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STRONGLY DAMPED WAVE EQUATION AND ITS YOSIDA
APPROXIMATIONS

M.C. BORTOLAN1 AND A.N. CARVALHO2

Abstract. In this work we study the continuity for the family of global attractors of the

equations utt − ∆u − ∆ut − ε∆utt = f(u) at ε = 0 when Ω is a bounded smooth domain

of Rn, with n > 3, and the nonlinearity f satisfies a subcritical growth condition. Also, we

obtain an uniform bound for the fractal dimension of these global attractors.

1. Introduction

We study the continuity of global attractors of the following semilinear evolution equation of

second order in time

(1.1)


utt −∆u−∆ut − ε∆utt = f(u), t > 0,

(u(0), ut(0)) = (u0, v0),

u|∂Ω = 0,

and we give an uniform bound for the fractal dimension of these global attractors.

We know that, for ε = 0, this equation is the usual strongly damped wave equation, and its

asymptotic dynamics - related to global atrtactors - has already been vastly explored; see for

instance [6, 7, 9, 12, 15, 22, 23, 26, 27, 28]. However, for each ε > 0 fixed, we have a special form

of the improved Boussinesq equation (see [4, 19, 20, 25]) with damping −∆ut, which, among other

things, is used to describe ion-sound waves in plasma (see [20, 21]).

For each ε > 0 fixed, this equation has been studied in [8], in terms of existence and uniqueness

of solutions, existence of global attractors and asymptotic bootstrapping; in this case, the linear

part of the equation (after a change of variables) is a bounded operator. Here, since we want to

study the continuity of attractors at ε = 0, we will use the properties of the limiting problem with

ε = 0 (local and global well posedness, regularity and existence of global attractors) as reported in

[6, 7].

1Partially supported by FAPESP 2012/23724-1. 2Partially supported by CNPq 305230/2011-5.
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Throughout this paper, we will assume that f : R→ R is a continuously differentiable function,

respecting a growth condition with subcritical exponent; that is, there exist constants c > 0 and

ρ < n+2
n−2 such that for all s1, s2 ∈ R

(1.2) |f(s1)− f(s2)| 6 c|s1 − s2|(1 + |s1|ρ−1 + |s2|ρ−1),

and also, if λ1 denotes the first eigenvalue of −∆ with Dirichlet boundary conditions in Ω, we

assume the following dissipation condition

(1.3) lim sup
|s|→∞

f(s)

s
< λ1.

To begin our study, we will write further A for −∆ with the Dirichlet boundary conditions. Our

problem then takes the form

(1.4)

utt +Au+Aut + εAutt = f(u), t > 0

(u(0), v(0)) = (u0, v0).

and it is well-known that A : H1
0 (Ω)∩H2(Ω) ⊂ L2(Ω) −→ L2(Ω) is a closed, densely define operator

which has the following properties:

(O1) A is self-adjoint with compact resolvent;

(O2) A is an operator of positive type;

(O3) σ(A) = σp(A) = {λn}n∈N, λ1 > 0, λi ≤ λi+1, for all i > 1 (repeated to take into account

the multiplicity), λn
n→∞→ ∞ and if vn ∈ L2(Ω) are unitary eigenvectors associated with λn

then {vn}n∈N constitutes an orthonormal basis for L2(Ω).

Remark 1.1. We included in Appendix A the proof of the main results of functional analysis we

will use, in order to make explicit the uniformity of the constants obtained for ε ∈ [0, 1].

The key point in our analysis is the observation that the differential equation in (1.4), for ε > 0,

can be obtained from its limit, for ε = 0, with a suitable exchange of the unbounded operator A

by its Yosida approximation Λε (see definition below). The techniques developed here to deal with

these singular perturbation problem may be of aid to deal with other natural singular perturbation

problems that appear in the literature in this form (see for example the Navier-Stokes-Voight

problem in [14]).
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Definition 1.2. Let A be a closed, densely defined operator such that R+ ⊂ ρ(−A). Then, for each

ε ∈ [0, 1] we define the operator Λε : D(Λε) ⊂ X → X, given by

D(Λε) = {x ∈ X : (I + εA)−1x ∈ D(A)},

and for x ∈ D(Λε) we set

Λεx = A(I + εA)−1x.

The operators Λε are called Yosida approximations of A.

In fact the differential equation in (1.4) can be rewritten as utt + Λεu+ Λεut = (I + εA)−1f(u)

with Λεu0
ε→0−→ Au0 for all u0 ∈ D(A) and (I + εA)−1u0

ε→0−→ u0 for all u0 ∈ X. We exploit this

feature and a suitable change of variables to fix (independently of ε) the phase space to carry on

our analysis.

Now, if X
.
= L2(Ω), we will consider the double sided fractional power scales

• {Xα, α ∈ R}, generated by (X,A);

• {Xα
ε , α ∈ R}ε∈[0,1], generated by (X,Λε) (see Definition 1.2);

• {X̃α
ε , α ∈ R}ε∈[0,1] generated by (X, I + εA);

where A, Λε and I+εA have domains X1, X1
ε and X̃1

ε , respectively, and are positive type operators.

Now we consider the following isometric isomorphism

Φε : X
1
2 × X̃

1
2
ε −→ X ×X

given in its matrix form by

Φε =

A 1
2 0

0 (I + εA)
1
2

 ,
for each ε ∈ [0, 1].

If we apply the change of variables [wz ] = Φε [ uut ], problem (1.4) can be rewritten as

(1.5)


(I + εA)

1
2 zt +A

1
2w +A(I + εA)−

1
2 z = f(A−

1
2w)

wt = A
1
2 (I + εA)−

1
2 z,

(w(0), z(0)) = (A
1
2u0, (I + εA)

1
2 v0)
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or

(1.6)


zt +A

1
2 (I + εA)−

1
2w +A(I + εA)−1z = (I + εA)−

1
2 f(A−

1
2w)

wt = A
1
2 (I + εA)−

1
2 z,

(w(0), z(0)) = (A
1
2u0, (I + εA)

1
2 v0).

The later is a first order ODE that can writen in X ×X as

(1.7)


d

dt
[wz ] +Aε [wz ] = Fε ([wz ]) in [0,∞)

(w(0), z(0)) = (w0, z0),

where (w0, z0) = Φε(u0, v0), in variables (t, w, z), where Aε : D(Aε) ⊂ X ×X → X ×X is a linear

operator given by

D(Aε) =

{[
w

z

]
∈ X ×X

1
2
ε : w + Λ

1
2
ε z ∈ X

1
2
ε

}
,

and

Aε

[
w

z

]
=

 −Λ
1
2
ε z

Λ
1
2
ε (w + Λ

1
2
ε z)

 .
Of course, if [wz ] ∈ X

1
2
ε ×X1

ε we have that

Aε

[
w

z

]
=

 −Λ
1
2
ε z

Λ
1
2
ε w + Λεz

 =

 0 −Λ
1
2
ε

Λ
1
2
ε Λε

[w
z

]
,

with X
1
2
ε ×X1

ε being a dense subset of D(Aε) and a locally Lipschitz map

(1.8) Fε ([wz ]) =
[

0
feε (w)

]
,

where feε (w) = (I + εA)−
1
2 f(A−

1
2w).

Remark 1.3. It is important to notice that for each ε > 0, D(Aε) = X ×X and Aε ∈ L(X ×X).

The characterization above becomes important when dealing with the case ε = 0, since A0 is an

unbounded operator. The primary concern of our work is to deal with the uniformity in ε ∈ [0, 1]

of the class of problems (1.4), hence placing the problems under the same framework is crucial.

We divide our work from now on in six sections and an appendix. In Section 2 we deal with the

linear problem associated with equation (1.7). More specifically, we prove that −Aε generates an

analytic semigroup {e−Aε : t > 0}, and we obtain convergence in the uniform norm of operators

of the associated semigroups when ε→ 0+ as follows:
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Theorem 1.4. For any α ∈ [0, 1
2) and γ ∈ [0, 1] there exists a constant Cγ > 0 such that

‖e−Aεt − e−A0t‖L(X×X) 6 Cγε
αγt−γe−ω1t,

for all t > 0. In particular, e−Aεt
L(X×X)−→ e−A0t as ε → 0+, with uniform convergence for any

interval [T,∞), T > 0.

In Section 3 we prove local and global well posedness results for equation (1.1) and we deal with

all the cases at once. For each ε > 0, these results are contained in Theorems 1.1 and 1.2 of [8]

as for the case ε = 0 these results are contained in the results of Section 3 of [6]. To this end,

a fine analysis of the fractional powers of the operators −Aε is required (such analysis is done in

Subsection 2.2). The main results of this section can be summarized in the results below:

Theorem 1.5. For any initial data [ u0v0 ] lying in a bounded subset B of X
1
2 × X̃

1
2
ε there exists

a number κ = κ(B, ε) and a unique solution [0, κ) 3 t 7→ [ uεvε ] (t, u0, v0) ∈ X
1
2 × X̃

1
2
ε of (1.4)

which depends continuously on its variables (t, u0, v0) ∈ [0, κ) × X
1
2 × X̃

1
2
ε and such that, for any

s ∈
[

(ρ−1)(n−2)
4 , 1

]
and γ ∈

(
0, 1− s

2

)
,

[ uεvε ] (·, u0, z0) ∈ C
(

(0, τ), (X
1
2 × X̃

1
2
ε )γ
)
∩ C1

(
(0, τ), (X

1
2 × X̃

1
2
ε )γ−

)
,

and either κ =∞ or ‖ [ uεvε ] (t, u0, v0)‖
X

1
2×X̃

1
2
ε

→∞ as t→ κ−.

Moreover, the solution satisfies in X
1
2 × X̃

1
2
ε the variation of constants formula

[ uεvε ] (t, w0, z0) = e−Ãεt [ u0v0 ] +

∫ t

0
e−Ãε(t−s)Gε ([ uεvε ] (s, u0, v0)) ds, t ∈ [0, κ),

where

Gε ([ uv ]) = Φ−1
0,εFεΦ0,ε ([ uv ]) .

Theorem 1.6. Problem (1.1) defines a C0-semigroup {Sε(t) : t > 0} on X
1
2 × X̃

1
2
ε for each

ε ∈ [0, 1], which has bounded orbits of bounded sets, defined by

Sε(t) [ u0v0 ] = Φ−1
ε Tε(t)Φε [ u0v0 ] ,

or equivalently

Sε(t) [ u0v0 ] = e−Ãεt [ u0v0 ] +

∫ t

0
e−Ãε(t−s)Gε (Sε(s) [ u0v0 ]) ds, for all t > 0.

In Section 4 we prove the existence of global attractors for the semigroups {Sε(t) : t > 0}

generated by equations (1.1), which is given by



6 M.C. BORTOLAN AND A.N. CARVALHO

Theorem 1.7. The semigroup {Sε(t) : t > 0} has a global attractor Ãε in X
1
2 × X̃

1
2
ε , for each

ε ∈ [0, 1].

In [8] the authors prove the existence of global attractors for each ε > 0 and also provide bounds

(ε dependent) for the global attractors (see Theorem 1.3 of this reference). In [9] they prove the

same for the case ε = 0 (see the results of Subsection 4.2 in this reference); however, simply joining

the results would not lead to a uniform bound for ε ∈ [0, 1]. We also prove the following

Theorem 1.8. If s ∈
[
0, 1− (ρ−1)(n−2)

4

)
, then ∪ε∈[0,1]Ãε is bounded in X

s+1
2 ×X

s
2 .

In Section 5 we are able to prove the upper semicontinuity of the global attractors {Ãε}ε∈[0,1] at

ε = 0:

Theorem 1.9. The family {Ãε}ε∈[0,1] is upper semicontinuous in ε = 0, in X
1
2 ×X.

This result was also proven in [24], using a different technique, dealing with energy estimates of

solutions (see Lemma 5.12 in this reference). Under (natural) additional assumptions we can also

prove the lower semicontinuity

Theorem 1.10. Assume that f is a C2 function on R with f, f ′ and f ′′ bounded in R. Also,

assume that the set E of equilibrium points of (1.7) is finite and that each point of E is a hyperbolic

point for (1.7) with ε = 0. Then the family of global attractors {Ãε}ε∈[0,1] is lower semicontinuous

at ε = 0.

Lastly, in Section 6 using some further uniform estimates for the semigroup generated by equation

(1.7) we obtain an uniform estimate for the fractal dimension c(Ãε) of the global attractor Ãε.

Theorem 1.11. There exists a number τ0 > 0 such that for any ε ∈ [0, 1]

c(Ãε) 6 τ0.

In [24, Lemma 5.10], the authors prove an estimate for the fractal dimension of the global

attractors using exponential attractors, but the bound depends on ε ∈ [0, 1].

Remark 1.12. We note that, most of our results are proved using techniques from functional anal-

ysis, resorting to energy estimates when is absolutely necessary. We were able to obtain some fine

estimates using a bootstrapping argument in the subcritical case. This equation has been considered
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in [11], where they proved the upper semicontinuity of the global attractors of (1.1) as well as to ob-

tain bounds for the fractal dimension of the attractors, but is not uniform in ε ∈ [0, 1]. Here we also

prove the lower semicontinuity of the global attractors, besides recovering the upper semicontinuity

and obtaining uniform (w.r.t. ε) bounds for the dimension using a different technique.

2. The linear problem and the uniform convergence of the linear semigroups

In this section we study the linear problem associated with equations (1.7) in X ×X, given by
d

dt
[wz ] +Aε [wz ] = 0, t > 0[
w(0)
z(0)

]
= [w0

z0 ] ∈ X ×X

more precisely, we will prove that the family of operators {Aε}ε∈[0,1] is uniformly sectorial ; that is,

we can find φ ∈ (0, π2 ), M > 1 and a real number ω such that the sector

Sω,φ = {λ ∈ C : φ 6 |arg(λ− ω)| 6 π, λ 6= ω}

is in the resolvent set of Aε for all ε ∈ [0, 1] and

‖(λ−Aε)−1‖L(X×X) 6
M

|λ− ω|
, for all λ ∈ Sω,φ,

and moreover we will prove that we can take ω < 0, which will give us an uniform exponential

decay for the generated analytic semigroups {e−Aεt : t > 0}ε∈[0,1].

2.1. Uniform sectoriality. In this subsection, our goal is to prove the uniform sectoriality of

{Aε}ε∈[0,1] in order to obtain a convergence of the generated linear semigroups {e−Aεt : t > 0}ε∈[0,1]

as ε→ 0+.

First we begin obtaining an uniform decay in time for the generated semigroups, and to this

purpose we define the notations of the inner products we will use throughout our work.

Definition 2.1. In X we denote the usual inner product (·, ·) and in X × X we use the inner

product 〈·, ·〉 given by

〈[w1
z1 ] , [w2

z2 ]〉 .= (w1, w2) + (z1, z2).

With this notation set, we are able define for each pair (ε, β) ∈ [0, 1]× [0, 1], a map from (X×X)2

into C by

〈[w1
z1 ] , [w2

z2 ]〉ε,β = 〈[w1
z1 ] , [w2

z2 ]〉+
β

2
(w1,Λ

− 1
2

ε z2) +
β

2
(z1,Λ

− 1
2

ε w2).

In what follows we will need a result of basic functional analysis, that we state below.
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Proposition 2.2. The family of operators {Λ−βε }(ε,β)∈[0,1]×[0,1] is uniformly bounded. In particular,

there exists a constant µ > 0 such that

(Λβε x, x) > µ‖x‖2X , for all x ∈ X1
ε .

Proof: See Appendix A.

With this result we can prove a uniform equivalence between 〈·, ·〉ε,β and 〈·, ·〉.

Proposition 2.3. For all (ε, β) ∈ [0, 1]× [0, 1], if we define ‖ [wz ] ‖2ε,β
.
= 〈[wz ] , [wz ]〉ε,β, we have[

1− βµ

2

]
‖ [wz ] ‖2X×X 6 ‖ [wz ] ‖2ε,β 6

[
1 +

βµ

2

]
‖ [wz ] ‖2X×X .

Proof: We have, since Λ
− 1

2
ε is self-adjoint, that

〈[wz ] , [wz ]〉ε,β = 〈[wz ] , [wz ]〉+ βRe(w,Λ
− 1

2
ε z) = ‖[wz ]‖2X×X + βRe(w,Λ

− 1
2

ε z),

but

|Re(w,Λ
− 1

2
ε z)| 6 |(w,Λ−

1
2

ε z)| 6 ‖w‖X‖Λ
− 1

2
ε z‖X

6 ‖Λ−
1
2

ε ‖L(X)‖w‖X‖z‖X 6
‖Λ−

1
2

ε ‖L(X)

2
‖[wz ]‖2X×X ,

By Proposition 2.2, ‖Λ−
1
2

ε ‖L(X) 6 µ and hence

|Re(w,Λ
− 1

2
ε z)| 6 µ

2
‖[wz ]‖2X×X ,

which concludes the proof.

Corollary 2.4. There exists β0 ∈ (0, 1] such that 〈·, ·〉ε,β is an inner product in X × X for all

(ε, β) ∈ [0, 1]× [0, β0].

Proof: Almost all the properties of an inner product are easily verified; and for the coercivity it

suffices to choose β0 ∈ (0, 1] such that 1− β0µ
2 > 0 in the previous proposition.

So far we are able to construct uniform equivalent norms in X ×X and the next step is to prove

that there exists a positive constant δ > 0 such that Aε − δI is acretive, for all ε ∈ [0, 1].

Proposition 2.5. There exist β1 ∈ (0, β0] and a constant δ > 0 such that

Re 〈(Aε − δI) [wz ] , [wz ]〉ε,β1 > 0,

for all ε ∈ [0, 1] and [wz ] ∈ D(Aε).
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Proof: We have for [wz ] ∈ X
1
2
ε ×X1

ε that

〈Aε [wz ] , [wz ]〉εβ =

〈[
−Λ

1
2
ε z

Λ
1
2
ε w+Λεz

]
, [wz ]

〉
ε,β

= −(Λ
1
2
ε z, w) + (Λ

1
2
ε w, z) + (Λεz, z)−

β

2
(z, z) +

β

2
(w,w) +

β

2
(Λ

1
2
ε w, z),

which implies, since Λ
1
2
ε is self-adjoint, that

Re 〈Aε [wz ] , [wz ]〉ε = ‖Λ
1
2
ε z‖2X −

β

2
‖z‖X +

β

2
‖w‖2X +

β

2
Re(Λ

1
2
ε z, w).

But |Re(Λ
1
2
ε z, w)| 6 1

2(‖Λ
1
2
ε z‖2X + ‖w‖2X) and hence

Re 〈Aε [wz ] , [wz ]〉ε > (1− β

4
)‖Λ

1
2
ε z‖2X −

β

2
‖z‖2X +

β

4
‖w‖2X

>

[
(1− β

4
)µ2 − β

2

]
‖z‖2X +

β

4
‖w‖2X .

Now we choose β1 ∈ (0, β0] such that (1− β1
2 )µ2 − β1

2 > 0 and thus, by Proposition 2.3, we have

Re 〈Aε [wz ] , [wz ]〉ε,β1 > δ 〈[wz ] , [wz ]〉ε,β1 ,

where δ = (1 + β1µ1
2 )−1 min{(1− β1

2 )µ2
1 −

β1
2 ,

β
4 } > 0, and therefore

Re 〈(Aε − δI) [wz ] , [wz ]〉ε,β1 > 0.

From this we conclude that each operator δI −Aε generates a strongly continuous semigroup of

contractions in X ×X with the norm ‖ · ‖ε,β1 , which in turn, using Proposition 2.3, lead us to the

following result:

Theorem 2.6. There exist constants M > 1 and δ > 0, such that

‖e−Aεt‖L(X×X) 6Me−δt, for all t > 0 and ε ∈ [0, 1].

Proof: Since
∥∥e(δI−Aε)t [wz ]

∥∥
ε,β1

6 ‖[wz ]‖ε,β1 , Proposition 2.3 imples that there exists M > 1 such

that ∥∥∥e(δI−Aε)t [wz ]
∥∥∥
X×X

6M ‖[wz ]‖X×X ,

and concludes the proof.

Corollary 2.7. Given ϕ ∈ (π2 , π), there exists a constant Mϕ > 1 such that

‖(λ−Aε)−1‖L(X×X) 6
Mϕ

|λ− δ|
, for all λ ∈ Sδ,ϕ and ε ∈ [0, 1].
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Proof: From the Inverse Laplace Transform, we know that

(λ−Aε)−1 = −
∫ ∞

0
eλte−Aεtdt,

for all λ ∈ C such that Reλ < δ and therefore

‖(λ−Aε)−1‖L(X×X) 6
M

δ − Reλ
,

for all ε ∈ [0, 1]. Now, given ϕ ∈ (π/2, π), we have that

‖(λ−Aε)−1‖L(X×X) 6
M

| cosϕ|
1

|λ− δ|
,

for all λ ∈ Sδ,ϕ and ε ∈ [0, 1].

So far we have proven that each −Aε generates a strongly-continuous semigroup in X×X (which

for ε > 0 is trivial, since Aε is bounded in X×X) and furthermore we proved an uniform exponential

decay for the generated semigroups for ε ∈ [0, 1]. But we would like to prove the convergence of

e−Aεt to e−A0t in L(X ×X) as ε→ 0+, and to this purpose, we will need to work a little more.

For ε ∈ [0, 1] define D(Bε) = D(Aε), D(Pε) = X ×X and

Bε
.
= Aε +

[
0 0
0 I

]
, Pε

.
=
[

I 0

Λ
− 1

2
ε I

]
,

so that

P−1
ε =

[
I 0

−Λ
− 1

2
ε I

]
.

Also, if we set D(Dε) =
{

[wz ] ∈ X ×X : P−1
ε [wz ] ∈ D(Bε)

}
, we can define

Dε
.
= PεBεP−1

ε .

Remark 2.8. It is simple to see that D(Dε) = X ×X1
ε and hence

Dε =
[
I −Λ

1
2
ε

0 Λε

]
.

Finally, define D(D̃ε) = D(Dε) = X ×X1
ε and

D̃ε
.
=
[
I 0
0 Λε

]
.

For what follows we will need the definition and one result concerning the numerical range of an

operator, which are given below.
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Definition 2.9. If B : D(B) ⊂ Z → Z is a closed densely defined operator in a complex Hilbert

space Z with inner product 〈·, ·〉, then the numerical range W (B) of B is the set

W (B) = {〈Bz, z〉 : z ∈ D(B), ‖z‖Z = 1} .

Theorem 2.10. Let B : D(B) ⊂ Z → Z be a closed densely defined operator in a complex Hilbert

space Z, W (B) its numerical range and Σ an open connected set in C \W (B). If Σ ∩ ρ(B) 6= ∅

then Σ ⊂ ρ(B) and

‖(λ−B)−1‖L(Z) 6
1

d(λ,W (B))
, for all λ ∈ Σ,

where d(λ,W (B)) is the distance between λ and W (B).

Proof: See Theorem 21.11 of [3].

With this result at hand, we can prove our first lemma.

Lemma 2.11. The operators D̃ε : D(D̃ε) ⊂ X × X −→ X × X constitute a family of uniformly

sectorial operators.

Proof: Using again Proposition 2.2, there exists µ > 0 such that for all z ∈ X1
ε we have

(Λεz, z) > µ(z, z).

Thus, for [wz ] ∈ D(D̃ε) we obtain〈
D̃ε [wz ] , [wz ]

〉
= (w,w) + (Λεz, z) > (w,w) + µ(z, z) > µ̃ 〈[wz ] , [wz ]〉 ,

where µ̃ = min{1, µ} > 0 and therefore the numerical image W (D̃ε) is contained in [µ̃,∞), for all

ε ∈ [0, 1]. Defining Σ
.
= C \ [µ̃,∞) we have that 0 ∈ Σ ∩ ρ(D̃ε) for all ε ∈ [0, 1] and hence, by

Theorem 2.10, Σ ⊂ ρ(D̃ε), for all ε ∈ [0, 1], and

‖(λ− D̃ε)−1‖L(X×X) 6
1

d(λ,W (D̃ε))
6

1

d(λ, [µ̃,∞))
, for all λ ∈ Σ.

Now given φ ∈ (0, π/2), if λ ∈ Sµ̃,φ we have that

d(λ, [µ̃,∞)) > |λ− µ̃| sinφ,

and hence

‖(λ− D̃ε)−1‖L(X×X) 6
1

sinφ|λ− µ̃|
, for all λ ∈ Sµ̃,φ and ε ∈ [0, 1].



12 M.C. BORTOLAN AND A.N. CARVALHO

To continue, we will need well know results in functional analysis, concerning interpolation of

fractional powers of an operator, which we will state below.

Definition 2.12. Let C > 1. A closed densely defined linear operator B : D(B) ⊂ Z → Z is said

an operator of positive type with constant C if [0,∞) ∈ ρ(−B) and

(1 + s)‖(s+B)−1‖L(Z) 6 C, for all s ∈ [0,∞).

The set of all operators of positive type in Z with constant C will be denoted by PC(Z).

Proposition 2.13. Let A be an operator of positive type with constant C in X, then the Yosida

approximations Λε of A are positive type operators with constant 1 + C, for all ε ∈ [0, 1].

Proof: See Appendix A.

Theorem 2.14. Assume that B ∈PC(Z) and 0 6 α 6 1, then there exists a constant K > 0 such

that

‖Bαz‖Z 6 K‖Bz‖αZ‖z‖1−αZ , for all z ∈ D(B);

moreover, the constant K depends only on the constant C and not on the particular operator B.

Proof: See Theorem 1.4.4 of [17].

Corollary 2.15. There exists a constant K > 0, independent of ε ∈ [0, 1], such that if 0 6 α 6 1

we have

‖Λαε x‖X 6 K‖Λεx‖αX‖x‖1−αX , for all x ∈ X1
ε .

Lemma 2.16. The operators Dε : D(Dε) ⊂ X × X −→ X × X constitute a family of uniformly

sectorial operators.

Proof: We have that D̃ε −Dε =
[

0 Λ
1
2
ε

0 0

]
, and hence for all [ wz ] ∈ X ×X1

ε

‖(D̃ε −Dε) [wz ] ‖X×X = ‖Λ
1
2
ε z‖X 6 K‖Λεz‖

1
2
X‖z‖

1
2
X

6
Kη

2
‖Λεz‖X +

K

2η
‖z‖X ,

for all η > 0, where K > 0 is the constant given in Theorem 2.14, which is independent of ε ∈ [0, 1]

and therefore

‖(D̃ε −Dε) [wz ] ‖X×X 6
Kη

2
‖D̃ε [wz ] ‖X×X +

K

2η
‖ [wz ] ‖X×X .

By Theorem 1.3.2 of [17] and Lemma 2.11 we have that the family {Dε}ε∈[0,1] is uniformly sectorial.
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Lemma 2.17. The operators Bε : D(Bε) ⊂ X × X −→ X × X constitute a family of uniformly

sectorial operators.

Proof: We have for all λ ∈ C that

(λ−Dε) = Pε(λ− Bε)P−1
ε ,

hence ρ(Bε) = ρ(Dε), and since the operators Pε,P−1
ε are uniformly bounded in X × X (see

Proposition 2.2), Lemma 2.16 implies that {Bε}ε∈[0,1] is uniformly sectorial.

Theorem 2.18. The operators Aε : D(Aε) ⊂ X ×X −→ X ×X constitute a family of uniformly

sectorial operators.

Proof: Since ∥∥[ 0 0
0 I

]
[wz ]
∥∥
X×X 6 η‖Bε [wz ] ‖X×X + ‖ [wz ] ‖X×X ,

for all η > 0, Lemma 2.17 and Theorem 1.3.2 of [17] imply that {Aε}ε∈[0,1] is uniformly sectorial.

So far, with our efforts, Theorem 2.18 implies the existence of constants M > 1, ω ∈ R and

φ ∈ (0, π/2) such that

‖(λ−Aε)−1‖L(X×X) 6
M

|λ− ω|
, for all λ ∈ Sω,φ and ε ∈ [0, 1],

but ω ∈ R can be a negative real number (and using the results reported in [17], we can see that

the number ω ∈ R obtained is, in fact, negative), which does not guarantee an uniform exponential

decay for the generated semigroups. But these results together with Corollary 2.7 give us conditions

to obtain the desired uniform sectoriality of {Aε}ε∈[0,1] with a uniform exponential decay:

Theorem 2.19. There exist constants M > 1, ω > 0 and ϕ ∈ (0, π/2) such that ρ(Aε) ⊃ Sω,ϕ and

‖(λ−Aε)−1‖L(X×X) 6
M

|λ− ω|
,

for all λ ∈ Sω,ϕ and ε ∈ [0, 1].

Proof: This follows from Corollary 2.7 and Theorem 2.18.

Corollary 2.20. −Aε is the infinitesimal generator of an analytic semigroup {e−Aεt : t > 0} for

each ε ∈ [0, 1] and

e−Aεt =
1

2πi

∫
Γ
eλt(λ+Aε)−1dλ, for all ε ∈ [0, 1],

where Γ is a contour in −Sδ,ω such that arg(λ)→ ±θ as |λ| → ∞ for some θ ∈ (π2 , π).
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Proof: See Theorem 1.3.4 of [17].

Corollary 2.21. Given ω1 ∈ (0, ω), there exists constant Mω1 > 1 such that

‖Aε(λ−Aε)−1‖L(X×X) 6Mω1 , for all λ ∈ Sω1,ϕ and ε ∈ [0, 1].

Proof: We have that Aε(λ−Aε)−1 = λ(λ−Aε)−1 − I and hence

‖Aε(λ−Aε)−1‖L(X×X) 6 |λ|‖(λ−Aε)−1‖L(X×X) + 1 6M
|λ|
|λ− ω|

+ 1.

Now, for each ω1 ∈ (0, ω), the map Sω1,ϕ 3 λ 7→ λ
λ−ω is bounded, hence there exists Mω1 such that

‖Aε(λ−Aε)−1‖L(X×X) 6Mω1 , for all λ ∈ Sω1,ϕ.

To obtain the uniform convergence of resolvents, for λ in a sector of C, we will need the following

result:

Proposition 2.22. If A is a positive type operator and Λε its Yosida approximation then, for all

α ∈ [0, 1
2),

‖Λ−1/2
ε − Λ

−1/2
0 ‖L(X) 6 Cεα.

Proof: See Appendix A.

With this result and Corollary 2.21 we can prove:

Corollary 2.23. Given ω1 ∈ (0, ω) we have that (λ − Aε)−1 L(X×X)−→ (λ − A0)−1 as ε → 0+,

uniformly for λ ∈ Sω1,ϕ.

Proof: We have that

A−1
ε −A−1

0 =

 0 Λ
− 1

2
ε − Λ

− 1
2

0

Λ
− 1

2
0 − Λ

− 1
2

ε 0

 ,
and

(λ−Aε)−1 − (λ−A0)−1 = Aε(λ−Aε)−1(A−1
ε −A−1

0 )A0(λ−A0)−1.

Therefore Proposition 2.22 and Corollary 2.21 we have, given ω1 ∈ (0, ω) and α ∈ [0, 1
2), that

‖(λ−Aε)−1 − (λ−A0)−1‖L(X×X) 6M2
ω1
Cεα.

Remark 2.24. If A is the negative Laplacian with Dirichlet boundary conditions, then we can take

α = 1
2 (see Remark A.1).
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Let w1 ∈ (0, ω). Given r > 0, Corollary 2.20 implies that we can choose the curve Γ given by

Γ = Γ1 ∪ Γr ∪ Γ1, where

Γ1 = {λ ∈ C : λ = −ω1 + sei(π−ϕ), s > r}, Γr = {λ ∈ C : λ = −ω1 + reiξ, ξ ∈ [π − ϕ,ϕ− π]},

such that

e−Aεt =
1

2πi

∫
Γ
eλt(λ+Aε)−1dλ,

for all ε ∈ [0, 1] and t > 0.

Proof of Theorem 1.4: We have that

e−Aεt − e−A0t =
1

2πi

∫
Γ
eλt
[
(λ+Aε)−1 − (λ+A0)−1

]
dλ,

thus, if α ∈ [0, 1
2), then

‖e−Aεt − e−A0t‖L(X×X) 6
Cεα

2π

∫
Γ
eReλt|dλ|

=
Cεα

2π
e−ω1t

[
2

∫ ∞
r

e−st cosϕds+ r

∫ π−ϕ

ϕ−π
ert cos ξdξ

]
6
Cεα

2π
e−ω1t

[
2
e−rt cosϕ

t cosϕ
+ 2r(π − ϕ)ert

]
6
Cεα

π

e−ω1t

t cosϕ
+
Cεα

π
e−ω1tr(π − ϕ),

for any 0 < r < ω1 and therefore making r → 0+, we obtain

‖e−Aεt − e−A0t‖L(X×X) 6
C

π cosϕ
εαt−1e−ω1t.

But ‖e−Aεt − e−A0t‖L(X×X) 6 2Me−ω1t and hence, for γ ∈ [0, 1] we have

‖e−Aεt − e−A0t‖L(X×X) 6 (2M)1−γ
(

C

π cosϕ

)γ
εαγt−γe−ω1t.

Remark 2.25. Again, if A is the negative Laplacian with Dirichlet boundary conditions, we can

take α = 1
2 .
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2.2. Fractional powers of Aε. In this subsection we are interested in some properties of the

fractional powers of the operators Aε. We know that for ε > 0 we are always working with X ×X

with an equivalent norm, but again, we are concerned about the uniformity in ε ∈ [0, 1] for the

problems (1.7), and it will be useful to have some additional properties of the fractional powers of

Aε.

Proposition 2.26. Aε is a positive type operator for some constant C > 1.

Proof: We know that δI −Aε is dissipative in X ×X with the norm ‖ · ‖ε,β1 , by Proposition 2.5,

and ρ(δI −Aε) ∩ (0,∞) 6= ∅, and thus by Lumer’s Theorem, we have

‖(λ+ (Aε − δI))−1‖L(X×X),‖·‖ε,β1 6
1

λ
, for all λ > 0.

Therefore, if µ = λ− δ,

‖(µ+Aε)−1‖L(X×X),‖·‖ε,β1 6
1

µ+ δ
, for all µ > −δ,

and thus if µ > 0 we have that

(1 + µ)‖(µ+Aε)−1‖L(X×X),‖·‖ε,β1 6
µ+ 1

µ+ δ
,

and since the map [0,∞) 3 µ 7→ µ+1
µ+δ is bounded and the norms ‖ · ‖ε,β1 and ‖ · ‖X×X are uniformly

equivalent, the result follows.

Now, for τ ∈ [0,∞), we have that s ∈ ρ(−Aε)

(τ +Aε)−1 =
1

τ + 1

τ + Λε Λ
1/2
ε

−Λ
1/2
ε τ

( τ2

τ + 1
+ Λε

)−1

,

and hence for α ∈ (0, 1) we have (see Theorem 1.4.2 of [17]) that

A−αε =
sinπα

π

∫ ∞
0

τ−α

τ + 1

τ + Λε Λ
1/2
ε

−Λ
1/2
ε τ

( τ2

τ + 1
+ Λε

)−1

dτ.

If we set

A−αε =

P1,1(ε, α) P1,2(ε, α)

P2,1(ε, α) P2,2(ε, α)

 ,
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we have that

P1,1(ε, α) =
sinπα

π

∫ ∞
0

τ−α

τ + 1
(τ + Λε)

(
τ2

τ + 1
+ Λε

)−1

dτ,

P1,2(ε, α) =
sinπα

π

∫ ∞
0

τ−α

τ + 1
Λ

1
2
ε

(
τ2

τ + 1
+ Λε

)−1

dτ,

P2,1(ε, α) = −B1,2(ε, α),

P2,2(ε, α) =
sinπα

π

∫ ∞
0

τ−α+1

τ + 1

(
τ2

τ + 1
+ Λε

)−1

dτ.

To continue, we will need the following result.

Proposition 2.27. If A is a positive type operator with constant C then there exists a constant C1

such that, for any β ∈ (0, 1) and ε ∈ [0, 1]

‖Λβε (µ+ Λε)
−1‖L(X) 6

C1

(µ+ 1)1−β , for all µ > 0.

Proof: See Appendix A.

And now we can state our result for the fraciontal powers of Aε.

Proposition 2.28. For each β ∈ (0, 1
2) and α ∈ (β, 1), the operators Λβε P1,2(ε, α) and Λβε P2,2(ε, α)

are uniformly bounded for ε ∈ [0, 1].

Proof: For P1,2(ε, α) we have that

Λβε P1,2(ε, α) =
sinπα

π

∫ ∞
0

τ−α

τ + 1
Λ

1
2

+β
ε

(
τ2

τ + 1
+ Λε

)−1

dτ,

and thus by Proposition 2.27 we have

‖Λβε P1,2(ε, α)‖L(X) 6
C1 sinπα

π

∫ ∞
0

τ−α

τ + 1

(
τ + 1

τ2 + τ + 1

) 1
2
−β
dτ 6

C1 sinπα

π

∫ ∞
0

τ−α

τ + 1
dτ,

and the integral on the right side is convergent, for any α ∈ (0, 1).

For P2,2(ε, α) we have that

Λβε P2,2(ε, α) =
sinπα

π

∫ ∞
0

τ−α+1

τ + 1
Λβε

(
τ2

τ + 1
+ Λε

)−1

dτ,

and thus by Proposition 2.27 we have

‖Λβε P2,2(ε, α)‖L(X) 6
C1 sinπα

π

∫ ∞
0

τ−α+1

τ + 1

(
τ + 1

τ2 + τ + 1

)1−β
dτ,

and the integral on the right side is convergent, provided that α ∈ (β, 1).
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3. Local and global well posedness results

3.1. Local well posedness result. To state the results of local well posedness of equations (1.7),

and consequently of (1.4), we firstly prove the auxiliary lemma below.

Lemma 3.1. Let f : R → R, and A is the negative Dirichlet Laplacian in X with domain X1 =

H2(Ω) ∩ H1
0 (Ω) and consider its closed extension to H−r = (X

r
2 )′, where Y ′ represents the dual

space of the Banach space Y , (in particular, H−1 = H1
0 (Ω)′). Then

fe(φ)(x) = f(φ(x)), x ∈ Ω,

defines an operator from X
s
2 into H−r which is Lipschitz continuous in bounded sets provided that

condition (1.2) holds and r ∈
[

(ρ−1)(n−2)
4 , 1

]
, s ∈ [r, 1]∩

[
n
2 −

2
ρ−1 , 1

]
. If in addition, r can be taken

strictly less than 1, then fe takes bounded sets of X
s
2 into relatively compact sets of H−1.

Proof: Let B be a bounded set in X
s
2 and choose arbitrary φ1, φ2 ∈ B. Since condition (1.2) holds

we use the Sobolev and Hölder inequalities to get

‖fe(φ1)− fe(φ2)‖H−r 6 C‖fe(φ1)− fe(φ2)‖
L

2n
n+2r (Ω)

6 Ĉ‖φ1 − φ2‖
L

2n
n−2r (Ω)

(
1 + ‖φ1‖ρ−1

L
n(ρ−1)

2r (Ω)
+ ‖φ2‖ρ−1

L
n(ρ−1)

2r (Ω)

)
6 C‖φ1 − φ2‖X s

2

(
1 + ‖φ1‖ρ−1

X
s
2

+ ‖φ2‖ρ−1

X
s
2

)
,

for any s ∈ [r, 1] ∩
[
n
2 −

2
ρ−1 , 1

]
. The last statement holds since H−r is compact embedded in H−1

for r < 1.

To continue, let Wε be the extrapolated space of X × X - which is the completion of the

normed space (X × X, ‖A−1
ε · ‖X×X) - and we consider the power scale {Wα

ε }α∈[0,1] generated

by (Wε, ‖Aαε · ‖Wε).

Remark 3.2. Note that W1
ε = X ×X for all ε ∈ [0, 1].

Lemma 3.3. Let s ∈
[

(ρ−1)(n−2)
4 , 1

]
and γ ∈ (0, 1− s

2), then Fε (defined in (1.8)) takes W1
ε in Wγ

ε

and is Lipschitz continuous in bounded sets.
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Proof: Let B be a bounded subset of W1
ε and [w1

z1 ] , [w2
z2 ] ∈ B. We have that

‖Fε ([w1
z1 ])−Fε ([w2

z2 ])‖Wγ
ε

=
∥∥Aγ−1

ε [Fε ([w1
z1 ])−Fε ([w2

z2 ])]
∥∥
X×X

=

∥∥∥∥[ Λ
r
2
ε P1,2(ε,1−γ)A− r

2 (I+εA)
r−1
2 (f(A− 1

2w1)−f(A− 1
2w2))

Λ
r
2
ε P2,2(ε,1−γ)A− r

2 (I+εA)
r−1
2 (f(A− 1

2w1)−f(A− 1
2w2))

]∥∥∥∥
X×X

and hence, by Proposition 2.28 along with Proposition 2.2 we have that

‖Fε ([w1
z1 ])−Fε ([w2

z2 ])‖Wγ
ε
6 const.‖f(A−

1
2w1)− f(A−

1
2w2)‖H−r .

Finally, Lemma 3.1 and Remark 3.2 guarantee that

‖Fε ([w1
z1 ])−Fε ([w2

z2 ])‖Wγ
ε
6 const.‖ [w1

z1 ]− [w2
z2 ] ‖W1

ε
.

Now we can state a result of local well posedness for (1.7) in W1
ε .

Theorem 3.4. For any initial data [w0
z0 ] lying in a bounded subset B of W1

ε there exists a number

τ = τ(B, ε) and a unique solution [0, τ) 3 t 7→ [wεzε ] (t, w0, z0) ∈ W1
ε of (1.7) which depends con-

tinuously on its variables (t, w0, z0) ∈ [0, τ) × W1
ε and such that, for any s ∈

[
(ρ−1)(n−2)

4 , 1
]

and

γ ∈
(
0, 1− s

2

)
,

[wεzε ] (·, w0, z0) ∈ C
(
(0, τ),W1+γ

ε

)
∩ C1

(
(0, τ),W1+γ−

ε

)
,

and either τ =∞ or ‖ [wεzε ] (t, w0, z0)‖W1
ε
→∞ as t→ τ−.

Moreover, the solution satisfies in W1
ε the variation of constants formula

[wεzε ] (t, w0, z0) = e−Aεt [w0
z0 ] +

∫ t

0
e−Aε(t−s)Fε ([wεzε ] (s, w0, z0)) ds, t ∈ [0, τ).

Proof: The theorem above is a consequence of the results reported in [17].

To state the result of local well posedness for (1.4), we define Ãε : D(Ãε) ⊂ X
1
2×X̃

1
2
ε −→ X

1
2×X̃

1
2
ε

by

D(Ãε) =

{
[ uv ] ∈ X

1
2 × X̃

1
2
ε : Φε [ uv ] ∈ D(Aε)

}
,

and for [ uv ] ∈ D(Ãε)

Ãε [ uv ] = Φ−1
ε AεΦε [ uv ] .

Since Φε : X
1
2 × X̃

1
2
ε −→ X ×X is an isometric isomorphism for all ε ∈ [0, 1], we have that each

Ãε is a closed densely defined operator and also the following result

Proposition 3.5. Each operator Ãε is a positive type operator (with an uniform constant) and

sectorial (with an uniform sector and uniform constants M > 1, ϕ ∈ (0, π2 ) and ω > 0) in X
1
2 ×X̃

1
2
ε .
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Let Zε be the extrapolated space of X
1
2 × X̃

1
2
ε which is the completion of the normed space

(X
1
2×X̃

1
2
ε , ‖Ã−1

ε ·‖
X

1
2×X̃

1
2
ε

) and we consider the power scale {Zαε }α∈[0,1] generated by (Zε, ‖Ãαε ·‖Zε).

Remark 3.6. Note that Z1
ε = X

1
2 × X̃

1
2
ε for all ε ∈ [0, 1].

Proof of Theorem 1.5: Let B̃ = Φ0,εB which is a bounded subset of W1
ε . Thus, by Theorem 3.4,

there exists τ = τ(B̃, ε) and a solution [0, τ) 3 t 7→ [wz ] (t, w0, z0, ε) ∈ W1
ε . Defining κ = τ and

[ uv ] (t, u0, v0, ε) = Φε [wz ] (t, w0, v0, ε) we obtain the desired result.

3.2. Global solutions. We want to prove that problem (1.7) generates a strongly continuous

semigroup, and conclude consequently the analogous result to (1.1). To this end, from now on

we assume that A : H1
0 (Ω) ∩H2(Ω) ⊂ X → X is the negative Laplacian with Dirichlet boundary

condition (hence satisfies conditions (O1), (O2) and (O3)), and we will begin with the following

lemma:

Lemma 3.7. Under the assumptions and notation of Theorem 3.4, if A is the negative Laplacian

with Dirichlet boundary condition in X, then condition (1.3) implies the existence of a constant

C > 0, independent of ε ∈ [0, 1], such that if [w0
z0 ] ∈ W1

ε , then solution of equation (1.7) given by

[0, τ(w0, z0, ε)) 3 t 7→
[
w(t,w0,z0,ε)
z(t,w0,z0,ε)

]
∈ W1

ε fulfills the estimate∥∥∥[w(t,w0,z0,ε)
z(t,w0,z0,ε)

]∥∥∥2

X×X
6 C

(
1 + ‖z0‖2X + ‖w0‖ρ+1

X

)
.

Proof: We take the X scalar product (·, ·) of each side of the first equation in (1.5) with A−
1
2wt

to get

(3.1)
1

2

d

dt

(
‖w‖2X2

+ ‖z‖2X
)
− (fe(A−

1
2w), A−

1
2wt) = −‖Λ

1
2
ε z‖2X .

Since A is the negative Laplacian with Dirichlet boundary condition, the Poincaré inequality

reads

‖A
1
2φ‖2X > λ1‖φ‖2X , φ ∈ X

1
2 ,

which for φ = A−
1
2ψ translates into the estimate

(3.2) ‖ψ‖2X > λ1‖A−
1
2ψ‖2X , ψ ∈ X.

If F is the primitive function of f in R we then have∫
Ω
f(A−

1
2w)A−

1
2wtdx =

d

dt

∫
Ω
F (A−

1
2w)dx.
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We now remark that (1.3) implies the existence of constants C, ξ > 0, for which

F (t) =

∫ t

0
f(s)ds 6

1

2
(λ1 − ξ)t2 + C, t ∈ R.

As a consequence we infer

(F (A−
1
2w), 1) 6

1

2
(λ1 − ξ)‖A−

1
2w‖2X + C|Ω|,

which with the aid of (3.2) reads

(3.3)

∫
Ω
F (A−

1
2w)dx 6

1

2

(
1− ξ

λ1

)
‖w‖2X + C|Ω|.

Connecting (3.1)-(3.3) we get for

(3.4) L(w, z)
.
=

1

2
‖w‖2X +

1

2
‖z‖2X −

∫
Ω
F (A−

1
2w)dx

that

(3.5)
d

dt
L(w, z) = −‖Λ

1
2
ε z‖2X 6 0

and hence

(3.6)
ξ

2λ1
‖w‖2X +

1

2
‖z‖2X − C|Ω| 6 L(w, z) 6 L(w0, z0),

as long as the solution exists.

We then have

ξ

2λ1
‖w‖2X +

1

2
‖z‖2X − C|Ω| 6

1

2
‖w0‖2X +

1

2
‖z0‖2X −

∫
Ω
F (A−

1
2w0)dx

and gives us

ξ

λ1
‖w‖2X + ‖z‖2X 6 ‖w0‖2X + ‖z0‖2X − 2

∫
Ω
F (A−

1
2w0)dx+ 2C|Ω|

where

‖F (A−
1
2w0)‖L1(Ω) 6 const.

(
1 + ‖w0‖ρ+1

X

)
,

with the constant independent of ε, since condition (1.3) implies that |F (s)| 6 const.(1 + |s|ρ+1)

for s ∈ R. Thus

‖w‖2X + ‖z‖2X 6 C
(

1 + ‖z0‖2X + ‖w0‖ρ+1
X

)
.
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Theorem 3.8. Under the assumptions of Lemma 3.7, the solutions from Theorem 3.4 exist globally

in time and the problem (1.7) defines a C0-semigroup {Tε(t) : t > 0} on W1
ε for each ε ∈ [0, 1],

which has bounded orbits of bounded sets, defined by

Tε(t) [w0
z0 ] = e−Aεt [w0

z0 ] +

∫ t

0
e−Aε(t−s)Fε (Tε(s) [w0

z0 ]) ds, for all t > 0.

Proof of Theorem 1.6: Is a direct consequence of Theorem 3.8.

4. Existence of attractors and uniform bounds

In this section our goal is to prove the existence of a global attractor Aε of the semigroup

{Tε(t) : t > 0} for each ε ∈ [0, 1] and to prove that {Tε(t) : t > 0} is a gradient semigroup.

Let E =
{[

φ
0

]
: φ ∈ E1

}
, where E1 = {φ ∈ X : A

1
2φ = f(A−

1
2φ)}. It is clear that E is the set of

equilibrium points of {Tε(t) : t > 0}, for all ε ∈ [0, 1].

First we need an auxiliary lemma:

Lemma 4.1. If X = L2(Ω) and A is the negative Laplacian with Dirichlet boundary condition and

domain X1 = H2(Ω) ∩H1
0 (Ω), then

(4.1) (A−
1
2φ,A

1
2ψ) =

∫
Ω
φψdx, φ ∈ L

2n
n+2 (Ω), ψ ∈ X

1
2 .

Proof: See Lemma 2.1 of [9].

Now we can give an estimate for the bound of the equilibrium set E .

Lemma 4.2. E is bounded in X ×X, moreover for each φ ∈ E1, A−
1
2φ ∈ L∞(Ω).

Proof: Let φ ∈ X
1
2 such that

[
φ
0

]
∈ E . Thus by Lemma 4.1 we have

‖φ‖2X = (φ, φ) = (φ,A−
1
2 f(A−

1
2φ)) = (A

1
2A−

1
2φ,A−

1
2 f(A−

1
2 )φ)

=

∫
Ω
f(A−

1
2φ)A−

1
2φdx,

and hence, with (1.3) and the aid of the Poincaré inequality, we have that

‖φ‖2X =

∫
Ω
f(A−

1
2φ)A−

1
2φdx 6 (λ1 − ξ)‖A−

1
2φ‖2X + C|Ω| 6 (1− ξλ−1

1 )‖φ‖2X + C|Ω|.

Therefore

sup[
φ
0

]
∈E
‖φ‖2X 6 λ1ξ

−1C|Ω|.
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For the second part, if ψ ∈ E1, then ψ = A−
1
2φ ∈ X

1
2 is a solution of the problem

Aψ = f(ψ),

and hence, since f has subcritical growth, it follows by a bootstrapping argument that ψ ∈ L∞(Ω).

Corollary 4.3. The set Ẽ =
{[

A− 1
2 φ

0

]
: φ ∈ E1

}
is the set of equilibrium points of (1.1). Moreover,

this set is uniformly bounded in X
1
2 × X̃

1
2
ε , for ε ∈ [0, 1], and Ẽ ⊂ L∞(Ω)× L∞(Ω).

Lemma 3.7 gives us also the following result:

Proposition 4.4. Under the assumptions of Lemma 3.7 the function L : X ×X → R satisfies

(i) L(Tε(·) [w0
z0 ]) is bounded from below and non-increasing in [0,∞) for any [w0

z0 ] ∈ X ×X;

(ii) If [w0
z0 ] ∈ X ×X and L(Tε(·) [w0

z0 ]) = const. in [0,∞) then [w0
z0 ] ∈ E.

Proof: Equations (3.5) and (3.6) show that L(Tε(·) [w0
z0 ]) is decreasing and bounded below in

[0,∞). If L(Tε(·) [w0
z0 ]) = const. in [0,∞), then

L(Tε(t) [w0
z0 ]) = L([w0

z0 ]),

for all t ∈ [0,∞). If Tε(t) [w0
z0 ] =

[
wε(t)
zε(t)

]
then zε(t) = 0 for all t > 0, and in particular, z0 = 0. Also

d
dtwε(t) = Λ

1
2
ε zε(t) = 0 for all t > 0, thus wε(t) is constant which implies that wε(t) = w0 for all

t > 0. Finally, equation (1.6) implies that A
1
2w0 = f(A−

1
2w0) and therefore [w0

z0 ] ∈ E .

Proposition 4.5. Under the assumptions of Lemma 3.7, for each ε ∈ [0, 1] there exists a function

Vε : X
1
2 × X̃

1
2
ε → R satisfying

(i) Vε(Sε(·) [ u0v0 ]) is bounded from below and non-increasing in [0,∞) for any [ u0v0 ] ∈ X
1
2 × X̃

1
2
ε ;

(ii) If [ u0v0 ] ∈ X
1
2 × X̃

1
2
ε and Vε(Sε(·) [ u0v0 ]) = const. in [0,∞) then [ u0v0 ] ∈ Ẽ.

Proof: Just define, for each ε ∈ [0, 1],

Vε ([ uv ]) = L (Φ0,ε [ uv ]) ,

and this functional has the desired properties.

To ensure the existence of an attractor Aε for the semigroup {Tε(t) : t > 0}, for each ε ∈ [0, 1],

it remains to show that {Tε(t) : t > 0} is an asymptotically compact semigroup, for each ε ∈ [0, 1].
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Proposition 4.6. For each ε ∈ [0, 1], the semigroup {Tε(t) : t > 0} is asymptotically compact in

X ×X.

Proof: Define, for each ε ∈ [0, 1],

Lε(t) [w0
z0 ] = e−Aεt [w0

z0 ] and Uε(t) [w0
z0 ] =

∫ t

0
e−Aε(t−s)Fε (Tε(s) [w0

z0 ]) .

From Lemma 3.1, f(A−
1
2 ·) take bounded subsets of X into precompact sets of H−s for s ∈[

(ρ−1)(n−2)
4 , 1

)
, thus Fε takes bounded sets of X ×X into precompact sets of X ×X, Tε(t) is the

sum of an exponentially decaying semigroup with a compact family of maps, which implies that

the semigroup is asymptotically compact.

Theorem 4.7. The semigroup {Tε(t) : t > 0} has a global attractor Aε in X×X, for each ε ∈ [0, 1].

Proof of Theorem 1.7: Define Ãε = Φ−1
0,εAε, for each ε ∈ [0, 1].

4.1. Uniform estimates on the global attractors. In this subsection we are concerned with

uniform estimates for the family of attractors {Aε}ε∈[0,1] and also for {Ãε}ε∈[0,1], since this will be

an essential tool to prove the upper semicontinuity for both of them at ε = 0.

Theorem 4.8.
⋃
ε∈[0,1] Aε is bounded in X ×X.

Proof: We define, for (ε, γ) ∈ [0, 1]× [0, 1], the functional Vε,γ : X ×X → R by

Vε,γ(w, z) =
1

2

(
‖w‖2X + ‖z‖2X

)
−
∫

Ω
F (A−

1
2w)dx+ γRe((I + εA)

1
2A−

1
2w, z).

Now

Vε,γ(w, z) >
1

2
‖w‖2X +

1

2
‖z‖2X −

1

2

(
1− ξ

λ1

)
‖w‖2X − C|Ω|+ γRe((I + εA)

1
2A−

1
2w, z)

>
ξ

2λ1
‖w‖2X +

1

2
‖z‖2X − C|Ω| −

γ

2
(µ1‖z‖2X + ‖w‖2X)

=

(
ξ

2λ1
− γ

2

)
‖w‖2X +

(
1

2
− µγ

2

)
‖z‖2X − C|Ω|,

and we choose γ ∈ (0, 1) such that ξ
λ1
− γ > 0, 1−µγ > 0 and γ < µ

2 . Now, if we take
[
w(t)
z(t)

]
being

a solution of (1.5) we have that

d

dt
Vε,γ(w, z) = −‖wt‖2X + γRe((I + εA)

1
2A−

1
2wt, z) + γRe((I + εA)

1
2A−

1
2w, zt)

= −‖wt‖2X + γ‖z‖2X − γRe((I + εA)
1
2A−

1
2w,A

1
2 (I + εA)−

1
2w)− γRe(wt, w)

+ γRe(f(A−
1
2w), A−

1
2w)
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hence, for each η > 0

d

dt
Vε,γ(w, z) 6

(
γ

2η
− 1

)
‖wt‖2X + γ‖z‖2X +

γη

2
‖w‖2X

− γ
(

1− ξ

λ1

)
Re(A

1
2 (I + εA)−

1
2w, (I + εA)

1
2A−

1
2w)

− γξ

λ1
Re(A

1
2 (I + εA)−

1
2w, (I + εA)

1
2A−

1
2w) + γ(λ1 − ξ)‖A−

1
2w‖2X + Cγ|Ω|

6

(
γη

2
− γξ

λ1

)
‖w‖2X +

(
−µ+

γµ

2η
+ γ

)
‖z‖2X + Cγ|Ω|,

hence for η = ξ
λ1

we have

d

dt
Vε,γ(w, z) 6 − γξ

2λ1
‖w‖2X −

(µ
2
− γ
)
‖z‖2X + Cγ|Ω|.

Now, for any ζ > 0, we have

d

dt
Vε,γ(w, z) 6 − γξ

2λ1
‖w‖2X −

(µ
2
− γ
)
‖z‖2X + Cγ|Ω|

± ζ

∫
Ω
F (A−

1
2w)dx ± γζRe((I + εA)

1
2A−

1
2w, z),

and thus

d

dt
Vε,γ(w, z) 6

(
− γξ

2λ1
+
ζ(λ1 − ξ)

2
+
γζ

2

)
‖w‖2X +

(
µ

2
+ γ +

γζµ

2

)
‖z‖2X

+ Cγ|Ω|+ 2Cζ|Ω|+ ζ

∫
Ω
F (A−

1
2w)dx− ζγRe((I + εA)

1
2A−

1
2w, z).

We can choose ζ > 0 such that

− γξ

2λ1
+
ζ(λ1 − ξ)

2
+
γζ

2
< −ζ

2
and

µ

2
+ γ +

γζµ

2
< −ζ

2
,

and therefore

d

dt
Vε,γ(w, z) 6 −ζ

2
‖w‖2X −

ζ

2
‖z‖2X + ζ

∫
Ω
F (A−

1
2w)dx− γζRe((I + εA)

1
2A−

1
2w, z) + C̃

= −ζVε,γ(w, z) + C̃,

or equivalently
d

dt
Vε,γ(w, z) + ζVε,γ(w, z) 6 C̃.

This implies that for all t > 0 we have

d

dt

(
eζtVε,γ(w, z)

)
6 eζtC̃,

and hence

Vε,γ(w, z) 6 e−ζtVε,γ(w0, z0) + C̃.
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Therefore

‖[wz ]‖2X×X 6 Ĉe−ζt(1 + ‖z0‖2X + ‖w0‖2X + ‖w0‖ρ+1
X ) + R̃,

for all t > 0 and given a bounded set B in X ×X, there exists TB > 0, independent of ε ∈ [0, 1],

such that

‖[wz ]‖2X×X 6 2R̃, for all t > TB,

and we conclude the proof of the theorem.

With this uniform bound in X ×X, using the subcritical growth of f we are able to provide an

uniform estimate in a more regular space.

Theorem 4.9. If s ∈
[
0, 1− (ρ−1)(n−2)

4

)
, then ∪ε∈[0,1]Aε is bounded in X

s
2 ×X

s
2 .

Proof: If
[
w(·,w0,z0,ε)
z(·,w0,z0,ε)

]
is a solution of (1.6) in the attractor Aε then

[
w(t,w0,z0,ε)
z(t,w0,z0,ε)

]
=

∫ t

−∞
e−Aε(t−s)Fε

([
w(s,w0,z0,ε)
z(s,w0,z0,ε)

])
,

for all t ∈ R. Thus, if we take α ∈ (1
2 , 1), we have

∥∥∥[w(t,w0,z0,ε)
z(t,w0,z0,ε)

]∥∥∥
X
s
2×X

s
2
6
∫ t

−∞
‖Aαε e−Aε(t−s)‖L(X×X)

∥∥∥∥∥
[

Λ
1
2
ε P1,2(ε,α)A

s−1
2 f(A− 1

2w(s,w0,z0,ε))

Λ
1
2
ε P2,2(ε,α)A

s−1
2 f(A− 1

2w(s,w0,z0,ε))

]∥∥∥∥∥
X×X

,

and there exists a constant M̃ > 1 such that (using Proposition 2.28)∥∥∥[w(t,w0,z0,ε)
z(t,w0,z0,ε)

]∥∥∥
X
s
2×X

s
2
6 M̃

∫ t

−∞
e−ω(t−s)(t− s)−α‖f(A−

1
2w(s, w0, z0, ε))‖Hs−1 ,

and since, by Theorem 4.8, ‖w(s, w0, z0, ε)‖X is uniformly bounded in X we have that
⋃
ε∈[0,1]Aε

is bounded in X
s
2 ×X

s
2 .

Corollary 4.10. ∪ε∈[0,1]Aε is precompact in X ×X.

Proof: It follows directly from the fact that X
s
2 ×X

s
2 is compact embedded in X ×X.

To finish this section and give a proof of Theorem 1.8, we need the following result.

Proposition 4.11. Let A be an operator of positive type with constant C > 1 in X, then the

operators I + εA : D(I + εA) ⊂ X → X are of positive type with constant C. Moreover, the family

of operators {(I + εA)−β}(ε,β)∈[0,1]×[0,1] is uniformly bounded.
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Proof: See Appendix A.

Proof of Theorem 1.8: It follows from the previous theorem and Proposition 4.11.

Corollary 4.12. ∪ε∈[0,1]Ãε is precompact in X
1
2 ×X.

5. Continuity of attractors

5.1. Upper semicontinuity of attractors. This section is devoted to the study of the upper

semicontinuity of the family of global attractors {Aε}ε∈[0,1] at ε = 0 and as a consequence, the

upper semicontinuity of {Ãε}ε∈[0,1]

To start this discussion, we have the following lemma:

Lemma 5.1. If
{[

w0
ε

z0ε

]}
ε∈(0,1]

⊂ X × X is such that
[
w0
ε

z0ε

]
ε→0+−→

[
w0

0

z00

]
for some

[
w0

0

z00

]
∈ X × X,

then we have

[
wε(t)
zε(t)

]
ε→0+−→

[
w0(t)
z0(t)

]
, for each t > 0,

where
[
wε(·)
zε(·)

]
is the solution of (1.7) with initial condition

[
wε(0)
zε(0)

]
=
[
w0
ε

z0ε

]
, for each ε ∈ [0, 1].

Proof: We know that, for each
[
w0
ε

z0ε

]
∈ X ×X, the solution of (1.7) is given by

[
wε(t)
zε(t)

]
= e−Aεt

[
w0
ε

z0ε

]
+

∫ t

0
e−Aε(t−s)Fε

([
wε(s)
zε(s)

])
ds,

for each t > 0. Thus we have

[
wε(t)
zε(t)

]
−
[
w0(t)
z0(t)

]
= e−Aεt

[
w0
ε

z0ε

]
− e−A0t

[
w0

0

z00

]
︸ ︷︷ ︸

I1(ε)

+

∫ t

0
e−Aε(t−s)Fε

([
wε(s)
zε(s)

])
− e−A0(t−s)F0

([
w0(s)
z0(s)

])
ds︸ ︷︷ ︸

I2(ε)

.

We analise I1(ε) and I2(ε) separately. First, note that

I1 = e−Aεt
([

w0
ε

z0ε

]
−
[
w0

0

z00

])
+ (e−Aεt − e−A0t)

[
w0

0

z00

]
,
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and the hypothesis together with Theorem 1.4 ensures that I1(ε)→ 0 as ε→ 0+. Now

I2(ε) =

∫ t

0
e−Aε(t−s)

[
Fε
([

wε(s)
zε(s)

])
−Fε

([
w0(s)
z0(s)

])]
ds︸ ︷︷ ︸

I12 (ε)

+

∫ t

0

[
e−Aε(t−s) − e−A0(t−s)

]
Fε
([

w0(s)
z0(s)

])
ds︸ ︷︷ ︸

I22 (ε)

+

∫ t

0
e−A0(t−s)

[
Fε
([

w0(s)
z0(s)

])
−F0

([
w0(s)
z0(s)

])]
ds︸ ︷︷ ︸

I32 (ε)

,

and again we will analise I1
2 (ε), I2

2 (ε) and I3
2 (ε) separately. For I1

2 (ε) we have that, given α ∈ (1/2, 1),

‖I1
2 (ε)‖X×X 6

∫ t

0
‖Aαε e−Aε(t−s)‖L(X×X)

∥∥∥A−αε [
Fε
([

wε(s)
zε(s)

])
−Fε

([
w0(s)
z0(s)

])]∥∥∥
X×X

ds

6
∫ t

0
Ce−ω(t−s)(t− s)−α

∥∥∥[wε(s)zε(s)

]
−
[
w0(s)
z0(s)

]∥∥∥
X×X

ds.

For I2
2 (ε) we have that, given s ∈

[
(ρ−1)(n−2)

4 , 1
)

and γ ∈ (s, 1),

‖I2
2 (ε)‖X×X 6

∫ t

0

∥∥∥e−Aε(t−s) − e−A0(t−s)
∥∥∥
L(X×X)

‖(I + εA)−
1
2 f(A−

1
2w0(s))‖Xds

6
∫ t

0
MC1e

−ω(t−s)(t− s)−γε
γ−s
2 ‖f(A−

1
2w0(s))‖H−sds

6 C̃ε
γ−s
2 .

For I3
2 (ε) we have that, for a given α ∈ (1/2, 1) and s ∈

[
(ρ−1)(n−2)

4 , 1
)

,

‖I3
2 (ε)‖X×X 6

∫ t

0
‖Aα0 e−A0(t−s)‖L(X×X)

∥∥∥A−α0

[
Fε
([

w0(s)
z0(s)

])
−F0

([
w0(s)
z0(s)

])]∥∥∥
X×X

ds

6
∫ t

0
Ce−ω(t−s)(t− s)−α‖[A−

1
2 (I + εA)−

1
2 −A−

1
2 ]f(A−

1
2w0(s))‖Xds

=

∫ t

0
Ce−ω(t−s)(t− s)−α‖[A

s−1
2 (I + εA)−

1
2 −A

s−1
2 ]A−

s
2 f(A−

1
2w0(s))‖Xds

6 C̃ε
1−s
2 .

Joining these estimates we proved that∥∥∥[wε(t)zε(t)

]
−
[
w0(t)
z0(t)

]∥∥∥
X×X

6 l(ε) +

∫ t

0
Ce−ω(t−s)(t− s)−α

∥∥∥[wε(s)zε(s)

]
−
[
w0(s)
z0(s)

]∥∥∥
X×X

ds,
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where l(ε)→ 0 as ε→ 0+, and using a Singular Gronwall’s Lemma (Lemma 7.1.1 in [17]) we have

that ∥∥∥[wε(t)zε(t)

]
−
[
w0(t)
z0(t)

]∥∥∥
X×X

→ 0, as ε→ 0+, for each t > 0.

Now, using this result together with Corollary 4.10 we can prove the following:

Lemma 5.2. If
{[

w0
ε

z0ε

]}
ε∈(0,1]

⊂ X ×X is such that
[
w0
ε

z0ε

]
∈ Aε for each ε ∈ (0, 1] and

[
w0
ε

z0ε

]
ε→0+−→[

w0
0

z00

]
for some

[
w0

0

z00

]
∈ X ×X, then

[
w0

0

z00

]
∈ A0.

Proof: Let
[
wε(t)
zε(t)

]
be the global solution through

[
w0
ε

z0ε

]
, for each ε ∈ (0, 1]. Since

[
wε(−1)
zε(−1)

]
∈⋃

ε∈[0,1] Aε, there exists a subsequence εn1 → 0 as n1 →∞ and a point
[
w0(−1)
z0(−1)

]
∈ X×X such that[

wεn1 (−1)

zεn1 (−1)

]
→
[
w0(−1)
z0(−1)

]
, as n1 →∞.

By Lemma 5.1, [
w0
ε

z0ε

]
= Tε(1)

[
wεn1 (−1)

zεn1 (−1)

]
→ T0(1)

[
w0(−1)
z0(−1)

]
,

and hence T0(1)
[
w0(−1)
z0(−1)

]
=
[
w0

0

z00

]
. Inductively, if we have chosen a subsequence {nk} of {nk−1}

and a point
[
w0(−k)
z0(−k)

]
∈ X ×X such that[

wεnk
(−k)

zεnk
(−k)

]
→
[
w0(−k)
z0(−k)

]
, as nk →∞.

Again, using Lemma 5.1, we have[
wε(−k+1)
zε(−k+1)

]
= Tε(1)

[
wεn1 (−k)

zεn1 (−k)

]
→ T0(1)

[
w0(−k)
z0(−k)

]
,

and hence T0(1)
[
w0(−k)
z0(−k)

]
=
[
w0(−k+1)
z0(−k+1)

]
. Now define for each t ∈ R

[
w0(t)
z0(t)

]
=



[
w0(−k)
z0(−k)

]
, if t = −k ∈ Z−;

T0(t+ k)
[
w0(−k)
z0(−k)

]
, if t ∈ (−k,−k + 1);[

w0
0

z00

]
, if t = 0;

T0(t)
[
w0

0

z00

]
, if t > 0.

,

and thus
[
w0(t)
z0(t)

]
is a bounded global solution through

[
w0

0

z00

]
of {T0(t) : t > 0} and therefore[

w0
0

z00

]
∈ A0.

Lemmas 5.1 and 5.2 together with Lemma 3.2 of [5] prove the upper semicontinuity at ε = 0 of

{Aε}ε∈[0,1] and we have the following result:
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Theorem 5.3. The family {Aε}ε∈[0,1] is upper semicontinuous in ε = 0.

With the upper semicontinuity of the family {Aε}ε∈[0,1] at ε = 0 we are one step away to prove

the upper semicontinuity of the family of global attractors {Ãε}ε∈[0,1] at ε = 0. All we need is the

following proposition:

Proposition 5.4. If s ∈ [0, 1] and x ∈ D(A
s
2 ) then

‖(I + εA)−
1
2x− x‖X 6 Cε

s
2 ‖A

s
2x‖X .

Proof of Theorem 1.9: Just note that

‖[ uεvε ]− [ u0v0 ]‖
X

1
2×X

6
∥∥∥[ wε

(I+εA)−
1
2 zε

]
− [w0

z0 ]
∥∥∥
X×X

6 ‖(I + εA)−
1
2 zε − zε‖X + ‖[wεzε ]− [w0

z0 ]‖X×X ,

for any [ uεvε ] ∈ Cε. Now the result follows Proposition 5.4 and Theorem 5.3.

5.2. Lower semicontinuity of attractors. The study of lower semicontinuity of attractors is a

harder deal than the upper semicontinuity and requires a fine study of the local structures in the

global attractors; that is, we need to study the continuity of the local unstable manifolds of the

linearized problems around each equilibrium point
[
φ
0

]
∈ E (recall Section 4), which is given by

(Pε)
d

dt
[wz ] +Aε,φ [wz ] = Fε,φ([wz ]),

where Aε,φ = Aε −DFε(
[
φ
0

]
) and Fε,φ([wz ]) = Fε([w+φ

z ])−Fε(
[
φ
0

]
)−DFε(

[
φ
0

]
) [wz ].

From now on we will make the following assumption:

(LS1) φ is an non-degenerate equilibrium for A
1
2u = fe ◦ A−

1
2 (u); that is 1 ∈ ρ(A−

1
2D(fe ◦

A−
1
2 )(φ)) and hence I −A−

1
2D(fe ◦A−

1
2 )(φ) is invertible.

It is easy to see that

DFε(
[
φ
0

]
) =

 0 0

(I + εA)−
1
2D(fe ◦A−

1
2 )(φ) 0

 ,
We now will study the convergence of the linear local unstable manifolds of the problems (Pε),

and to begin we discuss the generation of analytic semigroups by −Aε,φ.

Proposition 5.5. Using the notations of Lemma 4.2, if φ ∈ E1 then D(fe ◦A−
1
2 )(φ) is a bounded

linear operator in X.
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Proof: We know that, for each φ ∈ E1 and η ∈ X,

(D(fe ◦A−
1
2 )(φ)η)(x) = f ′(A−

1
2φ(x))A−

1
2 η(x),

and hence

‖D(fe ◦A−
1
2 )(φ)η‖2X =

∫
Ω
|f ′(A−

1
2φ(x))A−

1
2 η(x)|2dx.

But since A−
1
2φ ∈ L∞(Ω) (by Lemma 4.2) and |f ′(s)| 6 c(1 + |s|ρ−1), f ′(A−

1
2φ(·)) ∈ L∞(Ω) and

thus

‖D(fe ◦A−
1
2 )(φ)η‖X 6 K‖η‖X .

Corollary 5.6. {DFε(
[
φ
0

]
)}ε∈[0,1] is an uniformly bounded linear family of operators in X ×X.

Corollary 5.7. {Aε,φ}ε∈[0,1] is an uniformly sectorial family of operators in X × X, hence each

−Aε,φ generates an analytic semigroup {e−Aε,φ : t > 0} and there exist constants M > 1, ω ∈ R

such that

‖e−Aε,φt‖L(X×X) 6Me−ωt, for all t > 0 and all ε ∈ [0, 1],

also there exists a ϕ ∈ (0, π2 ) such that

‖(λ−Aε,φ)−1‖ 6 M

|λ− ω|
, for all λ ∈ Sω,ϕ and all ε ∈ [0, 1].

It is by a simple calculation, and recalling that 0 ∈ ρ(Aε) for all ε ∈ [0, 1], that we can see that

Aε,φ = Aε(I −A−1
ε DFε(

[
φ
0

]
)) = AεB,

where B is the invertible linear bounded operator given by

B =

I −A− 1
2D(fe ◦A−

1
2 )(φ) 0

0 I

 .
Therefore, using the assumption (LS1), we have that 0 ∈ ρ(Aε,φ) and A−1

ε,φ = B−1A−1
ε which

gives

‖A−1
ε,φ −A

−1
0,φ‖L(X) 6 ‖B−1‖L(X)‖A−1

ε −A−1
0 ‖ 6 Cε.

Now let K ⊆ C be a compact set and assume that K ⊆ ρ(A0,φ). Since A0,φ(λ − A0,φ)−1

and (λ − A0,φ)A0,φ are in L(X) and they are inverse with each other, we have that λA−1
0,φ − I =

(λ−A0,φ)A0,φ is an invertible operator and since

(λA−1
ε,φ − I)− (λA−1

0,φ − I) = λ(A−1
ε,φ −A

−1
0,φ),
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we have that, for ε sufficiently small, (λA−1
ε,φ − I) is invertible and

(λA−1
ε,φ − I)−1 − (λA−1

0,φ − I)−1 L(X)→ 0,

as ε → 0+, uniformly for λ ∈ K. Thus (λ − Aε,φ) is invertible for λ ∈ K and ε sufficiently small,

and

(λ−Aε,φ)−1 − (λ−A0,φ)−1 L(X)→ 0,

as ε→ 0+, and we have proved the following result

Proposition 5.8. Given K ⊆ C a compact set such that K ⊆ ρ(A0,φ), there exists ε0 ∈ [0, 1] such

that K ⊆ ρ(Aε,φ) for all ε ∈ [0, ε0] and

sup
λ∈K
‖(λ−Aε,φ)−1 − (λ−A0,φ)−1‖L(X×X) → 0, as ε→ 0+.

This lead us to the following result:

Proposition 5.9. If
[
φ
0

]
∈ E is a hyperbolic equilibrium point for the problem (P0) then there

exists ε0 ∈ (0, 1] such that
[
φ
0

]
it is a hyperbolic equilibrium point for the problems (Pε), for each

ε ∈ [0, ε0].

Proof: Since
[
φ
0

]
is a hyperbolic equilibrium point for (P0), σ(A0,φ) is separated from the

imaginary axis; hence there exists a rectangle K = {λ ∈ C : Reλ ∈ [−a, a] and Imλ ∈ [−b, b]} with

a, b > 0 such that σ(A0,φ) ∩ K = ∅, and by Corollary 5.7, we can choose K such that it split

C \ Sω,ϕ into two separated sets.

Then Proposition 5.8 implies that there exists ε0 ∈ (0, 1] such that σ(Aε,φ) ∩ K = ∅ for all

ε ∈ [0, ε0] and therefore
[
φ
0

]
is a hyperbolic equilibrium point for (Pε).

Now let σ+ = σ(−Aε,φ)∩ {Reλ > 0} and Γ+ be a closed simple curve in ρ(−Aε,φ) enclosing σ+.

We know that the associated linear unstable manifold Uε of problem (Pε) is given as the image of

the projection Π+
ε defined by

Π+
ε =

1

2πi

∫
Γ+

(λ+Aε,φ)−1dλ,

and Proposition 5.8 implies that

‖Π+
ε −Π+

0 ‖L(X×X) → 0, as ε→ 0+.

Now that we have the convergence of the linear unstable manifolds, we study unstable manifolds

of problem (Pε), and to this end we begin with the following lemma.
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Lemma 5.10. If f : R→ R is a C2 function with f, f ′ and f ′′ bounded in R, there exists ζ ∈ (0, 1)

such that

‖fe(A−
1
2u)− fe(A−

1
2 v)− f ′(A−

1
2 v)A−

1
2 (u− v)‖X 6 c‖u− v‖1+ζ

X , for all u, v ∈ X.

Proof: First we set g(u, v) = fe(A−
1
2u)− fe(A−

1
2 v)− f ′(A−

1
2 v)A−

1
2 (u− v), and we can see that

|g(u, v)| = |fe(A−
1
2u)− fe(A−

1
2 v)− f ′(A−

1
2 v)A−

1
2 (u− v)|

= |[f ′(θA−
1
2u+ (1− θ)A−

1
2 v)− f ′(A−

1
2 v)]A−

1
2 (u− v)|

= |f ′′(η(θA−
1
2u+ (1− θ)A−

1
2 v) + (1− η)A−

1
2 v)||θ||A−

1
2 (u− v)|2,

and it is easy to see that there exist constants c1, c2 > 0 such that

‖g(u, v)‖L1(Ω) 6 c1‖A−
1
2 (u− v)‖2

L
2n
n−2 (Ω)

and

‖g(u, v)‖
L

2n
n−2 (Ω)

6 c2‖A−
1
2 (u− v)‖

L
2n
n−2 (Ω)

.

In this way there exists ζ ∈ (0, 1) such that 1
2 = ζ + (1− ζ)n−2

2n and

‖g(u, v)‖X 6 ‖g(u, v)‖1−ζ
L1(Ω)

‖g(u, v)‖ζ
L

2n
n−2 (Ω)

6 c1−ζ
1 cζ2‖A

− 1
2 (u− v)‖1+ζ

L
2n
n−2 (Ω)

,

which concludes the proof, since H1
0 (Ω) ↪→ L

2n
n−2 (Ω).

Corollary 5.11. If f : R → R is a C2 function with f, f ′ and f ′′ bounded in R, there exists a

ζ ∈ (0, 1) such that

‖Fε,φ([w1
z1 ])−Fε,φ([w2

z2 ])‖X×X 6 c‖ [w1
v1 ]− [w2

v2 ] ‖1+ζ
X×X ,

for each ε ∈ [0, 1].

Proposition 5.12. In the conditions above, for each ε ∈ [0, ε0] there exists a local unstable manifold

W u,ε
loc (
[
φ
0

]
) which is a graph over a ball Br(0) of Uε. Moreover, the family of local unstable manifolds

{W u,ε
loc (
[
φ
0

]
)}ε∈[0,ε0] is continuous at ε = 0.

Proof: This is a consequence of Corollary 5.11 and the results reported in [18].

Theorem 5.13. Suppose that all the conditions above are satisfied and assume also that the set

of equilibrium points E and each
[
φ
0

]
∈ E is a hyperbolic equilibrium point for (P0), then family of

global attractors {Aε}ε∈[0,1] is lower semicontinuous at ε = 0.
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Proof: Proposition 5.9 implies that E consists of hyperbolic points of (Pε) for each ε ∈ [0, ε0]

and by Proposition 5.12, the family of local unstable manifolds {W u,ε
loc (
[
φ
0

]
)}ε∈[0,ε0] is continuous at

ε = 0. Finally, Proposition 4.4 implies, in particular, that

A0 =
⋃

[
φ
0

]
∈E

W u,0
loc (

[
φ
0

]
),

and the result follows from the results reported in [2, 16].

Proof of Theorem 1.10: It is analogous to the proof of Theorem 1.9 , using Theorem 5.13 instead

of Theorem 5.3.

6. Fractal dimension of attractors and entropy numbers

In this section, we are interested in giving uniform bounds for the fractal dimension of the global

attractors Aε of the semigroups {Tε(t) : t > 0} generated by equation (1.7). To begin, let us recall

the definitions of fractal dimension and entropy numbers.

Definition 6.1. Let Z be a metric space and K a compact subset of Z. For each r > 0 let NZ(r,K)

be the minimum number of balls of radius r necessary to cover K. The fractal dimension of K is

defined by

c(K) 6 lim sup
r→0+

ln NZ(r,K)

ln(1
r )

.

Definition 6.2. Let Z and W two Banach spaces such that Z is compactly embedded in W. We

define the entropy numbers ek of Z in W by

ek = inf

η > 0 : BZ1 (0) ⊂
2k−1⋃
j=1

BWη (wj), wj ∈ W for 1 6 j 6 2k−1

 .

Roughly speaking, ek is the solution of the equation NW(η,BZ1 (0)) = 2k−1.

Firstly, using Theorem 4 of [10], we are able to estimate the fractal dimension of the global

attractors of (1.7). To this end, we prove two auxiliary lemmas.

Lemma 6.3. For any γ ∈ (0, 1), there exists a continuous function hγ : R→ R such that

‖Tε(t) [w0
z0 ]− Tε(t) [w1

z1 ]‖H−γ×H−γ 6 hγ(t) ‖[w0
z0 ]− [w1

z1 ]‖H−γ×H−γ ,

for all [w0
z0 ] , [w1

z1 ] ∈ X ×X.
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Proof: Using the variation of constants formula, we have that for α ∈ (1
2 , 1)

‖Tε(t) [w0
z0 ]− Tε(t) [w1

z1 ]‖H−γ×H−γ 6Me−ωt ‖[w0
z0 ]− [w1

z1 ]‖H−γ×H−γ

+

∫ t

0
Me−ω(t−s)(t− s)−α

∥∥A−αε [Fε (Tε(s) [w0
z0 ])−Fε (Tε(s) [w1

z1 ])]
∥∥
H−γ×H−γ ds

6Me−ωt ‖[w0
z0 ]− [w1

z1 ]‖H−γ×H−γ +Mγ

∫ t

0
e−ω(t−s)(t− s)−α ‖Tε(s) [w0

z0 ]− Tε(s) [w1
z1 ]‖H−γ×H−γ ds,

and the result follows from a singular version of Grownwall’s Lemma (Lemma 7.1.1 in [17]).

Lemma 6.4. There exists γ ∈ (0, 1) and a continuous function k : R→ R such that

‖Tε(t) [w0
z0 ]− Tε(t) [w1

z1 ]‖X×X 6Me−ωt ‖[w0
z0 ]− [w1

z1 ]‖X×X + k(t) ‖[w0
z0 ]− [w1

z1 ]‖H−γ×H−γ ,

for all [w0
z0 ] , [w1

z1 ] ∈ X ×X.

Proof: We can write Tε(t) = Lε(t) + Uε(t) where

Lε(t)· = e−Aεt · and Uε(t)· =
∫ t

0
e−Aε(t−s)Fε(Tε(s)·)ds.

It is easy to see that

‖Lε(t) [w0
z0 ]− Lε(t) [w1

z1 ]‖X×X 6Me−ωt ‖[w0
z0 ]− [w1

z1 ]‖X×X .

Also, if we choose α ∈ (1
2 , 1) and γ ∈ (0, 1), we have that

‖Uε(t) [w0
z0 ]− Uε(t) [w1

z1 ]‖X×X 6M

∫ t

0
e−ω(t−s)(t− s)−α‖A−αε [Fε(Tε(s) [w0

z0 ])−Fε(Tε(s) [w1
z1 ])]‖X×Xds

6Mγ

∫ t

0
e−ω(t−s)(t− s)−α‖Tε(s) [w0

z0 ]− Tε(s) [w1
z1 ] ‖H−γ×H−γds,

and by Lemma 6.3, there exists a function k : R→ R such that

‖Uε(t) [w0
z0 ]− Uε(t) [w1

z1 ]‖X×X 6 k(t)‖ [w0
z0 ]− [w1

z1 ] ‖H−γ×H−γ .

Theorem 6.5. Let t0 > 0 such that λ
.
= Me−ωt0 < 1

2 and define K
.
= k(t0), where k is the

continuous function given in Lemma 6.4. Then for any ν ∈ (0, 1
2 − λ) we have that

c(Aε) 6
ln NH−γ×H−γ

(
ν
K , B

X×X
1 (0)

)
ln
(

1
2(λ+ν)

) .
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Proof: Is a direct consequence of Theorem 4 of [10].

Now, using the results of Section 3.3.2 of [13], we can see that there exists a constant c > 0 such

that, for the spaces X = L2(Ω) and H−γ , we have

ek 6 ck−
γ
n ,

and therefore, taking k0 sufficiently large so that ck−
γ
n 6 ν

K , for k > k0, we have that

NH−γ×H−γ

( ν
K
,BX×X

1 (0)
)
6 22k−2,

which implies that

log NH−γ×H−γ

( ν
K
,BX×X

1 (0)
)
6 2 ln 2

( ν
cK )
−n
γ − 1

− ln (2(λ+ ν))
.

Defining g(ν) =
( ν
cK

)
−n
γ −1

− ln(2(λ+ν)) we can see that

lim
ν→0+

g(ν) = +∞ and lim
ν→( 1

2
−λ)−

g(ν) = +∞,

which means that g(ν) has a minimum ν0 in the interval
(
0, 1

2 − λ
)

and hence

c(Aε) 6 2 ln 2g(ν0),

which proves the following result:

Theorem 6.6. For any ε ∈ [0, 1] we have that

c(Aε) 6 2 ln 2g(ν0).

And as a direct consequence, we have

Proof of Theorem 1.11: The result follows noting that Φε : X
1
2 × X̃

1
2
ε −→ X×X is an isometric

isomorphism and Ãε = Φ−1
ε Aε, thus c(Ãε) = c(Aε) and taking τ0 = 2 ln 2g(ν0).

Remark 6.7. It is worthwhile to point out that is this last result, the fractal dimension must be

rightly interpreted. The fractal dimension c(Ãε) is obtained using X
1
2 ×X̃

1
2
ε as the metric base space

while c(Aε) is obtained using X ×X.
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Appendix A. Results on Functional Analysis

In this appendix we prove the basic results of functional analysis we used throughout our work.

Proof of Proposition 2.2: By Proposition 2.13 we have that for β ∈ (0, 1)

Λ−βε =
sinπβ

π

∫ ∞
0

s−β(s+ Λε)
−1ds,

and hence

‖Λ−βε ‖L(X) 6 (1 + C)
sinπβ

π

∫ ∞
0

s−β

s+ 1
ds

6 (1 + C)
sinπβ

π

[
1

1− β
+

1

β

]
,

and the cases β = 0, 1 are trivial. Iin particular, there exists a constant µ > 0 such that

(Λβε x, x) = (Λ
β
2
ε x,Λ

β
2
ε x) > µ‖x‖2X ,

for all ε ∈ [0, 1] and β ∈ [0, 1].

Proof of Proposition 2.13: Let s ∈ [0,∞). We have that

s+ Λε = s+A(I + εA)−1 = [sI + (εs+ 1)A] (I + εA)−1

= (εs+ 1)

(
s

εs+ 1
+A

)
(I + εA)−1,

thus s+ Λε is invertible and

(s+ Λε)
−1 =

1

εs+ 1
(I + εA)

(
s

εs+ 1
+A

)−1

=
ε

εs+ 1
I +

1

(εs+ 1)2

(
s

εs+ 1
+A

)−1

.

Therefore

(1 + s)‖(s+ Λε)
−1‖L(X) 6 1 + C,

for all s ∈ [0,∞) and ε ∈ [0, 1].

Proof of Proposition 2.27: By Theorem 2.14 we have that

‖Λβε (µ+ Λε)
−1x‖X 6 K‖Λε(µ+ Λε)

−1x‖βX‖(µ+ Λε)
−1x‖X 6

K(1 + C)βC1−β

(µ+ 1)1−β ‖x‖X .
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Proof of Proposition 2.22: We know that, for any given α ∈ [0, 1
2),

Λ
− 1

2
ε − Λ

− 1
2

0 =
1

π

∫ ∞
0

s−
1
2 (s+ Λε)

−1(Λ0 − Λε)(s+ Λ0)−1ds

=
1

π

∫ ∞
0

s−
1
2 Λαε (s+ Λε)

−1Λ1−α
ε (Λ−1

ε − Λ−1
0 )Λ0(s+ Λ0)−1ds,

and therefore

‖Λ−
1
2

ε − Λ
− 1

2
0 ‖L(X) 6

Cεα

π

∫ ∞
0

s−
1
2

(s+ 1)1−αds,

and the integral above is convergent for α ∈ [0, 1
2).

Remark A.1. In the general case of a positive type operator, we cannot obtain the decay rate of

ε
1
2 with the technique of the last proposition. However, when we work with specific properties of a

given operator, we may be able to obtain such rate. For instance, if A is the negative Laplacian

with Dirichlet boundary conditions, we are able to prove the previous result with α = 1
2 as follows:

let vn ∈ X an unitary eigenvector of A associated with λn, then

(Λ−1/2
ε − Λ

−1/2
0 )vn =

[
(1 + ελn)1/2

λ
1/2
n

− 1

λ
1/2
n

]
vn =

ελ
1/2
n

1 + (1 + ελn)1/2
vn.

Therefore

‖(Λ−1/2
ε − Λ

−1/2
0 )vn‖X 6 ε1/2,

and since the eigenfunctions constitute an orthonormal basis of X, we obtain the desired result.

Proof of Proposition 4.11: Let s > 0 and ε ∈ [0, 1]. If ε = 0 then

(s+ I + εA)−1 = (s+ I)−1 = (s+ 1)−1I,

and if ε ∈ (0, 1] we have

(s+ I + εA)−1 =
1

ε

(
s+ 1

ε
+A

)−1

,

which proves in both cases that (0,∞) ⊂ ρ(−(I + εA)). Also, it is now easy to see that

(s+ 1)‖(s+ I + εA)−1‖L(X) 6 C,

and this proves that I + εA is a positive type operator with constant C. For the last statement, we

know that

(I + εA)−β =
sinπβ

π

∫ ∞
0

s−β(s+ I + εA)−1ds,
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and thus

‖(I + εA)−β‖L(X) 6
C

π

∫ ∞
0

s−β

s+ 1
ds

6
C sinπβ

π

[∫ 1

0
s−βds+

∫ ∞
1

s−β−1ds

]
=
C sinπβ

π

[
1

1− β
+

1

β

]
,

which proves the result.

Proof of Proposition 5.4: We have that

(I + εA)−
1
2x− x =

1

π

∫ ∞
0

t−
1
2 (t+ I + εA)−1x · dt− 1

π

∫ ∞
0

t−
1
2 (t+ I)−1x · dt

=
1

π

∫ ∞
0

t−
1
2 [(t+ I + εA)−1 − (t+ I)−1]x · dt

= − 1

π

∫ ∞
0

εt−
1
2

t+ 1
A(t+ I + εA)−1x · dt

= − 1

π

∫ ∞
0

t−
1
2

t+ 1
A

(
t+ 1

ε
+A

)−1

x · dt

= − 1

π

∫ ∞
0

t−
1
2

t+ 1
A1− s

2

(
t+ 1

ε
+A

)−1

A
s
2x · dt,

(A.1)

and therefore, by Proposition 2.27, we have

‖(I + εA)−
1
2x− x‖X 6

1

π

∫ ∞
0

Kε
s
2

t−
1
2

(t+ 1)1+ s
2

‖A
s
2x‖Xdt 6 Cε

s
2 ‖A

s
2x‖dt.
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E-mail adress, M.C. Bortolan: matheusb@icmc.usp.br


	1. Introduction
	2. The linear problem and the uniform convergence of the linear semigroups
	2.1. Uniform sectoriality
	2.2. Fractional powers of A

	3. Local and global well posedness results
	3.1. Local well posedness result
	3.2. Global solutions

	4. Existence of attractors and uniform bounds
	4.1. Uniform estimates on the global attractors

	5. Continuity of attractors
	5.1. Upper semicontinuity of attractors
	5.2. Lower semicontinuity of attractors

	6. Fractal dimension of attractors and entropy numbers
	Appendix A. Results on Functional Analysis
	References

