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On approximation tools and decay rates for eigenvalues sequences

of certain operators on a general setting

A. Carrijo & T. Jordão ∗

The present paper brings a sweeping generalization of very new results obtained on

the spherical framework exchanging unit spheres by compact two-point homogeneous

spaces. We first prove a convenient characterization of a K-functional on this frame-

work given by the rate of approximation of mean operators. Later, we apply such

result in order to show that an abstract Hölder condition or finite order of differen-

tiability assumption on kernels generating positive integral operators implies a sharp

polynomial decay rates for eigenvalues sequences of such operators.

1 Introduction

The basic framework here refers to a compact two-point homogeneous space M of dimension

m ≥ 1. Such space is both a Riemannian m-manifold and a compact symmetric space of rank 1

for which there is a well-developed harmonic analysis structure. A very large class of problems in

approximation theory, harmonic analysis and functional analysis (as it can be seen in the present

paper) can be considered naturally on these spaces.

Two-point homogeneous spaces can be represented as the quotient L/SO where O is a fixed

point in M, L is a compact Lie group related to the identity component of the isometry group of

M and SO is the stationary subgroup of the point O. Let e be the identity of L, π : L → L/SO
the natural mapping then the pole of M, o := π(e), is invariant under all motions of SO. Each one

of these manifolds M has an invariant Riemannian metric d(·, ·) and a measure dx induced by the

normalized left Haar measure on L which is invariant under the action of L. Also, these spaces

admit essentially one invariant second order differential operator called Laplace-Beltrami operator.

We suggest [10, 5, 15, 18, 19, 24, 28] and references therein for more detailed information about

these spaces. Important properties are described bellow in a summarised way and can be found in

references above.

According to Wang [33], the spaces we are taking in account here are: the unit spheres Sm,

m = 1, 2, . . .; the real projective spaces Pm(R), m = 2, 3, . . .; the complex projective spaces Pm(C),

m = 4, 6, . . .; the quaternion projective spaces Pm(H), m = 8, 12, . . . and 16-dimensional Cayley’s

elliptic plane P16. These spaces have a very similar geometry and we shall assume here that M 6=
Pm(R). We do no have any loss assuming that because the problems of harmonic analysis on the

real projective spaces Pm(R) can be reduced to the corresponding problems on the spheres Sm

([29]), and the results we will present here already have their spherical version studied ([6, 7, 20]).

A function on M, identified in L/SO, is invariant under the left action of SO on L if, and only

if, it depends only upon the distance of its argument from the pole of M. Let θ be the distance
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of a point from the pole. One can choose a geodesic polar coordinate system (θ, u), where u is an

angular parameter, in which the radial part of ∆ can be written, up to a multiplicative constant,

as

∆θ =
1

(sinλθ)σ(sin 2λθ)ρ
d

dθ
(sinλθ)σ(sin 2λθ)ρ

d

dθ
,

in which λ = π/2l, l = max {d(x, y) : x, y ∈M}, and

Sm σ = 0 ρ = m− 1

Pm(R) σ = m− 1 ρ = 0

Pm(C) σ = m− 2 ρ = 1

Pm(H) σ = m− 4 ρ = 3

P16 σ = 8 ρ = 7

Furthermore, the change of variables x = cos 2λθ gives us

∆x = (1− x)−α(1 + x)−β
d

dx
(1− x)1+α(1 + x)1+β

d

dx
,

with α = (σ + ρ − 1)/2 = (m − 2)/2 and β = (ρ − 1)/2. We define B = −∆x and also call it

Laplace-Beltrami operator on spaces of functions defined on M.

Restricting ourselves to m ≥ 2 and 1 ≤ p ≤ ∞ we write (Lp(M), ‖ · ‖p) the usual Banach

spaces of p-integrable complex functions on M. In particular, L2(M) is the Hilbert space of all

square-integrable functions on M endowed with the inner product

〈f, g〉2 :=
1

σm

∫
M
f(x)g(x) dx, f, g ∈ L2(M),

where σ is a normalizing constant given by the volume of M.

The Laplace-Beltrami operator on M has a discrete spectrum given by real and non-negative

numbers, which are arranged in an increasing order {k(k+α+β+ 1) : k = 0, 1, . . .}. For each k the

eigenspace Hmk attached to k(k+α+β+ 1) has finite dimension dimHmk = dkm. They are mutually

orthogonal with respect to 〈·, ·〉2 and if we write {Yk,j : j = 1, 2, . . . , dkm} for an orthonormal basis

of Hmk , then {Yk,j : k = 0, 1, . . . , j = 1, 2, . . . dkm} is an orthonormal basis of L2(M). On the sphere

all those objects are the well known space of spherical harmonics in m+ 1 variables and degree k

([30, 34]).

The shifting operator on L2(M) is defined by

St(f)(x) :=
1

σmt

∫
σx
t

f(y) dσx(y), f ∈ L2(M), x ∈M,

where σxt is the sphere on M of radius t, it means: σxt := {y ∈ M : d(x, y) = t}, 0 < t < l, σmt
denotes its area (which does not depend upon x) and dσx is the area element of σxt . The shifting

operator is bounded on L2(M), namely,

‖St(f)‖2 ≤ ‖f‖2, f ∈ L2(M).

2



Additionally, the shifting operator can be seeing through its Fourier series on L2(M) (see [5]) as

St(f) =
∞∑
k=0

Q
(α,β)
k (cos t)Yk(f), f ∈ L2(M); (1.1)

where Q
(α,β)
k denotes the normalized Jacobi polynomial and Yk is the projection of L2(M) onto

Hmk , k = 0, 1, . . .. All the tools mentioned above can be found constructed and/or explored in the

following references [5, 24, 28, 29].

Within all this in mind we are able to treat of the main problem of this paper. We will deal

with integral operators defined by

K(f) =

∫
M
K(·, y)f(y) dy, (1.2)

in which the generating kernel K:M ×M → C is an element of L2(M ×M). It is easy to see that

(1.2) defines a compact operator on L2(M). Additional assumption of positivity on the operator

above implies self-adjointness of it. Then the standard spectral theorem for compact and self-

adjoint operators is applicable and we obtain a sequence of nonnegative real numbers (possibly

finite) {λn(K)} which is the eigenvalues sequence of K.

We analyse the asymptotic behavior of {λn(K)} under additional assumptions: an abstract

Hölder condition on K, given by the shifting operator, and the smoothness of the kernel K, given by

the Laplace-Beltrami operator. Results of this sort can gives us a decay rates of Fourier coefficients

of kernels having a Merce-like series representation as we will see. For a historical review of related

results on the spherical setting see [6, 20].

A converse way of related studies is given by the relation of smoothness and moduli of smooth-

ness which can be connected with what we are proposing in here via Fourier coefficients ([12]) in

the particular setting where M is the unit sphere. New results of these very last observation on the

same framework we are intended to consider (compact two-point homogeneous space) can be seen

in [5, 24, 28] and references therein.

The organization of the necessary background and results of the paper is as follows. Section 2

contains basic material about harmonic analysis in two-point homogeneous spaces and the statement

of two results of the paper. Under a Hölder condition assumption based on the shifting operator on

the kernel we obtain polynomial decay rates for the eigenvalues sequence of the integral operator.

A very new technique involving relations between the growth of Fourier coefficients and eigenvalues

sequences of the operator is employed. Section 3 is divided into two main subsections. In both we

make smoothness assumption on the kernel and techniques applied are different from the previous

section. The first subsection is regarded for finite order of differentiability and it also gives us

sharp polynomial decay rates for the eigenvalues sequence of the integral. While in the second one

we analyse the impact of infinitely many times differentiability assumption on the kernel and as

expected we get exponential decay rates for the eigenvalues sequence. Finally, in Section 4 we give

some pertinent information related to examples and optimality of the results.
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2 Kernels satisfying an abstract Hölder condition on M

Our study in this paper concerns to kernels on M×M having a Mercer-like series expansion of the

form:

K(x, y) =
∞∑
k=0

dmk∑
j=1

ak,j Yk,j(x)Yk,j(y),
∞∑
k=0

dmk∑
j=1

ak,j <∞, x, y ∈M. (2.3)

We make two basic assumptions on these kernels: the first one, called positivity, means that the

expansion coefficients are non-negative, i.e., ak,j ≥ 0; and the second one, called monotonicity

means that the expansion coefficients are monotone decreasing with respect to k, i.e., ak+1,j ≤
ak,j′ , 1 ≤ j, j′ ≤ dmk .

Schoenberg ([31]) characterized all the continuous zonal positive definite kernels on the sphere

as series expansion given by formula (2.3) with coefficients do not depending on index j and

satisfying the positivity definition above. Recently, Berg and collaborators ([4]) showed that a

similar characterization for positive definite kernels in a general setting, namely on products of

compact Gelfand pairs with locally compact groups. Therefore, assumptions made here on compact

two-point homogeneous spaces are very natural and expected in most of the applications.

Positivity assures that the operator LK is positive and has a uniquely defined square root

operator L1/2K whose kernel K1/2 has the following series expansion

K1/2(x, y) =
∞∑
k=0

dk∑
j=1

a
1/2
k,j Yk,j(x)Yk,j(y), x, y ∈M. (2.4)

Both LK and L1/2K are self-joint positive operators. Referencing to (1.2) it is easy to see that the

spherical harmonics Yk,j , j = 1, 2, . . . dmk and k = 0, 1, . . ., are all eigenvectors of the operator LK
associated to the eigenvalues ak,j , respectively. Since we have made a monotonicity assumption on

coefficients of K it gives us an eigenvalue sequence ordering that is suitable for our analysis.

The first goal in this paper is to continue the path designed by the authors in [20]. Compact

two-point homogeneous spaces are rich in their symmetrical structures and let us to explore and

utilize them. We say that a kernel K on M satisfies the (B, β)−Hölder condition if there exist a

fixed β ∈ (0, 2] and a function B in L1(M) such that

|St(K(y, ·))(x)−K(y, x)| ≤ B(y) tβ, x, y ∈M, t ∈ (0, l). (2.5)

For the second goal we need to introduce some more notation. For a positive real number r, we

write Br(f) to denote the fractional derivative of order r of a function f in L2(M), it is also called

fractional Laplace-Beltrami operator of order r. Since this notion of derivative is a generalization of

the Laplace-Beltrami operator we take advantage of notation given previously B. Exactly the same

way as it is done on spheres, for r = 1 we recover B from this definition ([5, 30]).

We define Br on M in the distributional sense, through the Laplace-Beltrami operator and its

spectrum, by

Br(f) ∼
∞∑
k=0

(k(k + α+ β + 1))r/2 Yk(f), (2.6)
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where f is a distribution on M. Then we have the Sobolev class defined

W r
p (M) := {f ∈ Lp(M) : ‖f‖p + ‖Br(f)‖p <∞} .

Here we clearly assume that Br(f) ∈ Lp(M) and endow such space with the norm ‖ · ‖W r
p

:=

‖ · ‖p + ‖Br(·)‖p. See [30] for the equivalent definition on the spherical setting and [5, 24] for details

in the context here.

Theorem bellow, which has its version already proved in the spherical setting, is an improvement

and a generalization of previously-known results (see [21, 20, 25] for details) over compacto two-

point homogeneous spaces.

Theorem 2.1. Let LK be the integral operator induced by a kernel K as in (2.3) and under

assumptions of positivity and monotonicity. If K satisfies the (B, β)-Hölder condition, then it holds

λn(LK) = O(n−1−β/m), as n→∞.

The second result is a generalization of both Theorem 2.5 in [7] and Theorem 3 in [20], so

that it will also work with Laplace-Beltrami derivatives of fractional orders on compact two-point

homogeneous spaces. It can be seen as consequence of previous theorem since in both we apply

similar techniques in order to prove it.

Corollary 2.2. Let LK be the integral operator induced by a kernel K as in (2.3) and under

assumptions of positivity, monotonicity and such that for a fixed r > 0, all Ky belong to W 2r
2 (M).

If the integral operator generated by B2r,0K is trace-class, then

λn(LK) = O(n−1−2r/m), as n→∞.

2.1 Tools: Fourier coefficients, K-functionals and moduli of smoothness

In this section we present some background material in order to prove our results. They include

realization theorem, moduli of smoothness and the associated K-functional as well. Relations be-

tween these were proved recently by Dai, Ditzian and Tikhonov on two-point homogenous spaces

and play an important role here. References are [5, 13, 32]. Our main interest is on the relation

of Fourier coefficients of a functions and the eigenvalues attached to the integral operator we are

working with.

If r is a positive real number we introduce the K-functional associated to the space W r
p . For

r > 0 and t > 0, it is given by

Kr(f, t)p := inf
{
‖f − g‖p + tr‖g‖W r

p
: g ∈W r

p (M)
}
. (2.7)

An important property involving the K-functional is the Realization Theorem for Kr(f, t)p ([13]),

which is given by the relation below. In its statement, the multiplier operator ηt depends upon a

best approximation function η ∈ C∞[0,∞) such that η = 1 in [0, 1], η = 0 in [2,∞) and η(s) ≤ 1,

s ∈ (1, 2). The operator ηt is defined by the formula

ηt(f) =

∞∑
k=1

η(tk)Yk(f), f ∈ Lp(M).
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For r > 0 and f ∈ Lp(M) Realization Theorem ([13]) assures that the K-funcional Kr(f, t)p
assumes its infimum via the operator ηt as bellow:

1‖f − ηt(f)‖p + tr ‖ηt(f)‖W r
p
� Kr(f, t)p, t > 0. (2.8)

The Fourier coefficients of a function f ∈ Lp(M) are defined by

ck,l(f) := σ−1m

∫
M
f(y)Yk,j(y) dy, j = 1, 2, . . . , dmk ; k = 0, 1, . . . ,

where {Yk,j : j = 1, 2, . . . , dmk ; k = 0, 1, . . .} is the basis of eigenfunctions of B in L2(M). In the

remainder of the section, we provide estimates for certain sums of Fourier coefficients

sk(f) :=

dmk∑
j=1

|ck,j(f)|2, k = 0, 1, . . . . (2.9)

The following lemma is proved in [14] over the spherical setting. The same proof fits into compact

two-point homogeneous spaces setting but we include it here for the sake of completeness.

Lemma 2.3. (1 ≤ p ≤ 2) If f belongs to Lp(M) and q is the conjugate exponent of p, then{ ∞∑
k=1

(dmk )(2−q)/2q [sk(f)]q/2

}1/q

≤ a(p,m) ‖f‖p,

in which a(p,m) is a positive constant depending on p and m.

Proof. Observe that for f ∈ Lp(M)

sk(f) = (sk(f))1/2 σ−1m

∫
M
f(x)

 dmk∑
j=1

ck,j Yk,j(x)

 (sk(f))−1/2 dx, k = 0, 1, . . . . (2.10)

We define

Zk :=

 dmk∑
j=1

ck,j Yk,j

 (sk(f))−1/2,

which is an element of Hmk such that

σ−1m

∫
M
Zk(x)Zk(x) dx = 1, k = 0, 1, . . . .

Additionally, {Zk}k is an orthonormal system in L2(M) and its elements can be identified to

elements of the harmonic spherical basis already defined before.

The addition formula (see [5], for example) implies

|Zk(x)| ≤ dmk , k = 0, 1, . . . ,

1A(t) � B(t) means that there exist positive constantes c1 and c2 such that c1A(t) ≤ B(t) ≤ c2A(t).
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which leads us, by formula (2.10), to the inequalities

|sk(f)| ≤ |sk(f)|1/2 σ−1m
∫
M
|f(x)| |Zk(x)| dx

≤ |sk(f)|1/2 σ−1m dmk ‖f‖1.

Consequently, |sk(f)|1/2 ≤ σ−1m dmk ‖f‖1, k = 0, 1, . . ., and the Riez-Thorin interpolation Theorem

finishes the proof.

The following theorem relates the growth of the Fourier coefficients of a function to the K-

functional defined in (2.7). Ditzian [13] proved this theorem for the special case in which r is a

positive integer (making an observation that the same proof can be slightly modified to fit for r a

real number) and the general case can be founded proved in [20]. We choose do not reproduce the

proof here because it is exactly the same one on the sphere context and can be founded in [20].

Proposition 2.4. If f belongs to Lp(M) (1 ≤ p ≤ 2) and q is the conjugate exponent of p, then

for each fixed r > 0, there exists a constant cp for which{ ∞∑
k=1

(dmk )(2−q)/2q (min{1, tk})rq [sk(f)]q/2

}1/q

≤ cpKr(f, t)p, t > 0. (2.11)

We need the following result which is a version for the compact two-point homogeneous space

of famous Marcinkiewicz’s Multiplier Theorem. The result below, gives us a sufficient condition so

that a given operator constructed via sequences (multipliers) is limited.

Theorem 2.5 (Theorem 7.1 in [3]). Let M a compact two-point homogeneous space of dimension

m and {µk}k a sequence of real numbers satisfying the following conditions:

i) supk{|µk|}k ≤M <∞,

ii) supj

{
2j(n−1)

∑2j+1

l=2j | 4j µj |
}
≤M <∞,

with n = (m+ 1)/2 if n is odd and n = (m+ 2)/2 if n is even. Then, we have the inequality∥∥∥∥∥
∞∑
k=0

µk Yk(f)

∥∥∥∥∥
p

≤ ApM ‖f‖p, f ∈ Lp(M), (2.12)

where Ap is a constant independent of f . Here 4s denotes the ordinary difference of order s, that

is, 41µk = 4µk := µk+1 − µk and 4sµk := 4s−1µk+1 −4s−1µk for s ≥ 2.

We conclude this section by bringing the shifting operator into the inequality presented in the

above theorem, for p = 2. Its derivation requires two additional equivalences described bellow.

Lemma 2.6 (Theorem 1.2 in [28]). If f belongs to Lp(M) (1 ≤ p <∞) and r is a natural number,

then it holds

K2r(f, t)2 � ω2r(f, t)2, t > 0 (2.13)

where

ωr(f, t)p := sup{‖(I − Ss)r/2(f)‖p : s ∈ (0, t]}.
and I denotes the identity operator on Lp(M).
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The second necessary equivalence in order to bring the shifting operator into the inequality in

Theorem 2.4 is proved bellow.

Theorem 2.7. For 1 < p <∞, it holds

ω2(f, t)p � ‖f − St(f)‖p, f ∈ Lp(M), t > 0. (2.14)

Proof. We first note that from the definition of the moduli of smoothness we have

‖f − St(f)‖p ≤ ω2(f, t)p, t > 0, f ∈ Lp(M).

Now, we just need to prove that there exists a constant c (depending on M) such that

ω2(f, t)p ≤ c ‖f − St(f)‖p, f ∈ Lp(M), t > 0.

Properties of the moduli of smoothness ([28, p. 870]) assure us that

ω2(f, t)p ≤ ω2(f − η2t(f), t)p + ω2(η2t(f), t)p

≤ 2‖f − η2t(f)‖p + c0 t
2‖B(η2t(f))‖p,

for some constant c0 only depending on M. Proposition 4.4 in [28] leads us to

‖B(η2t(f))‖p ≤ c1 h−2‖(I − Sh)(f)‖p, h ∈ (0, t],

also, for a constant c1 depending upon M.

In particular,

‖B(η2t(f))‖p ≤ c1 t−2‖(I − St)(f)‖p,

and then we obtain

ω2(f, t)p ≤ 2‖f − η2t(f)‖p + c0c1 ‖(I − St)(f)‖p. (2.15)

In order to finish the proof we need to verify that

‖f − η2t(f)‖p ≤ c2 ‖(I − St)(f)‖p,

for a constant c2 not depending on t and f . To prove the inequality, it suffices to show that

‖f − η2t(f)− (I + St + S2
t + S3

t )(I − η2t)(f − St(f))‖p ≤ c3 ‖f − St(f)‖p

that is, that

mk =
(1− η(2tk))

(
Q

(α,β)
k (cos t)

)4
1−Q(α,β)

k (cos t)

is a multiplier, applying the Theorem 2.5.
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For 2tk ≤ 1, since η(2tk) = 1, we have mk = 0. Now, for 2tk ≥ τ > 1, Proposition 3.3 of [28]

assures that there exists c4 > 0 such that 1−Q(α,β)
k (cos t) ≥ c4 and then |1− η(2tk)| ≤ c5. Thus,

the boundedness of the Jacobi polynomial, given by Lemma 3.2 in [2], implies

|4smk| ≤
c5
c4
4s
(
Q

(α,β)
k (cos t)

)4
≤ c5

c4
c(α, β)

ts

(kt)4α+4/2

= c6

(
1

kt

)4α+4/2−s 1

ks
,

where all the constants do not depend on t or k.

We observe that for m odd or even, we have 4α + 4/2 − s ≥ 0 and then, {(1/kt)4α+4/2−s}k is

bounded, and there exists c7 such that

|4smk| ≤ c7
1

ks
.

From the inequality above we have

sup
j

2j(s−1)
2j+1∑
k=2j

| 4s mk| ≤ sup
j

2j(s−1)
2j+1∑
k=2j

c7
1

ks

≤ sup
j

2j(s−1)
2j+1∑
k=2j

c7
1

(2j)s

= sup
j

2j(s−1) 2j c7 2−js

= c7

where the constant c7 does not depend on t and f . Therefore the sequence {mk}k fits in Marcinkiewicz

type multiplier Theorem and the proof is complete.

2.2 Proof of Theorem 2.1 and Corollary 2.2

Our goal in this section is to prove both Theorem 2.1 and Corollary 2.2. To present them we will

first derive some additional technical results as following. We remind readers that the kernels K

we are dealing with satisfy assumptions made in the begging of Section 2.

Under assumptions we have made here it follows that for each y ∈ M, the Fourier coeffi-

cients of the function Ky := K(·, y) are ck,j(K
y) = ak,j Yk,j(y), j = 1, 2, . . . , dmk and k = 0, 1, . . ..

Considering the kernel K1/2 (formula (2.4)) in a similar way we have its Fourier coefficients

ck,j(K
y
1/2) = a

1/2
k,j Yk,j(y), j = 1, 2, . . . , dmk and k = 0, 1, . . ., which implies that

∫
M
sk(K

y
1/2) dy =

dmk∑
j=1

ak,j , k = 0, 1, . . . . (2.16)
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The action of the fractional derivative (formula (2.6)) on Ky
1/2 gives us

Br(Ky
1/2) ∼

∞∑
k=0

dmk∑
j=1

a
1/2
k,j (k(k + α+ β + 1))r/2 Yk,j(y)Yk,j , y ∈M.

It follows that
∣∣∣Br(Ky

1/2)
∣∣∣2 has a convenient Fourier serie expansion from which, under the assump-

tion that Ky ∈W 2r
2 (M), we can easily verify

∥∥∥Br(Ky
1/2)

∥∥∥2
2

=

∞∑
k=0

dmk∑
j=1

ak,j (k(k + α+ β + 1))r |Yk,j(y)|2 = B2rKy(y) = B2r,0K(y, y), y ∈M.

We derive a convenient estimate based on the (B, β)-Hölder condition which will be used in the

proof of our theorem. The proof is exactly the same one on the spherical setting and can be found

in [20].

Lemma 2.8. If K satisfies the (B, β)-Hölder condition, then∫
M
‖St(Ky

1/2)−K
y
1/2‖

2
2 dy ≤ 2 ‖B‖1tβ, y ∈M, t ∈ (0, l).

We are ready to prove the main result in this section.

Proof of Theorem 2.1 Applying Theorem 2.4 for p = q = 2 and r = 2 we have

∞∑
k=1

(min{1, tk})4 sk(Kz
1/2) ≤ c2 ‖St(K

z
1/2)−K

z
1/2‖

2
2, z ∈M, t ∈ (0, l).

Integrating both sides of inequality above we reach

∞∑
k=0

(min{1, tk})4
dmk∑
j=1

ak,j ≤ c2
∫
Sm

‖St(Kz
1/2)−K

z
1/2‖

2
2 dσm(z), t ∈ (0, π).

Since K satisfies the (B, β)-Hölder condition, Lemma 2.8 asserts that

∞∑
k=0

(min{1, tk})4
dmk∑
j=1

ak,j ≤ 2 c2‖B‖1tβ, t ∈ (0, π).

For t = 1/n, n a natural number bigger than one, the above inequality became

∞∑
k=0

(min{1, k/n})4
dmk∑
j=1

ak,j ≤ C2 n
−β, n = 1, 2, . . . .

Dropping those terms with index k < n, we derive the following inequality:

∞∑
k=n

dmk∑
j=1

ak,j ≤ C2 n
−β, n = 1, 2, . . . ,

10



which implies

dmn

∞∑
k=n

ak ≤
∞∑
k=n

dmk ak ≤ C2 n
−β, n = 1, 2, . . . ,

where ak := min{ak,j : j = 1, 2, . . . , dmk }, k = 0, 1, . . ..

The equivalence dmn � nm−1 ([5, p. 405]), which is a consequence of the addition formula, as

n→∞, leads us to

nm−1
∞∑
k=n

ak ≤ C3C2 n
−β, n = 1, 2, . . . ,

for some C3 > 0, that is,
∞∑
k=n

ak ≤ C3 n
−β−m+1, n = 1, 2, . . . .

Finally, we observe that

nβ+m an = nβ+m−1
2n−1∑
k=n

an ≤ nβ+m−1
∞∑
k=n

ak ≤ C3, n = 1, 2, . . . ,

or, equivalently, ak = O(n−β−m), as n→∞. Returning to our original notation for the eigenvalues

of LK and recalling that {λn(LK)} decreases to 0, we have that an = λdm+1
n

(LK), n = 1, 2, . . .. In

particular,

λdm+1
n

(LK) = O(n−β−m), (n→∞).

Therefore, the decay in the statement of the theorem follows.

Proof of Corollary 2.2 Applying Proposition 2.4, in the particular case that p = q = 2, to the

function Kz
1/2 we have

∞∑
k=0

(min{1, tk})2rsk(Kz
1/2) ≤ cp

[
ωr(K

z
1/2, t)2

]2
, z ∈M, t ∈ (0, l).

Since Kz
1/2 ∈ W

2r
2 , Proposition 4.2 in [28] asserts the existence of a constant C1 > 0 (independent

of both Kz
1/2 and t) so that

ωr(K
z
1/2, t)2 ≤ C1 t

r ‖Br(Kz
1/2)‖2, z ∈M, t ∈ (0, l).

Hence, we have

∞∑
k=0

(min{1, tk})2r
(∫

M
sk(K

z
1/2) dz

)
≤ cpC2

1 t
2r

∫
M
‖Br(Kz

1/2)‖
2
2 dz, t ∈ (0, l).

Since B2r,0K is the kernel of a trace-class operator, the equality right above the statement of

Lemma 2.8 asserts that cpC
2
1 ‖Br(Kz

1/2)‖
2
2 is a nonnegative constant. Denoting this constant by C2,

2.16 assures that
∞∑
k=0

(min{1, tk})2r
dmk∑
j=1

ak,j ≤ C2 t
2r, t ∈ (0, l).

11



For t = 1/n, n a natural number bigger than one, the above inequality turns out

∞∑
k=0

(min{1, k/n})2r
dmk∑
j=1

ak,j ≤ C2 n
−2r, n = 1, 2, . . . .

Dropping those terms with index k < n, we derive the following inequality:

∞∑
k=n

dmk∑
j=1

ak,j ≤ C2 n
−2r, n = 1, 2, . . . ,

which implies

dmn

∞∑
k=n

ak ≤
∞∑
k=n

dmk ak ≤ C2 n
−2r, n = 1, 2, . . . ,

where ak := min{ak,j : j = 1, 2, . . . , dmk }, k = 0, 1, . . ..

The equivalence dmn � nm−1 as n→∞, leads us to

nm−1
∞∑
k=n

ak ≤ C3C2 n
−2r, n = 1, 2, . . . ,

for some C3 > 0, that is,
∞∑
k=n

ak ≤ C3 n
−2r−m+1, n = 1, 2, . . . .

We observe that

n2r+m an = n2r+m−1
2n−1∑
k=n

an ≤ n2r+m−1
∞∑
k=n

ak ≤ C3, n = 1, 2, . . . ,

or, equivalently, ak = O(n−2r−m), as n → ∞. The same way we made in the previous proof we

return to our original notation for the eigenvalues of LK and recalling that {λn(LK)} decreases to

0, we have that an = λdm+1
n

(LK), n = 1, 2, . . .. In particular,

λdm+1
n

(LK) = O(n−2r−m), (n→∞).

The proof follows.
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