L*(2) is a closed, densely define operator

which has the following properties:

(01) A is self-adjoint with compact resolvent;

(02) A is an operator of positive type;

(03) 0(A) = 0p(A) = {Antnen, At >0, Aj < Ajyq, for all i > 1 (repeated to take into account
the multiplicity), A, "= oo and if v, € L?(Q) are unitary eigenvectors associated with X,

then {v,}nen constitutes an orthonormal basis for L?((2).

Remark 1.1. We included in Appendiz[A] the proof of the main results of functional analysis we

will use, in order to make explicit the uniformity of the constants obtained for € € [0, 1].

The key point in our analysis is the observation that the differential equation in , for € > 0,
can be obtained from its limit, for e = 0, with a suitable exchange of the unbounded operator A
by its Yosida approximation A (see definition below). The techniques developed here to deal with
these singular perturbation problem may be of aid to deal with other natural singular perturbation
problems that appear in the literature in this form (see for example the Navier-Stokes-Voight

problem in [14]).
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Definition 1.2. Let A be a closed, densely defined operator such that Rt C p(—A). Then, for each
e € [0,1] we define the operator A, : D(A¢) C X — X, given by

DA)={zeX: (I+eA)tze DA},

and for x € D(A.) we set

Az = A(I 4+ eA) Lz,

The operators A. are called Yosida approximations of A.

In fact the differential equation in can be rewritten as uy + Acu + Acuy = (I + eA)~Lf(u)
with Acug = Aug for all ug € D(A) and (I + €A) tug i ug for all ug € X. We exploit this
feature and a suitable change of variables to fix (independently of €) the phase space to carry on
our analysis.

Now, if X = L?(€2), we will consider the double sided fractional power scales

o {X% a € R}, generated by (X, A);
o {X& a€ R}, generated by (X, A¢) (see Definition ;

€

e {X% ac R} ccjo,1] generated by (X, I + eA);

€

where A, A and I+ €A have domains X!, X! and X L respectively, and are positive type operators.

Now we consider the following isometric isomorphism

D=
D=

b, X7 x X2 — X xX

given in its matrix form by
Az 0
0 (I+eA)?
for each € € [0, 1].
If we apply the change of variables [¥] = @, [, ], problem (1.4)) can be rewritten as
(I + eA)%zt + Azw + A(I + eA)‘%z = f(A‘%w)
(1.5) wy = A2 (I + eA) 22,

(w(0), 2(0)) = (AZug, (I + €A)2vg)
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s+ A2(I+eA) 2w+ A+ €eA) e = (I + €A) 2 f(A 2w)
(1.6) wy = A%(I + eA)*%z,
(w(0), 2(0)) = (AZug, (I + €A)Zvp).

The later is a first order ODE that can writen in X x X as

. G4 A2 = Fo((2]) 0 0,00)

(w(0), 2(0)) = (wo, 20),
where (wy, z0) = Pc(ug, vo), in variables (¢, w, z), where A, : D(A.) C X x X — X x X is a linear

operator given by

w 1 1 1
D(A,) = EXXXE: w+Aize Xé ,,

z
and )
—A2z
A Y = 1 1
z A (w+ Aé2)
1
Of course, if [¥] € X2 x X! we have that
A% A%
—éz 0 —Aé
Ae Yl = 1 = 1 v )
z Aew+ Az A A | L=

1
with X2 x X! being a dense subset of D(A) and a locally Lipschitz map

(18) Fo(2) = [0 ]

where f¢(w) = (I + EA)féf(Aféw).

Remark 1.3. It is important to notice that for each € >0, D(A) = X x X and A € L(X x X).
The characterization above becomes important when dealing with the case € = 0, since Ay is an
unbounded operator. The primary concern of our work is to deal with the uniformity in e € [0, 1]

of the class of problems (1.4]), hence placing the problems under the same framework is crucial.

We divide our work from now on in six sections and an appendix. In Section [2] we deal with the

linear problem associated with equation (|1.7]). More specifically, we prove that — A, generates an

—Ae

analytic semigroup {e : t > 0}, and we obtain convergence in the uniform norm of operators

of the associated semigroups when ¢ — 07 as follows:
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Theorem 1.4. For any o € [0, 3) and v € [0,1] there exists a constant Cy > 0 such that

He_Aet - €_AOtHL(XxX) < C’yeavt_ve_wlt

L(XxX
At L )

)

for all t > 0. In particular, e~ et as € — 01, with uniform convergence for any

interval [T, 00), T > 0.

In Section [3| we prove local and global well posedness results for equation and we deal with
all the cases at once. For each € > 0, these results are contained in Theorems 1.1 and 1.2 of [§]
as for the case € = 0 these results are contained in the results of Section 3 of [6]. To this end,
a fine analysis of the fractional powers of the operators —A. is required (such analysis is done in

Subsection [2.2]). The main results of this section can be summarized in the results below:

~ 1
Theorem 1.5. For any initial data [5] lying in a bounded subset B of X3 x X there exists
1
a number k = k(B,€) and a unique solution [0,k) > t — [u¢](t, up,v0) € X2 x X2 of (1.4)
1
which depends continuously on its variables (t,up,vo) € [0, k) X X3 x X¢& and such that, for any

se [ 0] andy e (0,1-3),

1

(] G a) € € (0.7 (X0 x £ ) et (07 ek x )

and either k = 0o or || [ <] (¢, up, vo)|| — o0 ast— K.

X% x X%
1
Moreover, the solution satisfies in X3 x X X2 the variation of constants formula
[%E](tva’ZO):e Ad / A g€ [UE](Svu()’UO))dS’ te [Oﬂ{')’
where
Ge ([2]) = PgeFeoc ([4]) -
1
Theorem 1.6. Problem (1.1]) defines a C°-semigroup {Sc(t) : t > 0} on X2 x X2 for each

e € [0, 1], which has bounded orbits of bounded sets, defined by
Sc(t) [30] = o' ()@ [30]
or equivalently
Set) [8] = e~ 18] + /Ot e~ AUG, (Se(s)[W]) ds, for all t >0

In Section {4 we prove the existence of global attractors for the semigroups {Sc(t) : ¢t > 0}
generated by equations (1.1)), which is given by
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- _1
Theorem 1.7. The semigroup {Sc(t) : t > 0} has a global attractor A. in X2 x X2, for each
e €1[0,1].

In [8] the authors prove the existence of global attractors for each € > 0 and also provide bounds
(e dependent) for the global attractors (see Theorem 1.3 of this reference). In [9] they prove the
same for the case e = 0 (see the results of Subsection 4.2 in this reference); however, simply joining

the results would not lead to a uniform bound for € € [0,1]. We also prove the following
Theorem 1.8. Ifs € [O, 1-— W), then Uee[o,”,&e is bounded in X5 x X3,

In Section |5| we are able to prove the upper semicontinuity of the global attractors {Ae}ee[o,l] at
e=0:

Theorem 1.9. The family {Ae}ee[o,l] is upper semicontinuous in € =0, in X3 x X,

This result was also proven in [24], using a different technique, dealing with energy estimates of
solutions (see Lemma 5.12 in this reference). Under (natural) additional assumptions we can also

prove the lower semicontinuity

Theorem 1.10. Assume that f is a C? function on R with f,f' and f" bounded in R. Also,
assume that the set € of equilibrium points of (1.7)) is finite and that each point of € is a hyperbolic
point for (1.7) with e = 0. Then the family of global attractors {AE}GG[O,H s lower semicontinuous
at e = 0.

Lastly, in Section [6]using some further uniform estimates for the semigroup generated by equation

(T.7) we obtain an uniform estimate for the fractal dimension ¢(A.) of the global attractor A..
Theorem 1.11. There exists a number 79 > 0 such that for any € € [0, 1]
c(A) < 7.

In [24, Lemma 5.10], the authors prove an estimate for the fractal dimension of the global

attractors using exponential attractors, but the bound depends on € € [0, 1].

Remark 1.12. We note that, most of our results are proved using techniques from functional anal-
ysis, resorting to energy estimates when is absolutely necessary. We were able to obtain some fine

estimates using a bootstrapping argument in the subcritical case. This equation has been considered
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in [I1], where they proved the upper semicontinuity of the global attractors of (1.1)) as well as to ob-
tain bounds for the fractal dimension of the attractors, but is not uniform in e € [0,1]. Here we also
prove the lower semicontinuity of the global attractors, besides recovering the upper semicontinuity

and obtaining uniform (w.r.t. €) bounds for the dimension using a different technique.

2. THE LINEAR PROBLEM AND THE UNIFORM CONVERGENCE OF THE LINEAR SEMIGROUPS

In this section we study the linear problem associated with equations (1.7]) in X x X, given by

d
S+ ALE] =0, >0
58] - e cx

more precisely, we will prove that the family of operators {Ae}ee[m] is uniformly sectorial; that is,

we can find ¢ € (0, %), M > 1 and a real number w such that the sector
Swgp={AeC: ¢ < Jarg(A\ —w)| <7, A # w}
is in the resolvent set of A for all € € [0, 1] and

”()\ — Ae)flug(XXX) < , forall A € Sw@,

M
A —wl
and moreover we will prove that we can take w < 0, which will give us an uniform exponential

decay for the generated analytic semigroups {e A< : ¢t > 0}ecio1]-

2.1. Uniform sectoriality. In this subsection, our goal is to prove the uniform sectoriality of
{Ac}eejo,1) in order to obtain a convergence of the generated linear semigroups {e‘Aft : 12> 0}ecpo
as e — 0.

First we begin obtaining an uniform decay in time for the generated semigroups, and to this

purpose we define the notations of the inner products we will use throughout our work.

Definition 2.1. In X we denote the usual inner product (-,-) and in X x X we use the inner
product (-,-) given by

(5] 122]) = (w1, wa) + (21, 22).

With this notation set, we are able define for each pair (e, 8) € [0, 1] x [0, 1], a map from (X x X)?

into C by
(51,12 D = (1150 + S oA 20) + 5, A7),

In what follows we will need a result of basic functional analysis, that we state below.

_1
2
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Proposition 2.2. The family of operators {A;B}(E,B)E[O,l]x[o,l] s uniformly bounded. In particular,

there exists a constant p > 0 such that
(APz,z) > pllz|%, for all z € X}

Proof: See Appendix [A]

With this result we can prove a uniform equivalence between (-, ), 5 and (-, -).

Proposition 2.3. For all (¢, ) € [0,1] x [0,1], if we define || ['Y] ||€/3 =([Y],[%])c 5, we have

= S e < 0TI < 14 22 N

[

Proof: We have, since A, ? is self-adjoint, that

(21,12 es = (%], [2]) + PRe(w, Ac 72) = [ 4] x + BRe(w, A

1
22)7

but

1 1 1

[Re(w, Ac #2)| < [(w, Ac *2)[ < [Jw]|x[|Ae * 2l x
-3 [[Ae Hc 2
<A oo lwllx 2l < ——E e »
_1
By Proposition [Ae *[|z(x) < p and hence
—3 M 2
[Re(w, Ae *2)] < 5 [ ] wx

which concludes the proof. |

Corollary 2.4. There exists By € (0,1] such that (-,-)675 is an inner product in X x X for all
(676) € [07 1] X [0750]

Proof: Almost all the properties of an inner product are easily verified; and for the coercivity it
suffices to choose fy € (0, 1] such that 1 — BLQ“ > 0 in the previous proposition. (]
So far we are able to construct uniform equivalent norms in X x X and the next step is to prove

that there exists a positive constant 6 > 0 such that A, — I is acretive, for all € € [0, 1].

Proposition 2.5. There exist 51 € (0, Bo] and a constant § > 0 such that

Re ((Ac = D) [Z],[%])ep =0,

€,01

for all e € [0,1] and [Y] € D(A.).
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1
Proof: We have for [¥] € X2 x X! that

wtzhizna=([ g s
= —(Aéz, w) + (Aéw, z) + (Aez, 2) — g(z, z)+

1
which implies, since A2 is self-adjoint, that

g

Re (Ac[¢],[%]) = IA2 2]k — 5 llzllx + 5\le!§< + 5 Re(Aé 2, w).

1 1
But [Re(A2z,w)| < (|AZz|% + |w]|%) and hence

Re (Ac [21,2]), > (L= DIz — Deli% + 5 ol

> =D - 5] 1t + i

Now we choose 1 € (0, Bp] such that (1 — %)/ﬂ - % > 0 and thus, by Proposition E we have
Re <A€ [IZU] ’ [?De,,@l Z 5([15] ’ [g’}]>e,ﬂ1 )

where 6 = (1 + /312111)—1 min{(1 — %),u% - %, g} > 0, and therefore

Re ((Ac =D [Z],[%])ep, = 0.

[
From this we conclude that each operator 61 — A, generates a strongly continuous semigroup of
contractions in X x X with the norm || - || g,, which in turn, using Proposition lead us to the

following result:
Theorem 2.6. There exist constants M > 1 and § > 0, such that
He_AetHE(XXX) < Me™%, forallt >0 and e € [0,1].

Proof: Since [|e(®/=A)! [?;]Heﬁl < |I[Z]llc g,» Proposition [2.3 imples that there exists M > 1 such
that

SM[F ]l x x>

z

|,

and concludes the proof. [
Corollary 2.7. Given ¢ € (3, ), there exists a constant My, > 1 such that

_ M,
(A — Af) 1Hz:(XxX) < ﬁ, for all X € S5, and € € [0,1].
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Proof: From the Inverse Laplace Transform, we know that
o
()\ . ./45)_1 _ _/ e)xte—Aetdt’
0

for all A € C such that Re\ < § and therefore

M
A—A) S
O A0 e < 5as
for all € € [0,1]. Now, given ¢ € (7/2,7), we have that
M 1
)\ - € -1 < P
for all A € S5, and € € [0, 1]. ]

So far we have proven that each — A, generates a strongly-continuous semigroup in X x X (which
for e > 0 is trivial, since A, is bounded in X x X) and furthermore we proved an uniform exponential
decay for the generated semigroups for € € [0,1]. But we would like to prove the convergence of
e~ At to e—Aot in L(X x X) as e — 0%, and to this purpose, we will need to work a little more.

For € € [0, 1] define D(B) = D(A.), D(Pe) = X x X and

T I 0
- 00 -
BE_A€+[OI]?P€__AE—%I]7
so that
-1 I 0
Pe :[—A;%I

Also, if we set D(De) = {[¥] € X x X : P71 [¥] € D(Bc)}, we can define
D, = PBP .
Remark 2.8. It is simple to see that D(D.) = X x X! and hence

1
Dgz{I—Az}.
0 Ae

Finally, define D(D,) = D(D.) = X x X! and

De=[fr.]

€

For what follows we will need the definition and one result concerning the numerical range of an

operator, which are given below.
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Definition 2.9. If B: D(B) C Z — Z is a closed densely defined operator in a complex Hilbert
space Z with inner product (-,-), then the numerical range W (B) of B is the set

W(B) = {{Bz2): z€D(B), |lz]z = 1}.

Theorem 2.10. Let B: D(B) C Z — Z be a closed densely defined operator in a complex Hilbert

space Z, W (B) its numerical range and ¥ an open connected set in C\ W(B). If ¥ N p(B) # &

then ¥ C p(B) and
1

d(A, W(B))
where d(\, W (B)) is the distance between A and W (DB).

, for all A € 3,

A= B) Mgz <

Proof: See Theorem 21.11 of [3].

With this result at hand, we can prove our first lemma.

Lemma 2.11. The operators D, : D(ﬁe) C X x X — X x X constitute a family of uniformly

sectorial operators.
Proof: Using again Proposition there exists > 0 such that for all z € X! we have

(Aez, 2) = p(z, 2).

Thus, for [¥] € D(D,) we obtain

(Be[¥1,121) = (wyw) + (A2, 2) > (w,w) + alz,2) > i {[2],12]),

where ji = min{1, z} > 0 and therefore the numerical image W (D,) is contained in [ji, c0), for all
e € [0,1]. Defining ¥ = C \ [f1,00) we have that 0 € ¥ N p(D,) for all € € [0,1] and hence, by
Theorem ¥ C p(D,), for all € € [0, 1], and

1 __ < 1
A\, W(De)) ~ d(A, [,00))

Now given ¢ € (0,7/2), if A € Sj 4 we have that

A= Do) Mlz(xxx) < , for all A € X.

d(>‘7 [ﬂa OO)) > |)‘ - :[)‘| sin ¢7

and hence
1
sin A — i’

IA = Do) Ml £xxx) < for all A\ € Sz 4 and € € [0, 1].
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To continue, we will need well know results in functional analysis, concerning interpolation of

fractional powers of an operator, which we will state below.

Definition 2.12. Let C > 1. A closed densely defined linear operator B : D(B) C Z — Z is said
an operator of positive type with constant C' if [0, 00) € p(—B) and

(1+9)|(s+ B)71||£(Z) < C, for all s € [0,00).
The set of all operators of positive type in Z with constant C will be denoted by Pc(Z).

Proposition 2.13. Let A be an operator of positive type with constant C' in X, then the Yosida
approzimations A, of A are positive type operators with constant 1+ C, for all € € [0, 1].

Proof: See Appendix [A]

Theorem 2.14. Assume that B € Pc(Z) and 0 < a < 1, then there exists a constant K > 0 such
that
IB®zl|z < K| Bz||%||z]|,®, for all z € D(B);

moreover, the constant K depends only on the constant C and not on the particular operator B.
Proof: See Theorem 1.4.4 of [17].

Corollary 2.15. There exists a constant K > 0, independent of € € [0, 1], such that if 0 < a < 1
we have

IAZzllx < Kl[Acxl|S 2], for all e € X[

Lemma 2.16. The operators De : D(D.) C X x X — X x X constitute a family of uniformly

sectorial operators.

Proof: We have that D, — D, = [(OJ Aoe% }, and hence for all [¥] € X x X
. 1 11
[(De = D) [Z] lxxx = 1A 2]l x < K[[Aezllkllzll%
< S+ 5 lelx
for all n > 0, where K > 0 is the constant given in Theorem which is independent of € € [0, 1]
and therefore
IBe = D) [l < 52Pe [ v + 5112 v

By Theorem 1.3.2 of [I7] and Lemma we have that the family {De}cc(o,1] is uniformly sectorial.
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Lemma 2.17. The operators B, : D(B.) C X x X — X x X constitute a family of uniformly

sectorial operators.
Proof: We have for all A € C that
(A=De) = Pe(A—B)P. !,

hence p(B.) = p(D.), and since the operators P, P.! are uniformly bounded in X x X (see
Proposition , Lemma, implies that {B}ccjo,1] is uniformly sectorial. [

Theorem 2.18. The operators Ac : D(A¢) C X x X — X x X constitute a family of uniformly

sectorial operators.

Proof: Since

119911900 s uxc < IBel%T Ml + 119 T e

for all n > 0, Lemma and Theorem 1.3.2 of [I7] imply that {A¢}cc[o,1] is uniformly sectorial. m

So far, with our efforts, Theorem [2.18| implies the existence of constants M > 1, w € R and

¢ € (0,7/2) such that

1A = A) M2 (xxx) < , for all A € 5, 4 and € € [0,1],

M
A —w
but w € R can be a negative real number (and using the results reported in [I7], we can see that
the number w € R obtained is, in fact, negative), which does not guarantee an uniform exponential

decay for the generated semigroups. But these results together with Corollary give us conditions

to obtain the desired uniform sectoriality of {Ae}ge[gvl] with a uniform exponential decay:

Theorem 2.19. There exist constants M > 1, w > 0 and ¢ € (0,7/2) such that p(Ac) D S, and

M
—1
(A= A) ™l exxx) < E—L
for all X € S, , and € € [0,1].
Proof: This follows from Corollary and Theorem [2.18] [

Corollary 2.20. —A, is the infinitesimal generator of an analytic semigroup {e=A<t : t > 0} for
each € € [0,1] and
1
e At = — / M+ AN TN, for all e € [0, 1],
211 T

where I is a contour in —Ss,, such that arg(\) — £0 as |A\| — oo for some § € (5, ).
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Proof: See Theorem 1.3.4 of [17]. [
Corollary 2.21. Given w; € (0,w), there exists constant M,,, > 1 such that

| AN — -/46)_1||£(X><X) < M, forall A€ S, , and € € [0,1].
Proof: We have that A.(A — Ac) ™! = A(A — A)~! — I and hence

_ _ A
A = A) e < NI = A ey +1 < M2

< 1.
how

Now, for each w; € (0,w), the map S, , 3 A — ﬁ is bounded, hence there exists M, such that
[l AN — AE)AH[J(XX)() < My, for all X € S, .

To obtain the uniform convergence of resolvents, for A in a sector of C, we will need the following

result:

Proposition 2.22. If A is a positive type operator and A its Yosida approximation then, for all
a€l0,3),
_ —-1/2
1A = A5 e < e,

Proof: See Appendix [A]
With this result and Corollary we can prove:

L(XxX
_1 £( )

Corollary 2.23. Given w1 € (0,w) we have that (A — A¢) (A —Ag)~ ! as e — 07,

uniformly for X € Sy, -
Proof: We have that
ATl — At = :
and
A—A) T = (A= Ao) ™ = AN = A) AT — AT Ao (A — Ag)

Therefore Proposition and Corollary M we have, given w; € (0,w) and « € [0, %), that

I =A™ = (A = Ao) "l eixxx) < M, O,

Remark 2.24. If A is the negative Laplacian with Dirichlet boundary conditions, then we can take

o= % (see Remark|A.1).
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Let w; € (0,w). Given r > 0, Corollary implies that we can choose the curve I' given by
I =T, Ul,UTl;, where

Di={AeC:A=—w +s 9 s>r}, T,={AeC:A=—w +re¥, £er—p,o—n},
such that

1
e At = _— / MO+ A) T,
r

21

for all e € [0,1] and ¢ > 0.

Proof of Theorem [1.4t We have that

211

1
e~ At _ At = / M [()\ +A) - (A + Ao)_l] dA,
r
thus, if o € [0, %), then

—Act — Aot Ce” ReAt
e — e xxx) < o [ e dA|
r

27
_ Cﬁa e—wlt |:2 /oo e—stcosgpds + T/ﬁ_v ertcos§d§:|
2w . p—
Cle® efrtcosap
< —e Wit |2 2r(m — et
2m [ tcosp +2n( 2
C @ e—wlt C @
‘ ‘ Q_WNLT(T( - 30)7
T tcosp s

for any 0 < r < wy and therefore making » — 0T, we obtain

C
||ef./45t _ eiAOtHlZ(XXX) < T e lgmwit
T COS (p

But [le=Aet — e=A0| £y x) < 2Me " and hence, for € [0,1] we have

e et — Aot ) < (2M)1 (C

¥
€t Tt
T COS

Remark 2.25. Again, if A is the negative Laplacian with Dirichlet boundary conditions, we can

1
takea—i.
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2.2. Fractional powers of A.. In this subsection we are interested in some properties of the
fractional powers of the operators A.. We know that for € > 0 we are always working with X x X
with an equivalent norm, but again, we are concerned about the uniformity in e € [0,1] for the
problems , and it will be useful to have some additional properties of the fractional powers of
Ae.

Proposition 2.26. A, is a positive type operator for some constant C' > 1.

Proof: We know that 1 — A, is dissipative in X x X with the norm || - ||c g,, by Proposition
and p(01 — Ac) N (0,00) # @, and thus by Lumer’s Theorem, we have

_ 1
(A + (Ae — 01)) 1‘|£(X><X),|I~||€,/31 < N for all A > 0.
Therefore, if u =X — 4,
)

. 1
(1 + A 2xsx) sy S g forallu> -4,

and thus if 4 > 0 we have that

-1 p+1

(L4l + A) ™l oxxx) s, < L
and since the map [0,00) 5 p +— ﬁ—ié is bounded and the norms || - ||, and || - || xxx are uniformly
equivalent, the result follows. ]

Now, for 7 € [0,00), we have that s € p(—.A,)

1 |r+Ac AP o2 -
-1 _ € €
(r+4d) T4 a2 <T+1+AE> ’

and hence for a € (0,1) we have (see Theorem 1.4.2 of [17]) that

A sin T /°° o [T+ A A 7° +A B d
_ T.
¢ ™ Jo TH1|_AV2 0, T+1 ¢

If we set

_Afo‘ . Pl,l(e,a) PLQ(E, Oé)
€ - )
Pri(e,a) Pa(e, )
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we have that

72

T+1

—Q

sinra [ T
Pii(e,a) = /
0

m r+1“+AJ(

: o0 —« 1 2 -1
Pra(e,a) = sm7ra/ T AD < T +A€> ir,
0

s T+ 1 T+1

Py 1(e,a) = =By a(€, o),

. 0o _—a+1 2 -1
sty = S T ()
0

™ T+1 \7+1

To continue, we will need the following result.

-1
+ A€> dr,

17

Proposition 2.27. If A is a positive type operator with constant C' then there exists a constant Cq

such that, for any 5 € (0,1) and € € [0,1]

C

A+ M) Y o) € —
1820+ A0 o) <

Proof: See Appendix [A]

And now we can state our result for the fraciontal powers of A..

Tt for all > 0.

Proposition 2.28. For each 8 € (0,3) and € (,1), the operators A?Pl,g(e,a) and A;BPQQ(G, Q)

are uniformly bounded for e € [0, 1].

Proof: For P; (e, &) we have that

: o a1 2 -1
AP Py a(e,0) = smwa/ U < T +Ae> dr,
0

T T+ 1 T+1

and thus by Proposition [2.27] we have

1
Ch si 00 —a 1 5—/3
A2 Prate e < ST [T (T+ ) ir <
0

™ T+1\2+7+1
and the integral on the right side is convergent, for any a € (0,1).

For P, 2(€, ) we have that

T T+1

. 0o ——a+1 2 -1
ABPyo(e,a) = 22T / T A§< T +AE> dr,
0

and thus by Proposition we have

IA Paa(e, @)l ox) <

T T+1

and the integral on the right side is convergent, provided that « € (53, 1).

Cisinma /°° roatl T+1
0 247 +1
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3. LOCAL AND GLOBAL WELL POSEDNESS RESULTS

3.1. Local well posedness result. To state the results of local well posedness of equations (|1.7]),
and consequently of (|1.4]), we firstly prove the auxiliary lemma below.

Lemma 3.1. Let f : R — R, and A is the negative Dirichlet Laplacian in X with domain X' =
H2(Q) N HY(Q) and consider its closed extension to H™" = (X z)', where Y’ represents the dual
space of the Banach space Y, (in particular, H=* = H}(Q)"). Then

fD) ) = f((x)), = €,

defines an operator from X3 into H™" which is Lipschitz continuous in bounded sets provided that

condition (|1.2) holds and r € {W, 1], s€[r 1N {% — %, 1} . If in addition, r can be taken

strictly less than 1, then f€ takes bounded sets of X3 into relatively compact sets of H™ L.

Proof: Let B be a bounded set in X2 and choose arbitrary ¢1, ¢2 € B. Since condition (1.2]) holds

we use the Sobolev and Hoélder inequalities to get

175(¢1) = fE(@2)llr—+ < Ol 1) = fAP2)l | 25

()

A —1 —1
< COllgr — ¢2||L 2n <1 ol w0y o2l a0y )
Q L7 2r  (Q)

n—2r (Q) LT( )

_ —1 —1
<Cllér = dallys (14 lorlly + lloell )

for any s € [r, 1] N [% — %, 1] The last statement holds since H~" is compact embedded in H !

for r < 1. n

To continue, let W, be the extrapolated space of X x X - which is the completion of the
normed space (X x X,[|AZ! - [[xxx) - and we consider the power scale {W2},cjo1] generated

by (We, [|AZ - [lw.)-
Remark 3.2. Note that W} = X x X for all € € [0,1].

Lemma 3.3. Let s € [W, 1} and v € (0,1 —3), then F. (defined in (L.8)) takes W} in W2

and is Lipschitz continuous in bounded sets.
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Proof: Let B be a bounded subset of W} and [%!'],[%2] € B. We have that

1 (2 D) = Fe (22 Dllwe = [T 1Fe (D) = Fe (D[ xnx

H[A Pra(e1—y)A~ %(I+eA)L}1(f(A %wl) f(A—%wz))H
A2 Poa(e A5 (I4eA) 2 (F(A™ Bwn)—F(A™ Fwa))

and hence, by Proposition along with Proposition we have that

IFe (5D = Fe (% Dy < const.| f(A2wn) = F(A™2ws)|| -

Finally, Lemma [3.1] and Remark [3.2] guarantee that

1Fe (150 ]) = Fe ([ Dlwy < const [ [20] =[5 b

Now we can state a result of local well posedness for (1.7]) in W!.

Theorem 3.4. For any initial data [%0] lying in a bounded subset B of W there exists a number
7 = 7(B,€) and a unique solution [0,7) > t — [%<] (t,wo,20) € W} of (1.7) which depends con-
tinuously on its variables (t,wq,20) € [0,7) x W} and such that, for any s € [%, 1] and

€(0,1-3%),

[%] (-, wo, 20) € C ((O,T),WGHV) nct ((O,T),WGHV’) ,

and either T = oo or || [ %] (¢, wo, 20)[[w1 — 00 ast — 77

Moreover, the solution satisfies in W' the variation of constants formula

(2 oo 20) = 4] [ AR (] ) ds, 1 [0,7)

Proof: The theorem above is a consequence of the results reported in [17].

To state the result of local well posedness for ([L.4), we define A.:D(A) c X2 XXE% — X2xX,
by

D) = {[t]e Xt x X2+ o8] DAY},
and for [¥] € D(A,)
Ac[3] = 7 A [1].
Since P, : X3 x )NQ% — X x X is an isometric isomorphism for all € € [0, 1], we have that each

A, is a closed densely defined operator and also the following result

Proposition 3.5. Fach operator A is a positive type operator (with an uniform constant) and

1
sectorial (with an uniform sector and uniform constants M > 1, ¢ € (0,3) andw > 0) in XixX2.
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1
Let Z. be the extrapolated space of X 3 x X2 which is the completion of the normed space

1 .

(X2 x X2, | A7 HX% xf(%) and we consider the power scale { Z8},¢[0,1] generated by (Z, ||A2-| z, ).
1

Remark 3.6. Note that Z}! = X2 x X2 for all e € [0,1].

Proof of Theorem [1.5} Let B = ® B which is a bounded subset of W!. Thus, by Theorem

there exists 7 = 7(B,¢) and a solution [0,7) 3 t — [¥] (¢, wo, 20,€) € W!. Defining x = 7 and

[¥] (¢, up,vo,€) = P [7] (¢, wo, vo, €) we obtain the desired result. [

3.2. Global solutions. We want to prove that problem generates a strongly continuous
semigroup, and conclude consequently the analogous result to (1.1). To this end, from now on
we assume that A : H}(Q) N H*(Q) C X — X is the negative Laplacian with Dirichlet boundary
condition (hence satisfies conditions (O1), (O2) and (03)), and we will begin with the following

lemma:

Lemma 3.7. Under the assumptions and notation of Theorem[3.]], if A is the negative Laplacian
with Dirichlet boundary condition in X, then condition implies the existence of a constant
C > 0, independent of € € [0,1], such that if [%0] € WL, then solution of equation given by
[0, 7(wo, 20,€)) Dt — [w(t’wo’zo’e)} € W! fulfills the estimate

z(t,wo,20,€)

H [ w(t,wo,20,€)

+1
z(t,wo,20,€) :|HX><X S C( + HZO”X + Honp ) .

Proof: We take the X scalar product (-,-) of each side of the first equation in (|1.5)) with A 3wy

to get

d o, A1 _1 1
(3.1) @(IIMH%@JFIIZII%()—U (A72w), A2 wy) = —[|A22%.

N

Since A is the negative Laplacian with Dirichlet boundary condition, the Poincaré inequality

reads
1426)% = Mgl ¢ € X3,

which for ¢ = A_%w translates into the estimate

_1
(3-2) 1% = MlA720l%, ¢ e X.

If F'is the primitive function of f in R we then have

/ f(A™ 2w Aiﬁwtdx = % F(Aiéw)dx.
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We now remark that ([1.3)) implies the existence of constants C,£ > 0, for which

(M —f)tQ +C, teR.

N | =

t
F(t) = [ fs)is <
0
As a consequence we infer
(A =94 2wl + e,

which with the aid of (3.2)) reads

1
(3.3) / FA S w)de < (1 - 5) | +clo).
Q 2 A1

Connecting ([3.1))-(3.3]) we get for

1 1
(3.4) £lw,2) = Gl + 31k - [ FA-w)ds

Q

that

d 1o,
(3.5) @E(w,z) = —||A¢z]|5% <0
and hence

£ o L, o

(3.6) TMHMHX +5llzllx = €l < L(w, 2) < L(wo, 20),

as long as the solution exists.

We then have

¢ 1 1 1 1
TMH’“’H%{ + §HZ||§( YLUES §||wo||§< + 5”%”%( ~ F(A™2wo)dz
and gives us
_1
Sl + 1215 < ool + ol — 2 | F(Abun)do + 20/

where

1
| (A5 wo)ll sy < const. (1+ [Juwoll5)

21

with the constant independent of ¢, since condition (T.3]) implies that |F(s)| < const.(1 + |s|°T)

for s € R. Thus

+1
luoll + 1120 < € (1+ llz0l% + woll§)
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Theorem 3.8. Under the assumptions of Lemma[3.7, the solutions from Theorem[3.]] exist globally
in time and the problem (1.7)) defines a C°-semigroup {T.(t) : t > 0} on W! for each € € [0,1],
which has bounded orbits of bounded sets, defined by

t
L0 (%) = A [)+ [ e AOIE (@) (%) ds. for allt >0
0

Proof of Theorem [1.6k Is a direct consequence of Theorem [3.8 [

4. EXISTENCE OF ATTRACTORS AND UNIFORM BOUNDS

In this section our goal is to prove the existence of a global attractor A. of the semigroup
{Tc(t): t >0} for each € € [0,1] and to prove that {T.(¢) : ¢ > 0} is a gradient semigroup.

Let €& = {[g] tp € 51}, where & = {¢p € X : A%qﬁ = f(A_%gb)}. It is clear that £ is the set of
equilibrium points of {T,(t) : t > 0}, for all € € [0, 1].

First we need an auxiliary lemma:

Lemma 4.1. If X = L?(Q) and A is the negative Laplacian with Dirichlet boundary condition and
domain X' = H?(Q) N H(Q), then

(4.1) (A7bo, ko) = [ guds, o€ (@), vexh

Proof: See Lemma 2.1 of [9].

Now we can give an estimate for the bound of the equilibrium set £.
Lemma 4.2. £ is bounded in X x X, moreover for each ¢ € &1, A_%qb € L>(Q).

Proof: Let ¢ € X2 such that [‘é’] € €. Thus by Lemma we have
[61% = (6,0) = (6,472 [(A720)) = (47426, A2 f(A"2)9)
= [ raio)a-tods,
and hence, with and the aid of the Poincaré inequality, we have that
1% = /Q F(A720) A2 ¢dw < (A = O A726]% + C19] < (1 - A7) ]k + Cl9.

Therefore

sup [|gl% < xgTICIQ.

%’]eg
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For the second part, if ¢ € &, then ¢ = A*%qb € X2 is a solution of the problem

Ay = f(¥),

and hence, since f has subcritical growth, it follows by a bootstrapping argument that ¢ € L>((2).

Corollary 4.3. The set £ = { [zﬁ%fﬁ} NS 81} is the set of equilibrium points of (1.1)). Moreover,

1 .
this set is uniformly bounded in X7 x Xé, fore€[0,1], and £ C L>(Q) x L>®(Q).
Lemma [3.7] gives us also the following result:

Proposition 4.4. Under the assumptions of Lemma[3.7 the function £ : X x X — R satisfies

(1) L(T(-)[22]) is bounded from below and non-increasing in [0,00) for any [%0] € X x X;
(i) If ['Q] € X x X and L(T.() [2]) = const. in [0,00) then [20] € E.

Proof: Equations (3.5) and (3.6) show that £(Tc(-)[%0]) is decreasing and bounded below in
[0,00). If L(Te(+)[%0]) = const. in [0, 00), then

LT [%]) = L([=]),

forall t € [0,00). If T.(¢) [0 ] = [1:((3] then z.(t) = 0 for all t > 0, and in particular, zop = 0. Also

1
%we(t) = A2z(t) = 0 for all ¢ > 0, thus wc(¢) is constant which implies that we(t) = wq for all
t > 0. Finally, equation (|1.6)) implies that A%wo = f(A_%wO) and therefore [30] € £. n

Proposition 4.5. Under the assumptions of Lemma for each € € [0, 1] there exists a function
1
Ve : X3 x Xé& — R satisfying

(1) Ve(Se(+) [w0]) ts bounded from below and non-increasing in [0,00) for any [v)] € X2 x X}% ;
(ii) If [w] € X2 x Xé and Ve(Se(-) [“]) = const. in [0,00) then [%] € €.
Proof: Just define, for each € € [0, 1],
Ve ([v]) = L(®oc [v])
and this functional has the desired properties. ]

To ensure the existence of an attractor A, for the semigroup {T(t) : t > 0}, for each € € [0, 1],

it remains to show that {7T.(t) : t > 0} is an asymptotically compact semigroup, for each e € [0, 1].
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Proposition 4.6. For each e¢ € [0,1], the semigroup {T(t) : t > 0} is asymptotically compact in
X xX.
Proof: Define, for each € € [0, 1],
t
Let)[%] = e (%] and Udt)[%] = / e AU FA(T(s) [%]) -
0
1
From Lemma f(A72.) take bounded subsets of X into precompact sets of H™*® for s €
[W, 1), thus F. takes bounded sets of X x X into precompact sets of X x X, T,(t) is the

sum of an exponentially decaying semigroup with a compact family of maps, which implies that

the semigroup is asymptotically compact. ]

Theorem 4.7. The semigroup {T(t) : t = 0} has a global attractor A, in X x X, for each € € [0, 1].

Proof of Theorem Define A, = @&iAe, for each € € [0, 1]. m

4.1. Uniform estimates on the global attractors. In this subsection we are concerned with
uniform estimates for the family of attractors {Ac}.c[p,1] and also for {Ae}ee[m], since this will be

an essential tool to prove the upper semicontinuity for both of them at ¢ = 0.
Theorem 4.8. (Jc( 1) Ae is bounded in X x X.
Proof: We define, for (¢,7v) € [0,1] x [0, 1], the functional V , : X x X — R by
1 2 2 -1 11
Ver(w,2) = 5 (lwllx + 1121%) - ; F(A7zw)dz +yRe((] + €A)2 A7 2w, 2).
Now
£

1 1 1 11
Vi (10:2) > ol + gali = 5 (1= £ ) Il = CI1+9Re((7 + e)2 Ao,

§ 1 0k
> 271le|§< + §HZH§< - C|Q| - §(M1HZH§( + [Jwl%)

(& 2 1_om 2 _
w(t)

and we choose v € (0,1) such that )% —v>0,1—py>0andy < 5. Now, if we take [Z(t) } being
a solution of ([1.5) we have that

d
@‘/ey’y(wgz) = —Hth%( + yRe(( + eA)%A_%wt,z) +yRe((I + eA)%A_%w,zt)

— —Jlwelk +7l121% — YRe((I + €A)2 A~ 2w, A2 (T + €A)~2w) — yRe(ws, w)

+yRe(f(A™7w), A2 w)
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hence, for each n > 0

d gl n
Ve 0:2) < (5 = 1) el + sl + ol

(1

(I + eA) 2w, (I + eA)2 A 2w)

=

~ L Ra(A3 (T 4+ ed) du, (14 eA) A=5u) 4500 — O A~ 2ulk +Cal0)
1
o g 2 alz 2
<5 - oo a,
(3= 35 ) ol + (=+ 2249 ) 115 + ool
hence for n = /\% we have
d 8is 2 H 2
_ < 1> Y .
g1 Verw:2) < =gl = (5 =) ellk + Calel
Now, for any ¢ > 0, we have
d YE 2 p 2
- < = — (= =
i Ver(w.2) < —g el — (5 =) Il + Calal
+ C/ F(A*%w)dx + ’yCRe((I—i—eA)%A*%w,z),
Q
and thus

d Al —
V(09 < (— 25+ SBZE L 2 g+ (B4 25 a1

+ 00 +20¢]0) + g/ F(A S w)dz — CyRe((I + cA)s A w, 2).
Q

We can choose ¢ > 0 such that

O I I (S % e ¢
o T2 Ty s gadg oyt <o
and therefore
d C 2 C 2 _1 1 1 ~
@Vm(w,Z)<—§lelx—§||2|lx+4 F(A72w)dr — y(Re((I +€A)2 A" 2w, z) + C
Q

= —(Veqy(w, 2) + C,
or equivalently

d -
—Ver(w,2) + (Ve y(w, 2) < C.

dt
This implies that for all £ > 0 we have
d N
— (eCtVE v(wjz)) <€l
dt ’
and hence

Ver(w,z) < e_a‘/;ﬁ(wo, 29) + C.
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Therefore
2 A~ 1 =~
%% x < Cem (1 + [|z0l% + llwoll% + woll5) + B,

for all ¢ > 0 and given a bounded set B in X x X, there exists Tg > 0, independent of € € [0, 1],
such that

||[1§]||§(XX < 2R, for all t > Tp,

and we conclude the proof of the theorem. [

With this uniform bound in X x X, using the subcritical growth of f we are able to provide an

uniform estimate in a more regular space.
Theorem 4.9. Ifs € [O, 1-— W), then Uccjo,1)Ae ts bounded in X3 x X5.
Proof: If [Z((;USZZS;)} is a solution of ((1.6]) in the attractor A, then
t
w(t,wo,z0,€) | —Ac(t— w($,wp,20,€)
[z(t,wg,zg,e) } = / e AUIE, ([z(s,wg,zg,e) D )
—00
for all t € R. Thus, if we take o € (%, 1), we have
(tw0,70.0) ' At
w(,wo,20,€ a,—Ac(t—s)
[t s s < | 124l

and there exists a constant M > 1 such that (using Proposition [2.28)

9

w(s,w0,20,€)) ]
XxX

w(s,wo,20,€))

M,_. w\»—t

A P 2(6 a)A e f(A
A2P22(ea)ATf(A

wo,20,€ e~ s —a _1
H{ fwgvzt?e)]Hszxz <M/ 70— 5) N F (AT 2 w(s, wo, 20, €)) [,

and since, by Theorem [|[w(s, wo, 20, €)||x is uniformly bounded in X we have that |J.cj 1 Ae
is bounded in X3 x X3, [

Corollary 4.10. U.c[o,1)Ac is precompact in X X X.

Proof: It follows directly from the fact that X2 x X2 is compact embedded in X x X. |

To finish this section and give a proof of Theorem we need the following result.

Proposition 4.11. Let A be an operator of positive type with constant C > 1 in X, then the
operators I + €A : D(I +¢€A) C X — X are of positive type with constant C. Moreover, the family
of operators {(I + GA)iﬁ}(e,,B)e[O,l}x[O,l] is uniformly bounded.
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Proof: See Appendix [A]

Proof of Theorem [[.8 It follows from the previous theorem and Proposition n

Corollary 4.12. UGE[OJ]ANE is precompact in X3 x X.

5. CONTINUITY OF ATTRACTORS

5.1. Upper semicontinuity of attractors. This section is devoted to the study of the upper
semicontinuity of the family of global attractors {Ac}ccpo,1) at € = 0 and as a consequence, the
upper semicontinuity of {Ae}ge[m]

To start this discussion, we have the following lemma:

0

Lemma 5.1. If{[wg]} 1] C X x X 1s such that [wg] eﬂ [“’é)] for some [w§] € X x X,
e€(0, 20 20

Ze Ze

then we have

[we(t)} eﬂ [wo((f))] , for each t > 0,

ze(t) 20

where [Z:(())] is the solution of ([1.7)) with initial condition [l::((g))} = [150?}, for each € € [0, 1].

Proof: We know that, for each [fg } € X x X, the solution of (|1.7) is given by

] =[] [t om0 o

for each t > 0. Thus we have

][] = e [f] e [+ [ erenm ([20)]) -z ([)]) s

L(e) Iz(e)

We analise I (¢) and I2(€) separately. First, note that

0 0 0
et (] [4]) rere-em 4]

¥4 20
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and the hypothesis together with Theorem ensures that I1(e) — 0 as € — 0". Now

B = [ e 7 ([20]) - 7 ([00])] @

I3(e)
[ -] g (269
0
130
" /Ot et [F([5]) - 7o ([5]) ] as
e

and again we will analise I3 (¢), I3(¢) and I3(¢) separately. For I3 (¢) we have that, given a € (1/2, 1),
¢
173 ()llxsx < /0 lAze A0 gy [ar [F ([20]) =7 ([ D] |, @
0] =[50 e e

For I2(e) we have that, given s € [W, 1) and v € (s, 1),

t
g/ Cefw(tfs)(t_s)fa
0

(I + €A) ™7 f(A"2wo(s)) || xds

t
12 < H —Ac(t—s) _ ,—Ao(t—s)
3@ xx < [ e ‘ A

t —s
< / MCyet=)(t — )" || f(A" 2w (s)) || s
0
O’

23,
For I3(e) we have that, for a given o € (1/2,1) and s € [W, 1),

1B ()llxxx < /0 A5 o [45° [7 ([29]) = 7 ([28])] | as

1

t
g/() Cem“t=9)(t — ) O||[A72(I + €A) "2 — A7) f(A™ Zwo(s))| xds

s—1 1 s—1
2

(T+€A) 2 — AT JA™2 f(A 2w(s))|| xds

t
= [ o9 — s
0
~ 1—
Ce

s
2 .

Joining these estimates we proved that

L R O e I e e
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where [(¢) — 0 as € — 0T, and using a Singular Gronwall’s Lemma (Lemma 7.1.1 in [I7]) we have

that
H[we(t)] — [wo(t)”‘ — 0, ase — 0", for each t > 0.
ze(t) 20(t) XxX
[
Now, using this result together with Corollary we can prove the following;:
’LUO 3 ’UJO wO 6—)0+
Lemma 5.2. If{[zg}} 1] C X x X is such that |:ZS:| € A¢ for each e € (0,1] and |:zé:| —
€ ec(0, € €

[jﬂ for some [jg] € X x X, then [i’g} € Ay.

0

Proof: Let [Z:((:” be the global solution through [Zg], for each € € (0,1]. Since [1;:((:11))} €

U c€0,1] A, there exists a subsequence €,, — 0 as n; — oo and a point [1:;)((:11))} € X x X such that

(] = [ s o

By Lemma
wg _ Wey, (—1) wo(—1)
|:Zg :| B TE(l) |: Z€7L11(_1) ] - To(l) |: ZO(—l) ] ?
and hence Ty(1) [1:(?((:11))] - [w((? } Inductively, if we have chosen a subsequence {ny} of {nx_1}
20

and a point [fg((j:)) } € X x X such that

B::((::))} — [‘53((;5))] , as ny, — 0.

Again, using Lemma [5.1] we have

[y =T [wl((__,f))] = To(1) [0

AA
Zz=
—_

and hence Tp(1) [153((::))} = [1:(?((:::11)) ] Now define for each t € R

(58] re=—kezs

JE To(t+ k) [ 200)] s it € (—=k,—k+ 1)

'l,UO . .
[zog}, if t = 0;

)

To(t) [wg} it > 0.

0
and thus [fg((:))} is a bounded global solution through [fg} of {Tp(t) : t > 0} and therefore
0
0
[“’g} € Ao. »
0
Lemmas and together with Lemma 3.2 of [5] prove the upper semicontinuity at e = 0 of

{Ac}eecio,1) and we have the following result:
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Theorem 5.3. The family {Ac}ccpoq1) is upper semicontinuous in € = 0.

With the upper semicontinuity of the family {AE}EG[O,I] at ¢ = 0 we are one step away to prove
the upper semicontinuity of the family of global attractors {AE}EG[O,I] at € = 0. All we need is the

following proposition:
Proposition 5.4. If s € [0,1] and = € D(A2) then
(T + eA) 22 — z||x < Ce2 || A2z x.

Proof of Theorem [1.9t Just note that

We _1
T = 15810 a e < || [rrem-ta ] = 2| T+ ey 2 = zellx + 115 T = [ xcx
for any [3¢] € C.. Now the result follows Proposition [5.4] and Theorem ]

5.2. Lower semicontinuity of attractors. The study of lower semicontinuity of attractors is a
harder deal than the upper semicontinuity and requires a fine study of the local structures in the
global attractors; that is, we need to study the continuity of the local unstable manifolds of the

linearized problems around each equilibrium point [‘é’] € & (recall Section , which is given by

d

(Pe) g 12T Acs[2] = Feo(l2]),

where Acg = A — DF([§]) and Feyp([¥]) = Fe([v10]) = Fe([§]) = DF[$D) [¥].

From now on we will make the following assumption:

(LS1) ¢ is an non-degenerate equilibrium for Ay = feo A_%(u); that is 1 € p(A_%D(f6 o
A_%)(qﬁ)) and hence I — A_%D(f6 o A_%)(gb) is invertible.

It is easy to see that

0 0
DF.([?]) = . ) ,
(5] (I+€eA)"3D(f0 A~2)(¢) 0

We now will study the convergence of the linear local unstable manifolds of the problems ,

and to begin we discuss the generation of analytic semigroups by —Ac 4.

Proposition 5.5. Using the notations of Lemma if ¢ € &1 then D(f€o A_%)(¢) is a bounded

linear operator in X.
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Proof: We know that, for each ¢ € & and n € X,

(D(f¢0 A72)(@)n)(x) = f/(A 2(x) A 2n(x),
and hence
ID(fe 0 A=) (@)nll% = /Q (A F () A En(e) .

But since A~3¢ € L() (by Lemma[L.2) and [f/(s)] < e(1 + |s]P~1), f/(A2¢(-)) € L®(Q) and
thus
_1
[D(fo A72)(d)nllx < Kllnlx.

Corollary 5.6. {D.Fe([‘g])}ge[oﬂ is an uniformly bounded linear family of operators in X x X.

Corollary 5.7. {Acg}ccpo,1) s an uniformly sectorial family of operators in X x X, hence each
—Ac s generates an analytic semigroup {e=A<o : t >0} and there exist constants M > 1, w € R
such that

HefAev“?tHﬁ(XXx) < Me™, for allt >0 and all € € [0, 1],

also there exists a ¢ € (0,7) such that

A= Acg) Ml < for all \ € S, and all € € [0,1].

M
A —wl’
It is by a simple calculation, and recalling that 0 € p(.A.) for all € € [0, 1], that we can see that
Acyp = A(I — AT'DF([2])) = AcB,
where B is the invertible linear bounded operator given by

I—A3D(f0A72)(¢) 0
0 I

B:

Therefore, using the assumption (LS1), we have that 0 € p(Acg) and .A;qls = B~'A-! which
gives
I = Agglleco < 1B lleeo lA = Agll < Ce
Now let K C C be a compact set and assume that K C p(Age). Since Ag (A — Agg) !
and (A — Ag,¢)Ao e are in £(X) and they are inverse with each other, we have that )\.Aaé) —I=

(A — Ap,4)Ao,e is an invertible operator and since

MAZL =D — (Mg — 1) = MAZL — Ay,
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we have that, for e sufficiently small, ()\.A;qlb — I is invertible and

_1 £(X)

M -D =4y —D) =00,

as € — 07, uniformly for A € K. Thus (A — A ) is invertible for A € K and e sufficiently small,
and

(A= Ag)™ = (A= Ago) "D,

as € — 07, and we have proved the following result

Proposition 5.8. Given K C C a compact set such that K C p(Ao ), there exists eg € [0,1] such
that K C p(Acg) for all € € [0, €] and

sup ||(A — AE,¢)_1 - (A= A07¢)_1||£(Xxx) —0, ase =0T,
AEK
This lead us to the following result:

Proposition 5.9. If [‘g] € & is a hyperbolic equilibrium point for the problem (Fy) then there
exists g € (0,1] such that [g] it is a hyperbolic equilibrium point for the problems , for each

€€ [0, 60].

Proof:  Since [%’] is a hyperbolic equilibrium point for (F), o(Age) is separated from the
imaginary axis; hence there exists a rectangle K = {\ € C : Re\ € [—a,a] and Im\ € [-b,b]} with
a,b > 0 such that o(Apg) N K = @, and by Corollary we can choose K such that it split
C\ S.,, into two separated sets.

Then Proposition implies that there exists ey € (0, 1] such that o(Acy) N K = @ for all
€ € [0, o] and therefore [?ﬂ is a hyperbolic equilibrium point for (). [

Now let ot = o(—A ) N{ReX > 0} and I'y be a closed simple curve in p(—A.4) enclosing .
We know that the associated linear unstable manifold U, of problem is given as the image of

the projection I} defined by
1
I =—/ (A “tax
= g Jp AT A
and Proposition implies that

[T — H(J{quxx) — 0, ase— 0.

Now that we have the convergence of the linear unstable manifolds, we study unstable manifolds

of problem , and to this end we begin with the following lemma.
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Lemma 5.10. If f : R — R is a C? function with f, f' and f" bounded in R, there exists ¢ € (0,1)
such that

IfE(A™2u) — FA™20) — f(A720) A2 (u—0)|[x <cllu—v]| S, for all u,v € X.

Proof: First we set g(u,v) = fe(A_%u) - fe(A_%v) - f’(A_%v)A_%(u — ), and we can see that

1

lg(u, v)| = |f5(A"2u) — f(A™20) — f/(A"20) A2 (u— )|
= [f(PA™2u+ (1 — 0)A~2v) — f/(A"20)] A2 (u— v)|
= |/ ((OAZu+ (1 - 0)A"20) + (1 — ) A"20)||9]| A2 (u — v)?,

and it is easy to see that there exist constants c1,cy > 0 such that

lot o)l < @allA™* =0 2,

and

1
lg(u, )| 2n, < collA72(u—v

L2 (Q) M2

In this way there exists ¢ € (0,1) such that 3 = ¢+ (1 —¢)%2 and

+¢
2n

1-¢ ¢ 1-C ¢t g—% 1
U, U < lg(u,v U, v o < ces||AT2(u—w ,
oo, 0)llx < ot 0oy ot 0, < SIAF @0,

which concludes the proof, since H}(Q) — L%(Q) [

Corollary 5.11. If f : R = R is a C? function with f, f' and " bounded in R, there exists a
¢ €(0,1) such that

1Feo((4]) = Feol[ 2 Dllxxx < el [51] = [%2] 1x%x

for each € € [0,1].

Proposition 5.12. In the conditions above, for each € € [0, €g] there exists a local unstable manifold
Wu’e([‘é’]) which is a graph over a ball B,(0) of Uc. Moreover, the family of local unstable manifolds

loc

{WES([9])  eelo,eq] s continuous at e = 0.
Proof: This is a consequence of Corollary and the results reported in [18]. n

Theorem 5.13. Suppose that all the conditions above are satisfied and assume also that the set
of equilibrium points £ and each [%’] € & is a hyperbolic equilibrium point for (Fy), then family of

global attractors {Ae}ee[o,l] 1s lower semicontinuous at € = 0.
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Proof: Proposition implies that £ consists of hyperbolic points of for each € € [0, ]
and by Proposition the family of local unstable manifolds {W([$])}ee[o,eo] is continuous at

loc

e = 0. Finally, Proposition [£.] implies, in particular, that
,0
AO = U I/Vl?)c ([((;)S])’
[§]ee

and the result follows from the results reported in [2] [16]. [

Proof of Theorem [I.10k It is analogous to the proof of Theorem [I.9], using Theorem [5.13]instead
of Theorem

6. FRACTAL DIMENSION OF ATTRACTORS AND ENTROPY NUMBERS

In this section, we are interested in giving uniform bounds for the fractal dimension of the global
attractors A, of the semigroups {7¢(¢) : t > 0} generated by equation (|1.7). To begin, let us recall

the definitions of fractal dimension and entropy numbers.

Definition 6.1. Let Z be a metric space and K a compact subset of Z. For eachr > 0 let Nz(r,K)
be the minimum number of balls of radius r necessary to cover K. The fractal dimension of K s
defined by

¢(K) < limsup M
r—0t+ hl(;)

Definition 6.2. Let Z and W two Banach spaces such that Z is compactly embedded in VWW. We
define the entropy numbers e, of Z in W by

2k—1
e =inf{n>0: BF(0)C U BZ"(wj), wi €W for1<j < 28!
j=1

Roughly speaking, ey, is the solution of the equation Nyy(n, Bf (0)) = 21,

Firstly, using Theorem 4 of [10], we are able to estimate the fractal dimension of the global

attractors of ([1.7)). To this end, we prove two auxiliary lemmas.

Lemma 6.3. For any v € (0,1), there exists a continuous function hy : R — R such that

ITe) [ 201 = Te(@) [Z M g < Ay @) %01 = (2 - s »

for all ['0],[%] € X x X.
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Proof: Using the variation of constants formula, we have that for o € (%, 1)
ITe@) [55] = Te®) [ e < Me™ 9] = (5 vt

+ /0 Mem@U=9)(t — 5) = | AZY [Fo (Te(s) [%0]) — Fe (Te(s) [ D 1y gy s

35

t
< Me M |[%0] = [2 M g + M, /0 e ) (1 — )70 | Tu(s) [%0] = Tu) [ g g s

and the result follows from a singular version of Grownwall’s Lemma (Lemma 7.1.1 in [I7]). [

Lemma 6.4. There exists v € (0,1) and a continuous function k : R — R such that

ITe(®) [59] = Te(®) [5 )l xwx < Me™ MN[0 ] = 2 llxsex + B N5 = [ M-

forall [29],[%] € X x X.
Proof: We can write T,(t) = Lc(t) + Uc(t) where

L(t)- = e~ and U (t)- = /O t e~ A=) F (T, (s)-)ds.
It is easy to see that

I1Ze(8) 1% ] = Le(®) [% Mxnx < Me™I150] = (2l -

Also, if we choose o € (3,1) and v € (0,1), we have that

1U(t) [20] = Ue(®) [%1 Hll xxx < M/ (= 5) 7 AZFelTe(s) [5]) — Fe(Te(s) [4

t
S Mw/o et — 8) T Te(9) [ %] = Tels) [4 ] v s,

and by Lemma there exists a function k : R — R such that

1Ue(®) [%6] = Ue(®) [ Ml xx < KON =] = 5 m—xm—-

DIllxxxds

Theorem 6.5. Let tg > 0 such that A = Me % < 1 and define K = k(to), where k is the

continuous function given in Lemma . Then for any v € (0, % — A) we have that

hl NH_'VXH_'V (%7 BiXXX(O))

In (m)

c(Ae) <
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Proof: Is a direct consequence of Theorem 4 of [10]. [
Now, using the results of Section 3.3.2 of [I3], we can see that there exists a constant ¢ > 0 such

that, for the spaces X = L?(Q) and H~7, we have
er < Ck7;7

and therefore, taking kg sufficiently large so that ck™n < %, for k > kg, we have that

v

Ny on <K7Bf(xx(0)) < 221%2’

which implies that

v (& )7% -1
1og Ny sz (= B (0)) < 2In2—<f e —
08 Np—vs g (Kv 1 (0)> 2O )
3 — (c;)7%_1
Defining g(v) = —ih20T)) We can see that

lim g(v) =+ocand lim g(v) = +oo,

v—0+ v (3=~
which means that g(~) has a minimum vy in the interval (0, % — A) and hence
c(A¢) < 21n2¢(vp),
which proves the following result:
Theorem 6.6. For any € € [0, 1] we have that

C(Ae) <2In 29(”0)'

And as a direct consequence, we have

~ 1
Proof of Theorem [I.11k The result follows noting that &, : X 3 X X2 — X x X is an isometric
isomorphism and A, = ®-1A,, thus ¢(A.) = ¢(A.) and taking 75 = 21In2g(vp). [

Remark 6.7. It is worthwhile to point out that is this last result, the fractal dimension must be
- ~1
rightly interpreted. The fractal dimension c(A¢) is obtained using X7 x X2 as the metric base space

while ¢(A.) is obtained using X x X.
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APPENDIX A. RESULTS ON FUNCTIONAL ANALYSIS

In this appendix we prove the basic results of functional analysis we used throughout our work.

Proof of Proposition By Proposition we have that for 5 € (0,1)

AZP = S””TB (s + Ao)Uds,

and hence

A- 3 1 smwﬂ/
A ey < L+ C 8—|—1d8

sin (8 1 1
™ L—ﬁ*A

and the cases 5 = 0,1 are trivial. Iin particular, there exists a constant y > 0 such that

<(1+0)

8 B )
(Adz,2) = (Aw, Al x) > pllz]%,

for all e € [0,1] and 3 € [0, 1]. ]
Proof of Proposition Let s € [0,00). We have that
s+Ac=s+AT +eA) = [sT+ (es +1)A] (I +eA)™?
s
= | ——=4+A)([I+eA)!
(es + )<es+1+ >( +eA) 7,

thus s + A¢ is invertible and

1
A -
(S+ ) es+1

-1
S
(I+€A) <68+1 +A>

-1
€ 1 s
= I A .
es+1 +(es+1)2 (es+1+ )

Therefore

1+ 9)l(s + M) lex) S1+C,
for all s € [0,00) and € € [0, 1]. m
Proof of Proposition By Theorem [2.14] we have that

K(1+C)Pct=#

-1 —1_.18 -1
IAZ (4 Ad) 'l x < K Ac(p+ M) 25 (1 + Ae) ™ af|x < PES=: 2]l x-
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Proof of Proposition We know that, for any given « € [0, %),

_1 _1 1 o0
m2—%2:/ s
0

s

N|=

(s +A) YAy — A (s + Ag) tds

C A )T~ ATl + o) s,
0

s

and therefore

1AS% — A2 <:Cé¥/w° g
€ 0 LX) = o (s+ 1™

and the integral above is convergent for « € [0, %) |

Remark A.1. In the general case of a positive type operator, we cannot obtain the decay rate of
€2 with the technique of the last proposition. However, when we work with specific properties of a
given operator, we may be able to obtain such rate. For instance, if A is the negative Laplacian
with Dirichlet boundary conditions, we are able to prove the previous result with a = % as follows:

let v, € X an unitary eigenvector of A associated with \,, then

1/2
(A71/2 _ A—I/Z)Un _ (1+ €eX,)1/? 1 v — exy .
€ 0 )\%/2 )\%/2 14+ (1 +6)\n)1/2

Therefore

IA = A5 unllx < €72,
and since the eigenfunctions constitute an orthonormal basis of X, we obtain the desired result.
Proof of Proposition Let s > 0 and € € [0,1]. If € = 0 then
(s+T+eA)y =+t =(s+1)"1,

and if € € (0, 1] we have

—1
(3+I+6A)1:1<8+1 +A> :
€ €

which proves in both cases that (0,00) C p(—(I + €A)). Also, it is now easy to see that
(s+Dl(s+T+ed) e <6

and this proves that I + €A is a positive type operator with constant C. For the last statement, we

know that
sin

(I+eA)™P =

s

”5/ sB(s+ I+ eA)ds,
0
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and thus

C [* 5P
-8 < =
0+ )P ley < & [ g

: 1 o)
< 7Csm7rﬁ [/ s Pds +/ 8_5_1ds}
™ 0 1

_ Csin7p 1 1
T 1—B+B]’

which proves the result.

Proof of Proposition We have that

1 [ 1 [
U+fAyéx—$=”/ fé@+l+eﬂ_%~ﬁ——(/ tr(t+ 1)l dt
0 0

s s

1 o
_ / F [+ T4 eA) ™ — (t+ 1) Ve - dt
™ Jo
1 [ et 2 1
(A1) _77/0 t+1A(t+I+6A) x - dt

_1 -1
1 [ 1
:_/ P2 (2 a) ooa
™)y t+1 €

_1 -1
1 [t s [t+1 s
:_/ - A12( i +A) Adz - dt,
0

€

1
1 o0 S t77 S S S
(1 + eA) 3o —al|x < W/O Ke2(tl;1+;HA2a;Hth < Ces || Aba|dt.
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