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NLS-LIKE EQUATIONS IN BOUNDED DOMAINS: PARABOLIC
APPROXIMATION PROCEDURE

ALEXANDRE N. CARVALHO AND JAN W. CHOLEWA

Abstract. The article is devoted to semilinear Schrödinger equations in bounded domains.
A unified semigroup approach is applied following a concept of Trotter-Kato approximations.
Critical exponents in L2 and H1 are exhibited and global solutions are constructed for
nonlinearities satisfying even a certain critical growth condition.

1. Introduction

We study a family of initial-boundary value problems of the form{
(±
√

1− η2i− η)ut + ∆u+ f(x, u) = 0, t > 0, x ∈ Ω,

u|∂Ω
= 0, t > 0, u(0, x) = u0(x), x ∈ Ω,

(1.1)

where η ∈ [0, 1] plays a role of a parameter, Ω is a smooth bounded domain in RN and
f : Ω× C→ C is a continuous map satisfying a suitable growth condition.

The equations in (1.1) contain as the limiting problems some well known models. Namely,
η → 1 leads to a parabolic equation

ut = ∆u+ f(x, u) (1.2)

in R+ × Ω and when η → 0 one gets a semilinear Schrödinder equation

iut + ∆u+ f(x, u) = 0 (1.3)

in R+ × Ω or in R− × Ω respectively. Here note that changing u(t;x) into u(−t;x) leads
from the equation (1.3) in R−×Ω to −iut + ∆u+ f(x, u) = 0 in R+×Ω and that the latter
equation can be viewed as the limit of (1.1) with the minus sign as η → 0.

Nonlinear Schrödinger like problems have brought a lot of attention in recent years and
much progress has been achieved. See, for example, [6, 8, 13, 16, 18, 19] and references
therein, which nonetheless are merely samples of the rich literature devoted to this subject.

It can be seen that the properties of Schrödinger’s equation fall into the theory of both
parabolic and hyperbolic equations. Concerning related tools of the theory, Strichartz’s
estimates and some natural conservation laws, like energy and charge conservation properties,
are especially useful.

When Ω is a bounded domain, which situation we consider here, the essential particularity
is that Strichartz’s estimates are not applicable (see [6, Remark 2.7.3]) although, on the other
hand, they are crucial in the analysis of the Cauchy problem in the whole of RN (see [6] for
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2 A. N. CARVALHO AND J. W. CHOLEWA

an extensive results and further comments in that matter). Consequently, the analysis of
the NLS like equations in bounded domains is not so complete as in the case of Ω = RN ,
especially for nonlinearities satisfying a critical growth condition.

Note that in the profound studies [6, § 3.3, 3.4] existential results where obtained in H1
0 (Ω)

via regularization of the nonlinear term f in the case when f behaved subcritically; namely
for N > 3 the image f(H1

0 (Ω)) was contained in Lq
′
(Ω) for some q′ ∈ [2, 2N

N−2
). Consequently,

f was then well defined from H1
0 (Ω) into (H

N
2
−N
q′ (Ω))′, the latter space being an intermediate

space between (H1
0 (Ω))′ and H1

0 (Ω).
In this article we describe complementary regularization procedure, relying on regulariza-

tion of the linear main part operator, which in a natural way reveals the critical exponents.
This leads to the approximation of solutions of the Dirichlet initial-boundary value problem
for the equation (1.3) by solutions of (1.1)η∈(0,1]. Such parabolic approximation is then ad-
vantageous in the consideration of (1.3) as on the one hand one can obtain global solutions
of (1.3) under some mild assumptions on the nonlinear term and, on the other, one can even
consider some situation when f takes H1

0 (Ω) into (H1
0 (Ω))′ but the image f(H1

0 (Ω)) is not
contained in any intermediate space between (H1

0 (Ω))′ and H1
0 (Ω). Within this approach one

can thus handle nonlinearities, which behave in a critical manner (see Examples 2.3 and 2.4
v) given below, for which Theorem 2.3 can be applied).

A brief description of this work is as follows. In Section 2 below we tersely describe the
main results. Moreover, we exhibit critical exponents and give examples of some typical
nonlinearities, involving even a critically growing one, to which the results are applicable.
The results are then proved in the following two sections. Section 3 deals with approximate
problems (1.1)η∈(0,1] and Section 4 is devoted to the limit equation (1.3). Some auxiliary
results are included in the Appendix.

2. Notation and main results

We will use Lebesgue’s spaces Hs
p(Ω), s ∈ R, p ∈ [1,∞) as in [20], where Hs

p(Ω) =

(H−sp′ (Ω))′ for s < 0. Some of these spaces will involve zero trace boundary condition in which

case, following [20], we let Hs
p,{Id}(Ω) := {ϕ ∈ Hs(Ω) : ϕ|∂Ω

= 0 for s− 1
p
> 0}. When s < 0

we denote Hs
p,{Id}(Ω) := (H−sp′,{Id}(Ω))′. If p = 2 it is typical to write Hs(Ω) instead of Hs

2(Ω).

Actually, to keep the notation short, given a smooth bounded domain Ω ⊂ RN , we will omit
from now on the dependence on Ω denoting Hs

p(Ω) =: Hs
p , H

s
2(Ω) =: Hs, Hs

p,{Id}(Ω) =: Ḣs
p

and Hs
2,{Id}(Ω) =: Ḣs. We also write Lp(Ω) =: Lp.

To express our results better let us consider the negative Laplacian operator

Ap = −∆ in Lp, p ∈ (1,∞), (2.1)

with the domain D(Ap) = Ḣ2
p and let θη = Arg(η +

√
1− η2i). Then

η +
√

1− η2i = eiθη , η ∈ [0, 1]

and the first equation in (1.1) rewrites as

ut + e±iθηApu = e±iθηf(·, u), t > 0, θη ∈ [0,
π

2
]. (2.2)
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Concerning the linear main part operator in (2.2),

e±iθηAp =: A±p,η, η ∈ [0, 1], p ∈ (1,∞), (2.3)

Stone’s theorem (see [16, Theorem 1.10.8]) implies the following result in the limit case η = 0.

Proposition 2.1. A±2,0 = ±iA2 generates a C0 group of unitary operators on L2.

On the other hand, if η ∈ (0, 1], the corresponding linear semigroup will be analytic.

Proposition 2.2. Given p ∈ (1,∞) and η ∈ (0, 1] the operator A±p,η in (2.3) is a negative

generator of a C0 analytic semigroup in Lp.

Actually, for any η ∈ [0, 1], A±2,η is a maximal accretive operator with zero in the resolvent
set. This, due to [16, Theorem 1.4.3], [2, §III.4.7.3(b)] and [20, §1.15.3] (see also [15]), leads
to the following result.

Proposition 2.3. Given η ∈ [0, 1] −A±2,η is an infinitesimal generator of the semigroup of

contractions in L2. Furthermore, A±2,η has bounded imaginary powers1 and for α ∈ (0, 1) the

domains of fractional powers D((A±2,η)α) are characterized independently of η ∈ [0, 1] as the

complex interpolation spaces [L2, Ḣ2]α.

Due to Proposition 2.2, if η ∈ (0, 1] then (2.2) can be treated with the aid of the analytic
semigroup theory.

Concerning properties of a nonlinear right hand side in (2.2) we associate with f the
operator f e, where

f e(u)(x) = f(x, u(x)) a.e. in Ω (2.4)

for any measurable u : Ω → C, and consider the following hypothesis Hk
p relative to the

phase space of initial data Ḣk
p with k = 1 or k = 0 respectively.

Hypothesis Hk
p. Let k ∈ {0, 1} be given and p ∈ (1,∞). We assume that there are constants

c > 0, ε ∈ (0, 1
ρ
), γ = γ(ε) satisfying ρε ≤ γ < 1, γ ≤ 1− k

2
, such that

f e ∈ C(Hk+2ε
p , H−(2−k−2γ)

p ) (2.5)

and there also exist certain constants ζ > 0, Cζ > 0 such that for all v, w ∈ Hk+2ε
p

‖f e(v)− f e(w)‖
H
−(2−k−2γ)
p

≤ c‖v − w‖Hk+2ε
p

(
Cζ + ζ‖v‖ρ−1

Hk+2ε
p

+ ζ‖w‖ρ−1

Hk+2ε
p

)
. (2.6)

Theorem 2.1. Let k ∈ {0, 1} be given. If η ∈ (0, 1] and hypothesis Hk
p is satisfied then (2.2)

is locally well posed in Ḣk
p .

Furthermore, if u is a solution of (2.2)|η∈(0,1]
through initial condition u0 ∈ Ḣk

p defined on

a maximal interval of existence [0, τu0) and if one of the following conditions holds
(c1) hypothesis Hk

p holds with γ > ρε

(c2) hypothesis Hk
p holds with γ = ρε and arbitrarily small ζ > 0

1We remark that A±
2,η is of the class BIP (1, π2 ) for each η ∈ (0, 1].
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then u satisfies the blow up Ḣk
p alternative, that is,

either τu0 =∞ or otherwise lim sup
t→τ−u0

‖u‖Ḣk
p

=∞. (2.7)

Theorem 2.1 leads in a natural way to the consideration of critical exponents ρc(k, p), which
describe the maximal growth of the nonlinear term allowed for the local well posedness of
(2.2)η∈(0,1] in Ḣk

p with k = 1 or k = 0 respectively.

Proposition 2.4. Let k ∈ {0, 1} be given. Hypothesis Hk
p holds if f satisfies

∃c>0 ∀z1,z2∈C |f(z1)− f(z2)| ≤ c|z1 − z2|(1 + |z1|ρ−1 + |z2|ρ−1) (2.8)

with any ρ > 1 when k = 1 and N ≤ p, and with

1 < ρ ≤ 1 +
2p

N − kp
=: ρc(k, p) when k = 0 or when k = 1 and N > p. (2.9)

Furthermore, γ in hypothesis Hk
p can be chosen strictly bigger than ρε unless ρ = ρc(k, p) in

which case γ = ρε.

In Proposition 2.4 no growth restriction is actually needed in the case when k = 1 and
N < p whereas when k = 1 and 1 < p = N one can even consider the exponential growth
due to Trudinger’s inequality [1, §8.25].

Concerning the critical exponent ρc(k, p) the following version of the above proposition
holds (see [4, Lemma 3.2]).

Proposition 2.5. Let k ∈ {0, 1} be given. Hypothesis Hk
p holds with arbitrarily small ζ > 0

provided that f(z) = h(|z|) for some differentiable real map h : R→ R satisfying

lim
|s|→∞

|h′(s)|
|s|ρc(k,p)−1

= 0, where N > p. (2.10)

Note that hypothesis Hk
p is also satisfied by multiplication operators QV associated with

external potentials V , where QV is defined for any measurable function φ : Ω→ C by

QV (φ)(x) = V (x)φ(x) a.e. in Ω. (2.11)

Proposition 2.6. If V : Ω → R is a potential of the class Lr and r > N
2

, r ≥ 1 then

f e(u) = QV (u) satisfies hypothesis Hk
p with k = 1 and k = 0 respectively. Furthermore, γ in

hypothesis Hk
p can be chosen strictly bigger than ρε.

For global solvability of approximate equations we restrict our consideration to Hilbert
phase spaces as we need to rely on the a priori bounds on the solutions in L2 and in H1

respectively. This is the reason why, although local existence of solutions of approximate
equations (2.2)η∈(0,1] can be obtained in more general spaces, global existence will be limited
to the Hilbert setting.

We remark that if
Im(f(x, u)ū) = 0 a.e. in Ω, (2.12)

then, formally, the limit problem (1.1)η=0 has the charge conservation property

‖u‖L2 = ‖u0‖L2 . (2.13)
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If f can be viewed as the gradient of some suitable functional F , more precisely if

F ′ = f, where F ∈ C1(Ḣ1,R) and 〈F ′(u), v〉Ḣ−1,Ḣ1 = Re

∫
Ω

f(·, u)v̄, (2.14)

then, formally, the limit problem (1.1)η=0 has the energy conservation property

E(u) =
1

2

∫
Ω

|∇u|2 − F (u) = E(u0). (2.15)

To obtain existential results in Ḣ1 we will assume both (2.12) and (2.14). On the other
hand, working with initial conditions u0 ∈ L2 we will assume (2.12) but not (2.14). In both
situations we will use the structure condition

f(x, u)ū ≤ C(x)|u|2 +D(x)|u| for a.e. x ∈ Ω, (2.16)

with certain

C ∈ Lr, r > N

2
, r ≥ 1 and D ∈ Ls, s ≥ max{ 2N

N + 2
, 1}. (2.17)

Also in some cases we can assume either (2.16)-(2.17) or

f(x, u)ū ≤ C(x)|u|2 +D(x) for a.e. x ∈ Ω, (2.18)

with

C ∈ Lr, r > N

2
, r ≥ 1 and D ∈ L1 (2.19)

(see Lemma 3.1 and Remark 3.1).
Note that since (2.17) allows D to be of the class Ls with s < 2 then (2.16)-(2.17) do not

imply (2.18)-(2.19) in general. Also note that we neither assume that C(·) in (2.16) or (2.18)
is negative nor that the bottom spectrum of −∆− C(·)Id is positive.

Concerning approximate problems we have the following well posedness result.

Theorem 2.2. Let k ∈ {0, 1} be given. Suppose that hypothesis Hk
2 holds with γ > ρε or

that it holds with γ = ρε and arbitrarily small ζ > 0. Suppose also that
i) (2.12), (2.16)-(2.17) (alternatively (2.12), (2.18)-(2.19)) are satisfied if k = 0,
ii) (2.12), (2.14), (2.16)-(2.17) hold if k = 1.

Then, the problems (2.2)η∈(0,1] are globally well posed in Ḣk.

Sample nonlinearities can be mentioned for which the assumptions of Theorem 2.2 hold.

Example 2.1. i) Typical nonlinearities which satisfy (2.12), (2.16)-(2.17) are

f(x, u) = −a(x)|u|ρ−1u+ b(x)|u|ρ̃−1u+ V (x)u (2.20)

where ρ > ρ̃ > 1 and a, b, V are real valued functions such that a ≥ 0 and |b|
ρ
ρ−ρ̃a−

ρ̃
(ρ−ρ̃) ∈ Ls,

V ∈ Lr for some s ≥ max{ 2N
N+2

, 1}, r > N
2

, r ≥ 1. Here note that (2.16)-(2.17) hold with

C = V and D being a multiple of |b|
ρ
ρ−ρ̃a−

ρ̃
(ρ−ρ̃) as one can write b|u|ρ̃+1 = a1−θ|u|ρ̃+1−θ b

a1−θ |u|θ
with θ = ρ−ρ̃

ρ
and use Young’s inequality.

ii) If in addition 1 < ρ̃ < ρ < ρc(k, 2) and a, b ∈ L∞ then nonlinearities entering the sum in
(2.20) satisfy hypothesis Hk

2 with γ > ρε for both k = 0 and k = 1 (see Propositions 2.4, 2.6)
and in the case k = 1 they also have property (2.14) (see [6, Propositions 3.2.2 and 3.2.5]).
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Example 2.2. Some nonlocal nonlinearities satisfying (2.12), (2.16)-(2.17) can be consid-
ered; like

f(u) = −u
∣∣∣∣∫

Ω

A−1
p u

∣∣∣∣ ,
for which hypothesis Hk

p holds with k = 0 (see Section 3.3).

Example 2.3. If h : R → [0,∞) is a differentiable function satisfying (2.10) with (k, p) =
(1, 2), h(0) = 0 and if fh : C→ C is an extension of h such that

fh(z) =

{
z
|z|h(|z|), z ∈ C \ {0},
0, z = 0,

then given a nonnegative a ∈ L∞ the nonlinearity in (2.21) below,

f(x, z) = −a(x)fh(z), (x, z) ∈ Ω× C, (2.21)

satisfies (2.12), (2.14), (2.16)-(2.17), exhibits a critical growth ρ = ρc(k, p)|k=1,p=2
= N+2

N−2

(N ≥ 3) and fulfils hypothesis Hk
p |k=1,p=2

with γ = ρε and arbitrarily small ζ > 0 (see

Section 3.3.4).

Focusing on the case p = 2 we now consider the solutions of (2.2)η∈(0,1] as approximate
solutions of {

iut + ∆u+ f(x, u) = 0, t ∈ R, x ∈ Ω,

u|∂Ω
= 0, t > 0, u(0, x) = u0(x), x ∈ Ω.

(2.22)

This latter problem involves the equation (1.3) obtained by passing in (2.2) to a limit as
η → 0.

In the linear case, that is when f = 0 in (2.2), the following result holds, which in turn
comes back to the Trotter-Kato approximation theorem.

Proposition 2.7. For each η ∈ [0, 1] the resolvent set of −A±2,η contains λ ≥ 0 and the
associated resolvent operators converge in L(L2), that is

R(λ,−A±2,η)
L(L2)−→ R(λ,−A±2,0) as η → 0. (2.23)

The associated linear semigroups converge as well. Actually, given any u0 ∈ L2 and a
bounded time interval J we have, uniformly for t ∈ J ,

e−A
±
2,ηtu0

L2

−→ e−A
±
2,0tu0 as η → 0. (2.24)

In what follows we will show that such an approximation procedure also applies in a
nonlinear case. Given k ∈ {0, 1} and passing to the limit as η → 0 we will assume the
following k-condition which is satisfied in many situations as shown in Example 2.4 below.

Definition 2.1. Let k ∈ {0, 1} be given. We say that k-condition holds if

‖f e(v)‖Hk−2 ≤ g1(‖v‖Hk), v ∈ Hk (2.25)

and
‖f e(v)− f e(w)‖H−2 ≤ g2(‖v‖H1 , ‖w‖H1 , ‖v − w‖Hk−2), v, w ∈ Hk, (2.26)
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where g1 = g1(y1), g2 = g2(y1, y2, y3) are nonnegative functions such that g1 is bounded
on bounded subsets of [0,∞) and limy3→0 g(y1, y2, y3) = 0 uniformly for (y1, y2) in bounded
subsets of [0,∞)× [0,∞).

Example 2.4. i) If f satisfies (2.8) with ρ ∈ (1, N+2
N−2

) when N ≥ 3, or with any ρ > 1 when

N = 1, 2, then for θ = (ρ−1)(N−2)
4

‖f(v)− f(w)‖H−1 ≤ c̄ ‖v − w‖1−θ
H−1 ‖v − w‖θH1

(
1 + ‖v‖ρ−1

H1 + ‖w‖ρ−1
H1

)
, v, w ∈ H1, (2.27)

(see the proof of [5, Lemma 2.2]) so that k-condition in Definition 2.1 holds with k = 1.
Actually, no growth restriction is needed when k = 1 and N = 1 whereas in the case k = 1
and N = 2 the growth can even be exponential.
ii) If V is an external potential as in Proposition 2.6, then f e(u) = V u satisfies k-condition
with k = 1 (see Subsection 3.3.2).
iii) Due to i)-ii) above typical nonlinearities as in Example 2.1 satisfy k-condition with k = 1.
iv) A nonlocal nonlinearity in Example 2.2 satisfies k-condition with k = 0 (see Section 3.3.3).
v) A critically growing nonlinearity defined in (2.21) of Example 2.3 satisfies k-condition
with k = 1 (see Section 3.3.4).

We will look for a solution of (2.22) satisfying variation of constants formula as in Defini-
tion 2.2 below.

Definition 2.2. Let J be an interval of R, 0 ∈ J , k ∈ {0, 1} and f e be a map from Ḣk

into Ḣk−2. Given u0 ∈ Ḣk we say that u : J → Ḣk is a mild Ḣk solution of (2.22) on the
interval J if and only if u(0) = u0, u is weakly continuous from J into Ḣk, f e(u) is weakly
continuous from J into Ḣk−2 and

u(t) = e−iA2tu0 + i

∫ t

0

e−iA2(t−s)f e(u(s))ds, t ∈ J, (2.28)

holds in Ḣk−2.

Note that in (2.28) the nonlinear term f e(u(s)) will in general belong to a function space Ḣs

for some s < 0. Hence the linear semigroup appearing therein has to be suitably extended
from L2 to these larger spaces in which we follow the ideas of [2]. Namely, combining
Proposition 2.3 together with [2, Theorem §V.1.5.4, Theorem §V.2.1.3, Remark V.2.1.4 and
formula (V.2.2.1)] we have the following result.

Proposition 2.8. Given η ∈ [0, 1], a closed extension of −A±2,η (which we denote the same)

is an infinitesimal generator of the semigroup of contractions in Ḣσ for any σ ∈ [−2, 0] and
the resolvent set of −A±2,η in Ḣσ coincides with the one in L2.

Using the concept of parabolic approximation we then prove the existence of global solu-
tions of (2.22).

Theorem 2.3. Let k ∈ {0, 1} be given. Suppose that k-condition holds as in Definition 2.1.
Assume also that hypothesis Hk

2 holds either with γ > ρε or with γ = ρε and arbitrarily small
ζ > 0, and that
i) (2.12), (2.16)-(2.17) (alternatively (2.12), (2.18)-(2.19)) are satisfied if k = 0,
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ii) (2.12), (2.14), (2.16)-(2.17) hold if k = 1.
Then, given u0 ∈ Ḣk, (2.22) has a mild Ḣk solution u on the interval (−∞,∞) and

u ∈ C(R, Ḣs) ∩ L∞loc(R, Ḣk), s < k. (2.29)

Note that Theorem 2.3 applies with k = 1 to subcritical nonlinearities (2.20) as in Exam-
ple 2.1 ii) and with k = 0 to a sample nonlinearity in Example 2.2. On the other hand note
that Theorem 2.3 applies with k = 1 to critically growing nonlinearities as in Example 2.3
(see Example 2.4 iii)-v)).

With additional assumptions one can obtain further properties of the limit solution as in
Propositions 2.9, 2.10 below (see also Remarks 4.2, 4.3).

Proposition 2.9. If C in (2.16) or (2.18) is such that the bottom spectrum of the operator
AC = −∆− C(·)I in L2 is strictly positive then in Theorem 2.3 we will also have that

u ∈ L∞(R, Ḣk). (2.30)

Proposition 2.10. If the assumptions of Theorem 2.3 hold with k = 1 then
i) (charge conservation) the solution will satisfy the equality (2.13),
ii) (energy inequality) if, in addition,

|F (v)− F (w)| ≤ g(‖v‖H1 , ‖w‖H1 , ‖v − w‖Hs), v, w ∈ H1, (2.31)

holds for some s < 1 with a certain function g = g(y1, y2, y3) such that limy3→0 g(y1, y2, y3) =
0 uniformly for (y1, y2) in bounded subsets of [0,∞)× [0,∞) then

E(u) ≤ E(u0), (2.32)

iii) (uniqueness) the solution will even be unique if similarly as in [6, Corollary 3.3.11] one
assumes that given r > 0 there exists L(r) > 0 such that

‖f(v)− f(w)‖L2 ≤ L(r)‖v − w‖L2 whenever ‖v‖H1 ≤ r, ‖w‖H1 ≤ r. (2.33)

The above mentioned results will be proved in the following two sections.

3. Solutions of (1.1) with η ∈ (0, 1]

In this section we consider (2.2) with η strictly positive, i.e. with θη strictly less than π
2
.

3.1. Generalities concerning operators A±p,η := e±iθηAp with η ∈ (0, 1]. Given p ∈
(1,∞), η ∈ (0, 1] and Re(λ) ≤ 0 we have that λ̃ = λe±iθη ∈ ρ(Ap) because σ(Ap) consists

of strictly positive eigenvalues separated from zero. Therefore the sector Sθη = {λ̃ ∈ C :
π
2
− θη ≤ | arg(λ̃)| ≤ π, λ̃ 6= 0} is in the resolvent set of Ap and combining this with [17,

Theorem 2] we get |λ̃|‖(λ̃Id− Ap)−1‖L2(Ω) ≤Mθη for λ̃ ∈ Sθη . Hence we have

|λ|‖(λe±iθηId− Ap)−1φ‖Lp(Ω) = |λ|‖(λId−A±η,p)−1φ‖Lp(Ω) ≤Mθη , Re(λ) ≤ 0, (3.1)

which proves Proposition 2.2; in particular, A±p,η is a sectorial operator in Xp := Lp.
Given η ∈ (0, 1] the initial boundary value problem for the approximate equations (2.2)

can be thus viewed as an abstract Cauchy problem

du

dt
+A±p,ηu = f eη,± (u) , t > 0, u(0) = u0, (3.2)
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with

A±p,η = e±iθηAp and f eη,± = e±iθηf e.

By [20, Theorem 4.9.1] (see also [11]) for each η ∈ (0, 1] A±p,η possesses bounded imaginary
powers, that is,

∃ε>0 sup
s∈[−ε,ε]

‖(A±p,η)is(t)‖L(Xp) <∞, (3.3)

and the domains of fractional powers Xα
p,η,± = D((A±p,η)α) coincide with the fractional power

spaces Xα
p = D(Aαp ) associated to Ap, namely

Xα
p,η,± = [Lp, Ḣ2]α = Xα

p , α ∈ (0, 1), p ∈ (1,∞), η ∈ (0, 1]. (3.4)

Although we have assumed that Ω is a smooth domain let us remark that [20, Theo-
rem 4.9.1] requires ∂Ω to be of the class C∞. The latter can be weakened following [11],
where in the case of the second order operators it is required that ∂Ω is of the class C2.

On the other hand note that the discussion concerning boundedness of imaginary powers
can be avoided if p = 2 as in Proposition 2.3 or if one considers the interpolation scale instead
of the fractional power scale. We do not pursue this here focusing on the main aspects of
the parabolic approximation procedure, thus using fractional powers as the natural tools of
the theory.

Following [2] operators A±p,η can be considered as closed operators on the extrapolated

space X−1
p,η,± being the completion of the normed space (Lp, ‖(A±p,η)−1 · ‖Lp). We then have

X−1
p,η,± = (X1

p′,η,±)′ = (Ḣ2
p′)
′ = X−1

p ,

where p, p′ are Hölder’s conjugate exponents and X−1
p =: Yp denotes the extrapolated space of

(Xp, Ap). Also, the closed extension ofA±p,η to X−1
p,η,± (for which we use the same notation) has

the same resolvent set as A±p,η in Xp,η,±, belongs to a class of linear isomorphisms from Xp,η,±

intoX−1
p,η,± and generates a strongly continuous analytic semigroup (see [2, Theorem V.2.1.3]).

Thus, letting

Yp,η,± = X−1
p,η,± = X−1

p =: Yp,

we associate with (Yp,η,±,A±p,η) the fractional power scale {Y α
p,η,± : α > 0} and obtain by

duality argument (see [20, §1.11.3]) that

Y α
p,η,± = [(X1

p′,η,±)′, (Lp
′
)′]α = (X1−α

p′,η,±)′ = (X1−α
p′ )′ =: Y α

p , α ∈ (0, 1), η ∈ (0, 1]. (3.5)

On the other hand

Y 1
p,η,± = (A±p,η)−1(Yp,η,±) = Xp,η,±, Y 2

p,η,± = (A±η )−2(Yp,η,±) = (A±p,η)−1(Xp,η,±) = X1
p,η,±

and via (3.4)

Y 1+α
p,η,± = [Lp, Ḣ2

p ]α = Xα
p =: Y 1+α

p , α ∈ (0, 1), p ∈ (1,∞), η ∈ (0, 1). (3.6)

Consequently, for each p ∈ (1,∞), α ∈ [0, 1] we have

Y 1+α
p ↪→ H2α

p , Y α
p ←↩ H−2(1−α)

p (3.7)
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and

H2α
p (Ω) ↪→ Ls, α ∈ [0, 1], 2α− N

p
≥ −N

s
, s ≥ 1,

H−2(1−α)
p ←↩ Lσ, α ∈ [0, 1),

Np

N + 2(1− α)p
≤ σ, σ > 1.

(3.8)

3.2. Proof of Theorem 2.1. In the proof of local well posedness of (2.2)|η∈(0,1]
in Ḣk

p we

rely on the formulation of the problem as in (3.2) and on the approach developed in [3].
Hence all what needs to be shown is that, under hypothesis Hk

p the Lipschitz type condition

‖f e(v)− f e(w)‖
Y
γ+ k

2
p

≤ c‖v − w‖
Y

1+ε+ k
2

p

(
1 + ‖v‖ρ−1

Y
1+ε+ k

2
p

+ ‖w‖ρ−1

Y
1+ε+ k

2
p

)
, v, w ∈ Y 1+ε

p , (3.9)

holds for k = 1 and k = 0 respectively with certain constants c > 0, ε ∈ (0, 1
ρ
) and

γ = γ(ε) ∈ [ρε, 1), γ ≤ 1− k

2
. (3.10)

With the set up as in Section 3.1 condition (3.9) follows from (3.7) and from hypothesis
Hk
p. Then [3, Corollary 1] ensures that (2.2) is locally well posed in Ḣk

p .
When (c1) or (c2) holds we also have the blow up alternative (2.7) (see [3, 4]).
Following [3, 14] we additionally have that for γ as in (3.9)-(3.10) and for any θ ∈ [0, 1)

the solution u constructed above satisfies

u ∈ C([0, τu0), Y
1+ k

2
p ) ∩ C((0, τu0), Y

γ+ k
2

+1
p ) ∩ C1((0, τu0), Y

γ+ k
2

+θ
p ), (3.11)

that is,

u ∈ C([0, τu0), Ḣk
p ) ∩ C((0, τu0), Ḣ2γ+k

p ) ∩ C1((0, τu0), Ḣσ
p ), σ < 2γ + k. (3.12)

3.3. Sample nonlinearities. We exhibit here properties of sample nonlinearities which
appeared in Section 1.

3.3.1. Critical exponents: proofs of Propositions 2.4 and 2.5. We first prove Proposition 2.4
starting from the situation when either k = 0 or k = 1 and N > p (see (3.15)).

Using (2.8) and (3.8) we have

‖f e(v)− f e(w)‖
H
−2(1−γ− k2 )
p

≤ c′‖f e(v)− f e(w)‖
L

Np

N+2(1−γ− k2 )p

≤ c′‖c|v − w|(1 + |v|ρ−1 + |w|ρ−1)‖
L

Np

N+2(1−γ− k2 )p

≤ c′′
∫

Ω

(
|v − w|

Np

N+2(1−γ− k2 )p
(
1 + |v|

Np(ρ−1)

N+2(1−γ− k2 )p + |w|
Np(ρ−1)

N+2(1−γ− k2 )p
)
dx

)N+2(1−γ− k2 )p

Np

(3.13)

provided that Np

N+2(1−γ− k
2

)p
> 1 and 1− γ − k

2
≥ 0, which translate into the condition

1− k

2
≥ γ >

N + 2p−Np− kp
2p

=: γ̃. (3.14)
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Applying next Hölder’s inequality with exponents
N+2(1−γ− k

2
)p

N−(2ε+k)p
,
N+2(1−γ− k

2
)p

2(1−γ+ε)p
, thus assuming

N > (2ε+ k)p, (3.15)

we obtain

‖f e(v)− f e(w)‖
H
−2(1−γ− k2 )
p

≤ c̃‖v − w‖
L

Np
N−(2ε+k)p

(
1 + ‖v‖ρ−1

L
N(ρ−1)

2(1−γ+ε)

+ ‖w‖ρ−1

L
N(ρ−1)

2(1−γ+ε)

)
.

Due to (3.8), the right hand side above can be bounded by the right hand side of (2.6)

provided that 1 ≤ N(ρ−1)
2(1−γ+ε)

≤ Np
N−(2ε+k)p

, for which we need

γ :=
(2εp+ kp−N)(ρ− 1) + 2(1 + ε)p

2p
≥ γ ≥ 1 + ε− N(ρ− 1)

2
=: γ. (3.16)

Evidently γ > γ > 0 and for ρ ∈ (1, N−kp+2p
N−kp ], ε > 0 we also have γ ≥ ερ. Furthermore,

1 > γ holds if ε ∈ (0, (N−kp)(ρ−1)
2pρ

) and γ > γ̃ if ε > N(ρ−p)
2pρ

− k
2
. This ensures that the set

of admissible triples (ρ, ε, γ) is nonempty and contains (ρ, ε, γ) such that ρ ∈ (1, N−kp+2p
N−kp ],

ε ∈ (max{0, N(ρ−p)
2pρ

− k
2
}, (N−kp)(ρ−1)

2pρ
) and γ ∈ [ρε, γ] ∩ [γ, γ] ∩ (γ̃, γ] =: I(ε), γ ≤ 1− k

2
.

For admissible (ρ, ε, γ) the left hand side inequality in (3.16) imply ρ ≤ N+2p−kp−2pγ
N−2pε−kp and

hence, since γ ≥ ρε, we get ρ ≤ N+2p−kp−2pρε
N−2pε−kp , which holds if and only if ρ ≤ N−kp+2p

N−kp = ρc(k).

We remark that ρ = ρc(k) cannot be attained for any γ > ερc(k) and ρ = ρc(k) necessitates
that γ = ερc(k), in which case we have γ = ερc(k). That is, if ρ = ρc(k) then I(ε) = {ερc(k)}.

The above analysis also shows that γ = γ(ε) can be chosen less or equal than 1 − k
2

and

arbitrarily less than γ(ρ, ε) = γ(ρ, (N−kp)(ρ−1)
2pρ

) = 1. Therefore, if k = 1 then γ = γ(ε) can be

chosen less or equal 1
2

whereas if k = 0 then γ = γ(ε) can be chosen arbitrarily less than 1.

In the remaining case when k = 1 and N ≤ p we have that Hk+2ε
p ↪→ L∞. Hence after

using in (3.13) Hölder’s inequality with any conjugate exponents µ, µ′ > 1 we will have the
right hand side bounded by the right hand side of (2.6). In this latter case hypothesis Hk

p

is thus easily satisfied and any triple (ρ, ε, γ) such that ρ > 1, ε ∈ (0, 1
2ρ

] and γ ∈ [ερ, 1
2
] is

admissible triple.
Having proved Proposition 2.4 we now observe that if (2.10) is assumed then

∀ζ>0 ∃Cζ>0 ∀s∈R |h′(s)| ≤ (Cζ + ζ|s|ρc(k,p)−1). (3.17)

Consequently, under the assumptions of Proposition 2.5 we have that

∀ζ>0 ∃Cζ>0 ∀z1,z2∈C |f(z1)− f(z2)| ≤ |z1 − z2|(Cζ + ζ|z1|ρc(k,p)−1 + ζ|z2|ρc(k,p)−1). (3.18)

The proof of Proposition 2.5 follows thus the lines of the proof of Proposition 2.4.

3.3.2. External potentials: proofs of Proposition 2.6 and Remark 2.4 ii). For Proposition 2.6

we use Lemma A.3 with β = β∗(p)− 1 and β∗(p) := 1 +
(
N
2p
− N

2r

)
−

to get

‖QV (v)−QV (w)‖
H

(Np −Nr )−
p

≤ c‖V ‖Lr‖v − w‖H2α
p
,
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with α strictly less and arbitrarily close to β∗(p). Letting now γ = 1
2

+
(
N
2p
− N

2r

)
−
> 0 and

viewing 2α as a sum 1 + 2ε if β∗(p) > 1
2

or, alternatively, using the embedding H1+ε
p ↪→ H2α

p

if β∗(p) ≤ 1
2

we obtain

‖QV (v)−QV (w)‖
H
−(2−k−2γ)
p

≤ c‖v − w‖Hk+2ε
p

(3.19)

with k = 1 and ε strictly less and arbitrarily close to 1
2

+
(
N
2p
− N

2r

)
−

.

On the other hand, applying Lemma A.3 with β = β∗(p)− 1− δ we get

‖QV (v)−QV (w)‖
H

2((N2p−
N
2r )−−δ)

p

≤ c‖V ‖Lr(Ω)‖v − w‖H2α
p
,

where α is strictly less and arbitrarily close to β∗(p)− δ = 1− δ+
(
N
2p
− N

2r

)
−
> 0. Viewing

now α as ε and letting γ = 1− δ+
(
N
2p
− N

2r

)
−

we obtain (3.19) with k = 0, which completes

the proof of Proposition 2.6.
Concerning Remark 2.4 ii) we apply Lemma A.3 with p = 2, β = −1

2
∈ (−β∗(2), β∗(2)−1],

α < 1 + β = 1
2

and use interpolation inequality (see [20, §4.3.1]) to get

‖QV (v)−QV (w)‖H−1 ≤ c‖V ‖Lr(Ω)‖v − w‖H2α ≤ c̃‖v − w‖
1
2
−α

H−1‖v − w‖
1
2

+α

H1 ,

which proves k-condition for k = 1.

3.3.3. Sample nonlocal nonlinearity. For f(u) = −u
∣∣∫

Ω
A−1
p u
∣∣ we have

‖ψ
∣∣∣∣∫

Ω

A−1
p ψ

∣∣∣∣− φ ∣∣∣∣∫
Ω

A−1
p φ

∣∣∣∣ ‖Lp ≤ ‖ψ − φ‖Lp ∣∣∣∣∫
Ω

A−1
p ψ

∣∣∣∣+ ‖φ‖Lp
∣∣∣∣∫

Ω

(A−1
p ψ − A−1

p φ)

∣∣∣∣
≤ |Ω|

1
p′ ‖ψ − φ‖Lp‖A−1ψ‖Lp + |Ω|

1
p′ ‖φ‖Lp‖A−1

p (ψ − φ)‖Lp
≤ c‖ψ − φ‖Lp(‖φ‖Lp + ‖ψ‖Lp), φ, ψ ∈ Lp,

which ensures that hypothesis H0
p holds with ρ = 2 and any ε ∈ (0, 1

2
), γ ∈ (ερ, 1).

On the other hand we also have

‖ψ
∣∣∣∣∫

Ω

A−1
2 ψ

∣∣∣∣− φ ∣∣∣∣∫
Ω

A−1
2 φ

∣∣∣∣ ‖H−2 ≤ ‖ψ − φ‖H−2

∣∣∣∣∫
Ω

A−1
2 ψ

∣∣∣∣+ ‖φ‖H−2

∣∣∣∣∫
Ω

(A−1
2 ψ − A−1

2 φ)

∣∣∣∣
≤ ‖ψ − φ‖H−2 |Ω|

1
2‖A−1

2 ψ‖L2 + ‖φ‖H−2|Ω|
1
2‖A−1

2 (ψ − φ)‖L2

≤ ‖ψ − φ‖H−2 |Ω|
1
2‖ψ‖Ḣ−2 + ‖φ‖Ḣ−2 |Ω|

1
2‖ψ − φ‖Ḣ−2

≤ c‖ψ − φ‖H−2(‖ψ‖H−2 + ‖φ‖H−2),

which proves validity of k-condition with k = 0.

3.3.4. A critically growing map satisfying assumptions of Theorem 2.2 and 1-condition. We
exhibit here properties of the map fh defined in Example 2.3.

First note that condition (2.12) becomes straightforward as f(x, u)ū = −a(x)|u|h(|u|) and
a is real. Since a, h are nonnegative, (2.16)-(2.17) hold even with C = D = 0.

Next, as in [6, p. 60], we write

|z1||z2|(fh(z1)−fh(z2)) = z1|z2|(h(|z1|)−h(|z2|))+(z1(|z2|−|z1|)+|z1|(z1−z2))(h(|z2|)−h(0))
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and using (3.17) we get for any ζ > 0 and some Cζ > 0 that

|z1||z2||fh(z1)− fh(z2)| ≤ 2|z1||z2||z1 − z2|
(
Cζ + ζ|z1|ρc(1,2)−1 + ζ|z2|ρc(1,2)−1

)
, z1, z2 ∈ C.

Consequently, we have

∀ζ>0 ∃Cζ>0 ∀z1,z2∈C |f(z1)− f(z2)|
≤ c|z1 − z2|

(
Cζ + ζ|z1|ρc(1,2)−1 + ζ|z2|ρc(1,2)−1

)
,

(3.20)

where c = 2‖a‖L∞ , (k, p) = (1, 2), ρc(1, 2) = N+2
N−2

, N ≥ 3, and repeating the proof of

Proposition 2.4 we conclude that hypothesis H1
2 holds with γ = ρc(1, 2)ε and arbitrarily

small ζ > 0.
We now define H(x, s) = −a(x)

∫ s
0
h(s)ds and consider a functional

F : H1 → R, F (ψ) =

∫
Ω

H(x, |ψ(x)|), ψ ∈ H1. (3.21)

Note that such F is well defined for ψ ∈ H1 because, due to (3.17) and boundedness of a,
|H(x, s)| is bounded from above by a multiple of 1 + |s|ρc(1,2)+1 whereas H1 ↪→ Lρc(1,2)+1. As
in the proof of [6, Proposition 3.2.5 (i)] we obtain that for a.e. x ∈ Ω

1

t
|H(x, |u+ tv|)− H(x, |u|)− tRe(−a(x)fh(u)v̄)| → 0 as t→ 0+.

Hence, using dominated convergence theorem we infer that

1

t
|F (u+ tv)− F (u)− tRe

∫
Ω

(−a(x)fh(u)v̄)| → 0 as t→ 0+.

This with f as in (2.21) reads that

1

t
|F (u+ tv)− F (u)− t〈f(u), v〉Ḣ−1,Ḣ1 | → 0 as t→ 0+,

that is, F in (3.21) is Gâteaux differentiable for each u ∈ H1 and F ′ = f . Since, due to
(3.20), f ∈ C(H1, H−1) we get (2.14).

Concerning validity of k-condition with k = 1 we remark that by (3.20) |f(x, z)| is bounded

from above by a multiple of 1 + |s|ρc(1,2). Hence, recalling that H1 ↪→ L
2N
N−2 , L

2N
N+2 ↪→ H−1

and ρc(1, 2) 2N
N+2

= 2N
N−2

, we infer that f e takes H1 into H−1. In thus remain to show (2.26)

for which we use that H2 ↪→ Lr
′

and Lr ↪→ H−2 for every r > 1, r ≥ 2N
N+4

.

We fix r0 ∈ (1, 2N
N+2

) and letting q = N
2r0

, q′ = N
N−2r0

we obtain that

‖f e(v)− f e(w)‖H−2 ≤ C‖|v − w|
(
Cζ + ζ|v|

4
N−2 + ζ|w|

4
N−2

)
‖Lr0

≤ C̃‖v − w‖Lr0q′‖
(
Cζ + ζ|v|

4
N−2 + ζ|w|

4
N−2

)
‖Lr0q

≤ Ĉ‖v − w‖
H

2+N
2 −

N
r0

(
‖Cζ‖

L
N
2

+ ζ‖v‖
4

N−2

L
2N
N−2

+ ζ‖w‖
4

N−2

L
2N
N−2

)
,

where 2 + N
2
− N

r0
∈ (0, 1). Since H

2+N
2
− N
r0 is an intermediate space between spaces H−1, H1

and H1 ↪→ L
2N
N−2 we thus obtain (2.26) with k = 1.
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3.4. Proof of Theorem 2.2. In the following two lemmas we derive a priori bounds on the
solutions of (2.2)η∈(0,1] in L2 and in H1 respectively.

Lemma 3.1. The solutions of (2.2)η∈(0,1] through ‖u0‖L2 ≤ R, as long as they exist and fulfill
(2.12), (2.16)-(2.17) (or alternatively (2.12), (2.18)-(2.19)), satisfy the a priori estimate

‖u‖L2 ≤M(R, t), (3.22)

for some M(R, t) which can be chosen independent of η ∈ (0, 1].

Proof: If (2.12), (2.16)-(2.17) hold, then multiplying (2.2) by ū we obtain from the real
parts of the equation that

1

2

d

dt
‖u‖2

L2 ≤ −η‖∇u‖2
L2 + η

∫
Ω

C(x)|u|2 + η

∫
Ω

D(x)|u|, η ∈ (0, 1]. (3.23)

The integral
∫

Ω
D(x)|u| can now be bounded by

‖D‖Ls‖u‖Ls′ ≤ c‖D‖Ls(‖∇u‖2
L2 + ‖u‖2

L2)
1
2

and hence for any µ > 0 and a certain cµ > 0 we have∫
Ω

D(x)|u| ≤ µ(‖∇u‖2
L2 + ‖u‖2

L2) + cµ‖D‖2
Ls . (3.24)

Combining (A.5), (3.23) and (3.24) we obtain

1

2

d

dt
‖u‖2

L2 ≤ −η(ω(µ)− µ)‖u‖2
L2 + ηcµ‖D‖2

Ls , η ∈ (0, 1], µ ∈ (0, 1). (3.25)

Estimating the right hand side of (3.25) by |ω(µ)− µ||‖u‖2
L2 + cµ‖D‖2

L2 we get (3.22).
Alternatively, if (2.12), (2.18)-(2.19) are assumed, we obtain (3.22) from

1

2

d

dt
‖u‖2

L2 ≤ −η‖∇u‖2
L2 + η

∫
Ω

C(x)|u|2 + η

∫
Ω

D(x) ≤ −ηω0‖u‖2
L2 + η‖D‖L1

where ω0 is as in Lemma A.1. �

Lemma 3.2. The solutions of (2.2)η∈(0,1] through u0 ∈ Ḣ1, as long as they exist and fulfil
(2.12), (2.14), (2.16)-(2.17) satisfy the a priori estimate

‖u‖H1 ≤ E(u0) +K(‖u0‖L2 , t), (3.26)

for some K independent of η ∈ (0, 1].

Proof: We multiply (2.2)η∈(0,1] by −e∓iθη ūt, integrate over Ω and use (2.14) to obtain from
the real parts of the equation that

d

dt

(1

2

∫
Ω

|∇u|2 − F (u)
)

= −η‖ut‖2
L2 ≤ 0, η ∈ (0, 1].

This yields

E(u) =
1

2

∫
Ω

|∇u|2 − F (u) ≤ E(u0) (3.27)
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whereas using (2.14) and (3.24) with µ = ν
4

we have

F (u(t)) = F (0) +

∫ 1

0

d

dω
(F (ωu(t))) dω = F (0) +

∫ 1

0

〈F ′(ωu(t)), u(t)〉Ḣ−1,Ḣ1dω

= F (0) +

∫ 1

0

1

ω

(∫
Ω

(f(x, ωu(t))ωu(t)dx
)
dω

≤ F (0) +

∫ 1

0

1

ω

(∫
Ω

(C(x)|ωu(t)|2 +D(x)|ωu(t)|)dx
)
dω

≤ F (0) + (

∫ 1

0

ωdω)(

∫
Ω

C(x)|u(t)|2dx) +
ν

4
(‖∇u‖2

L2 + ‖u‖2
L2) + cν/4‖D‖2

Ls

≤ F (0) +
1

2

∫
Ω

C(x)|u(t)|2 +
ν

4
(‖∇u‖2

L2 + ‖u‖2
L2) + cν/4‖D‖2

Ls .

(3.28)

From (3.27), (3.28) we get

ν

4

∫
Ω

|∇u|2 +
1

2

(∫
Ω

(1− ν)|∇u|2 − C(x)|u|2
)
− F (0)− cν/4‖D‖2

Ls −
ν

4
‖u‖2

L2 ≤ E(u0)

and using Lemmas A.1, A.2 we obtain

ν

4

∫
Ω

|∇u|2 ≤ E(u0) + F (0) + cν/4‖D‖2
Ls +

(ν
4
− 1

2
ω(ν)

)
‖u(t)‖2

L2 (3.29)

where ν ∈ (0, 1) and ω(ν) ∈ R satisfies (A.4). The result now follows from (3.22), (3.29). �

Remark 3.1. In contrary to Lemma 3.1 the proof of Lemma 3.2 indicates that to derive H1

bound on the solutions condition (2.18) is not as suitable as (2.16).

Due to the blow up alternative (2.7) and the estimates of Lemmas 3.1, 3.2, Theorem 2.2
is thus proved.

Remark 3.2. i) Recall that we do not assume in general that C in (2.16) or (2.18) is such
that the solutions of the linear problem (3.30) in L2,{

ut = ∆u+ C(x)u, x ∈ Ω, t > 0,

u|∂Ω
= 0, t > 0, u(0, x) = u0(x), x ∈ Ω,

(3.30)

are asymptotically decaying. In particular we do note assume that ω0 in (A.1) is positive
(see [9, Corollary 2.10]).
ii) On the other hand, if one assumes that (A.1) is satisfied with ω0 > 0 then formula (3.25)
for some µ = µ0 (chosen via Lemma A.2 such that ω(µ0)− µ0 >

ω0

2
) will read

1

2

d

dt
‖u‖2

L2 ≤ −η
ω0

2
‖u‖2

L2 + ηcµ0‖D‖2
L2 , η ∈ (0, 1]. (3.31)

In particular, given η ∈ (0, 1] we will have the a priori bound of the form

‖u‖2
L2 ≤ ‖u0‖2

L2e−ηω0t +
2cµ0

ω0

‖D‖2
L2(1− e−ηω0t)

≤ ‖u0‖2
L2 +

2cµ0

ω0

‖D‖2
L2 .

(3.32)
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Furthermore, (3.29) for some ν = ν0 (chosen via Lemma A.2 such that ν0

4
− 1

2
ω(ν0) < 0)

will then imply that
ν0

4

∫
Ω

|∇u|2 ≤ E(u0) + F (0) + cν0/4‖D‖2
Ls . (3.33)

4. Solutions of (1.1) with η = 0

We obtain here solutions of the Dirichlet initial-boundary value problem for the equation
(1.3) passing to a limit in a sequence of solutions of approximate problems (1.1)η∈(0,1].

4.1. Proof and extension of Proposition 2.7. For η ∈ (0, 1] we have from (3.1) that
[0,∞) ⊂ ρ(−A±2,η). We also observe that [0,∞) ⊂ ρ(−A±2,0) because iR ⊂ ρ(A2). Using that

(λId+A±2,η)−1 = e∓θηi(λe∓θηiId+ A2)−1, (λId+A±2,0)−1 = ∓i(∓λiId+ A2)−1

and that the resolvent of the operator −A2 is analytic in the resolvent set (thus continuous
with respect to the uniform operator topology) we get (2.23). Note that the semigroups
in L2(Ω) are all of the same type, which follows from the Lumer-Phillips theorem. Thus,
applying the Trotter-Kato approximation theorem (see [16]) we get (2.24).

Recall now from Proposition 2.8 that a closed extension of −A±2,η, which we denote the

same, is an infinitesimal generator of the semigroup of contractions in Ḣσ for any σ ∈ [−2, 0]
and the resolvent set of −A±2,η in Ḣσ coincides with the one in L2(Ω).

Thus, with a similar argument as in the proof of Proposition 2.7 we obtain the following
convergence result.

Proposition 4.1. Given σ ∈ [−2, 0], the linear semigroups generated by a closed extension
of −A±2,η to Ḣσ are the semigroups of contractions and converge as η → 0+ to a semigroup

of contractions generated in Ḣσ by a closed extension of −A±2,0. Namely, given σ ∈ [−2, 0],

u0 ∈ Ḣσ and a bounded time interval J we have that

e−A
±
2,ηtu0

Ḣσ

−→ e−A
±
2,0tu0 as η → 0 uniformly for t ∈ J. (4.1)

4.2. Proof of Theorem 2.3. Suppose that k ∈ {0, 1} is given, ηn → 0 and let uηn± be the

solution of (2.2)η=ηn through u0 ∈ Ḣk as in Theorem 2.1. Rewriting (2.2) as

A−1
2 ut = −e±iθηu+ e±iθηA−1

2 f e(u),

we infer from k-condition and Lemmas 3.1, 3.2 that the sequence {uηn± } is bounded in

WT = {χ ∈ L∞((0, T ), Y
1+ k

2
2 ) : χ̇ ∈ L∞((0, T ), Y

k
2

2 )} for each T > 0. Following reg-
ularity properties of approximate solutions expressed in (3.11) and applying Arzela-Ascoli
theorem (see [12, §7.5] (also [12]) we then have, choosing a subsequence which is still denoted
the same, that

uηn± → u± in Y
k
2

2 uniformly on [0, T ] (4.2)

and

u± ∈ C([0, T ], Y
k
2

2 ). (4.3)
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Using properties of weak limits we also infer that

u± ∈ L∞((0, T ), Y
1+ k

2
2 ). (4.4)

Furthermore, u± being continuous in Y
k
2

2 and bounded in Y
1+ k

2
2 have a property that

u± are weakly continuous in Y
1+ k

2
2 (4.5)

(see [19, Lemma II.3.3]), which together with (4.4) imply that

sup
t∈(0,T )

‖u±(t)‖
Y

1+ k
2

2

<∞. (4.6)

With the aid of functions u± we now define u as

u(t) = u+(t) for t ≥ 0 and u(t) = u−(−t) for t < 0. (4.7)

We prove that u satisfies (2.28), for which it suffices to show that u± satisfy

u±(t) = e−A
±
2,0tu0 ± i

∫ t

0

e−A
±
2,0(t−s)f e(u±(s))ds, t ∈ [0, T ]. (4.8)

Note that approximate solutions uηn± satisfy variation of constants formula associated with
(3.2),

uηn± (t) = e−A
±
ηn tu0 +

∫ t

0

e−A
±
ηn (t−s)f eη,±(uηn± (s))ds (4.9)

and that, due to Corollary 4.1,

e−A
±
ηn tu0

ηn→0−→ e−A
±
0 tu0 in Y 1

2 . (4.10)

It thus suffices to ensure that∫ t

0

e−A
±
ηn (t−s)f eη,±(uηn± (s))ds

Y2→ ±i
∫ t

0

e−A
±
0 (t−s)f e(u±(s))ds, t ∈ [0, T ]. (4.11)

Using (4.2), (4.6) and k-condition we have

‖f eη,±(uηn± (s))∓ if e(u±(s))‖Y2 → 0 for s ∈ [0, τ ],

which ensures by Lebesgue’s dominated convergence theorem that

‖
∫ t

0

e−A
±
2,ηn

(t−s)(f eη,±(uηn(s))∓ if e(u±(s)))‖Y2ds

≤
∫ t

0

‖(f eη,±(uηn(s))∓ if e(u±(s)))‖Y2ds→ 0.

(4.12)

On the other hand, by Corollary 4.1 we have that

(e−A
±
2,ηn

(t−s) − e−A
±
2,0(t−s))f e(u±(s))

Y2−→ 0 for s ∈ [0, T ]

which gives ∫ t

0

‖(e−A
±
2,ηn

(t−s) − e−A
±
2,0(t−s))f e(u±(s))‖Y2ds→ 0. (4.13)
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Note that all terms under the integrals in (4.12)-(4.13) are bounded in Y
k
2

2 ↪→ Y2 uniformly
for n ∈ N and s ∈ [0, T ]. This is because the linear semigroups are the semigroups of contrac-

tions, approximate solutions uηn± and the limit function u are bounded in Y
1+ k

2
2 uniformly for

t ∈ [0, T ] and n ∈ N and f e takes bounded sets of Y
1+ k

2
2 into bounded sets of Y

k
2

2 . Condition
(4.11) is thus proved.

Due to (4.6) and k-condition {f e(u±(tk))} is a bounded sequence in Y
k
2

2 and hence weakly

converges in Y
k
2

2 . On the other hand, due to (4.3), (4.4) and k-condition, f e(u±(tk)) →
f e(u±(t0)) in Y2. Consequently, f e(u±(tk)) → f e(u±(t0)) weakly in Y

k
2

2 , that is, f e(u±) is

weakly continuous from [0, T ] into Y
k
2

2 .

Thanks to k-condition and (4.2), (4.4), e−A
±
2,0(t−s)f e(u±(s)) is a continuous function of

s ∈ [0, T ] with values in Ḣ−2, bounded in Ḣk−2. Hence, it is weakly continuous with
values in Ḣk−2 and thus measurable in Ḣk−2 (see [7, Corollary 1.4.8]). Consequently, due to
Bochner’s theorem (see [7, Corollary 1.4.14], the integral in (4.8) converges in Ḣk−2.

Remark 4.1. i) Since Y
σ+ k

2
2 with σ ∈ (0, 1) is an intermediate space between spaces Y

k
2

2 ,

Y
1+ k

2
2 then using (4.2), boundedness of {uηn± } in Y

1+ k
2

2 and interpolation inequality we get

uηn±
Y
k
2 +σ

2→ u±(t) for σ ∈ (0, 1) uniformly on [0, T ]. (4.14)

ii) From (4.3), (4.6) and interpolation inequality we have u± ∈ C([0, T ], Y
k
2

+σ

2 ) for each
σ < k.
iii) Rewriting (4.8) as u±(t) − e−A

±
2,0tu0 = ±i

∫ t
0
e−A

±
2,0(t−s)f e(u±(s))ds, t ∈ [0, T ] and using

(4.10), (4.11), (4.14), we conclude that∫ t

0

e−A
±
ηn (t−s)f eη,±(uηn± (s))ds

Y 1
2→ ±i

∫ t

0

e−A
±
0 (t−s)f e(u±(s))ds, t ∈ [0, T ]. (4.15)

4.3. Proof of Proposition 2.9. If the solutions of the linear problem (3.30) in L2(Ω) are
asymptotically decaying then, due to (3.32), (3.33) we will have in the proof of Theorem 2.3

that u± ∈ L∞((0,∞), Y
1+ k

2
2 ). This and (4.7) will then lead to (2.30).

Remark 4.2. To satisfy the assumption of Proposition 2.9 for f(x, u) = −a(x)|u|ρ−1u +
b(x)|u|ρ̃−1u + V (x)u with ρ > ρ̃ > 1 and a, b, V real valued functions such that a ≥ 0 and
V ∈ Lr(Ω) for some r > N

2
, r ≥ 1, one can follow a decomposition of the potential in [10,

p. 3528] writing
V = V1 + V2

and assuming that the bottom spectrum of −∆−V1(·)I in L2 is strictly positive. The structure

condition (2.16) will then hold with C = V1 and D equal to a multiple of |b|
ρ
ρ−ρ̃a−

ρ̃
(ρ−ρ̃) +

|b|
ρ
ρ−1a−

1
(ρ−1) as b|u|ρ̃+1 = a1−θ|u|ρ̃+1−θ b

a1−θ |u|θ with θ = ρ−ρ̃
ρ

, V2|u|2 = a1−µ|u|2−µ V
a1−µ |u|µ with

µ = ρ−1
ρ

so that Young’s inequality gives the result provided that |b|
ρ
ρ−ρ̃a−

ρ̃
(ρ−ρ̃) +|b|

ρ
ρ−1a−

1
(ρ−1) ∈

Ls for some s ≥ max{ 2N
N+2

, 1}.
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4.4. Proof of Proposition 2.10. We first prove that the solution constructed for k = 1
in the proof of Theorem 2.3 will enjoy the conservation of charge property (2.13). Indeed,

considering the approximate solutions uηn± therein, multiplying (2.2)η=ηn by uηn± , using (2.12)
and taking into account the real parts the equation, we get

1

2

d

dt
‖uηn± ‖2

L2 + ηn‖∇uηn± ‖2
L2 = ηn

∫
Ω

f(x, uηn± )uηn± .

After integration with respect to time variable we then have

‖uηn± ‖2
L2 − ‖u0‖2

L2 = 2ηn

∫ t

0

∫
Ω

f(x, uηn± )uηn± − 2ηn

∫ t

0

‖∇uηn± ‖2
L2 (4.16)

where for arbitrarily fixed positive time the right hand side of (4.16) tends to 0 as ηn → 0+

because
∫ t

0

∫
Ω
f(x, uηn± )uηn± and

∫ t
0
‖∇uηn± ‖2

L2 are bounded uniformly with respect to ηn due to
Lemmas 3.1, 3.2 and k-condition. We remark here that once uηn± is bounded in H1 uniformly
for the parameter ηn and for t in bounded time intervals, then k-condition ensures that
‖f e(uηn± )‖H−1 is bounded uniformly for ηn and t, which in turn implies such boundedness of
〈f(uηn± ), uηn± 〉Ḣ−1,Ḣ1 . Note that, due to (4.14),

uηn±
Hs

→ u± for s < 1 uniformly on [0, T ]. (4.17)

In particular, uηn± → u± uniformly on [0, T ] in L2(Ω) and passing to the limit in (4.16) we
conclude via (4.7) that

‖u‖2
L2 − ‖u0‖2

L2 = 0.

Concerning the energy E(u) = 1
2

∫
Ω
|∇u|2 − F (u) note that due (3.27) we have

E(uηn± ) =
1

2

∫
Ω

|∇uηn± |2 − F (uηn± ) ≤ E(u0). (4.18)

Now, if F in (2.14) satisfies (2.31), using (4.6), (4.17) and (2.31) we obtain that

F (uηn± )→ F (u±)

for any positive time. Combining this with boundedness of approximate solutions in H1,
weak lower semicontinuity of the norm and (4.7) we get (2.32) from (4.18).

We finally remark that if (2.33) is assumed then the uniqueness result follows by a standard
application of Gronwall’s lemma ( see [6, Corollary 3.3.11] for details).

Remark 4.3. i) Although (2.31) requires f to be subcritical, it does not necessitate additional
restrictions on the growth of typical nonlinearities as in Example 2.1. Indeed, (2.31) holds
for f(x, u) = −a(x)|u|ρ−1u+ b(x)|u|ρ̃−1u+V (x)u as in (2.20) assuming that a, b ∈ L∞(RN),
V ∈ Lr(RN) are real valued functions, r > N

2
, r ≥ 1, 1 < ρ̃ < ρ and ρ < N+2

N−2
when N ≥ 3

(see [6, Lemma 3.3.7]).
ii) On the other hand note that (2.33) does cause the growth exponent ρ to satisfy a more
restrictive condition than ρ < N+2

N−2
, that is, than the one associated in Example 2.1 ii) with

the case k = 1, p = 2, N ≥ 3.
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Appendix A. Auxiliary results

We include here some useful results, which we adapt from [9].

Lemma A.1. If C ∈ Lr with some r > N
2

and r ≥ 1 then there exists ω0 ∈ R such that∫
Ω

(|∇φ|2 − C(x)φ2) ≥ ω0‖φ‖2
L2 , φ ∈ H1. (A.1)

Proof: If r, r′ are Hölder’s conjugate exponents then N
2
− N

2r′
< 1 and for s ∈ (N

2
− N

2r′
, 1) we

have ∣∣∣∣∫
Ω

C(x)|φ|2
∣∣∣∣ ≤ ‖C‖Lr‖φ‖2

L2r′ ≤ ‖C‖Lr‖φ‖2
Hs , (A.2)

where, via [20, §4.3.1 and §2.4.2(11)], ‖φ‖Hs ≤ c‖φ‖sH1‖φ‖1−s
L2 for φ ∈ H1.

Since ‖φ‖H1 = (‖∇φ‖L2 + ‖φ‖L2)
1
2 , given ε > 0 there exists cε > 0 such that∣∣∣∣∫

Ω

C(x)|φ|2
∣∣∣∣ ≤ ε‖∇φ‖2

L2 + (cε + ε)‖φ‖2
L2 , φ ∈ H1. (A.3)

Choosing ε = 1 we get (A.1) with ω0 = −(c1 + 1). �

Lemma A.2. If C ∈ Lr, r > N
2

, r ≥ 1 and (A.1) holds for some ω0 ∈ R then there is a
continuous decreasing real valued function ω(ν) defined in the interval [0, 1) such that

lim
ν→0+

ω(ν) = ω(0) = ω0 (A.4)

and for any ν ∈ [0, 1) we have∫
Ω

(
(1− ν)|∇φ|2 − C(x)φ2

)
≥ ω(ν)

∫
Ω

φ2, φ ∈ H1. (A.5)

Proof: We write∫
Ω

(
(1− ν)|∇φ|2 − C(x)φ2

)
= (1− ν)

∫
Ω

|∇φ|2 − (1− 2ν)

∫
Ω

C(x)|φ|2 − 2ν

∫
Ω

C(x)|φ|2

and using (A.3) with ε = 1/2 to estimate the last term in the above equality we get∫
Ω

(
(1− ν)|∇φ|2 − C(x)φ2

)
≥ (1− 2ν)

∫
Ω

(
|∇φ|2 − C(x)φ2

)
− ν(2c1/2 + 1)‖φ‖2

L2 . (A.6)

From (A.6) and (A.1) we obtain (A.5) with ω(ν) = (1− 2ν)ω0 − ν(2c1/2 + 1). �

Lemma A.3. Suppose that V ∈ Lr with r > N
2

, r ≥ 1, p ∈ (1,∞) and let β be any number
from the interval I(p) = (−β∗(p′), β∗(p)− 1] ⊂ (−1, 0], where

β∗(p) := 1 +

(
N

2p
− N

2r

)
−

(A.7)

and a− = min{a, 0} denotes the negative part of a ∈ R.
Then, there is a certain interval (α0, 1+β) such that for any α ∈ (α0, 1+β), QV in (2.11)

satisfies
QV ∈ L(H2α

p , H2β
p ) and ‖QV ‖L(H2α

p ,H2β
p ) ≤ c‖V ‖Lr .
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Proof: We observe that ‖Cφ‖H2β
p

= sup‖ψ‖
H
−2β
p′

=1 |
∫

Ω
Cφψ| and estimate as follows

|
∫

Ω

Cφψ| ≤ ‖C‖Lp1‖φ‖Lp2‖ψ‖Lp3 ≤ c‖C‖Lr‖φ‖H2α
p
‖ψ‖H−2β

p′
,

where p1 = r and parameters p2, p3, α will be chosen such that

p2, p3 ∈ [r′,∞],
1

p2

+
1

p3

=
1

r′
, 0 < α < β + 1, −1 ≤ β ≤ 0 (A.8)

and

α− N

2p
≥ − N

2p2

, −β − N

2p′
≥ − N

2p3

. (A.9)

From (A.9) we have α− β − N
2
≥ − N

2r′
, which allows us to consider

α ∈ [β +
N

2r
, β + 1). (A.10)

On the other hand from (A.8), (A.10) we infer that N
2p3

= N
2r′
− N

2p2
and α = θ(N

2r
− 1) +β+ 1

for some θ ∈ (0, 1], so that (A.9) now reads

θ(
N

2r
− 1) + β + 1− N

2p
≥ − N

2p2

, −β − N

2p′
≥ N

2p2

− N

2r′
(A.11)

or, equivalently,

− N

2p2

+
N

2p
− N

2r
≥ β ≥ − N

2p2

+ θ(1− N

2r
)− 1 +

N

2p
. (A.12)

Varying p2 in [r′,∞] and θ in (0, 1] on the left hand side L(p2) of (A.12) we can achieve
no more than N

2p
− N

2r
, which is the case when p2 = ∞. On the right hand side R(p2, θ) in

(A.12) we can go down to infimum value − N
2r′
−1+ N

2p
= −1− N

2p′
+ N

2r
which will be achieved

for p2 = r′, θ = 0. Note that, by assumption, R(p2, θ) is increasing with respect to each
variable, L(p2) > R(p2, 0) and L(p2) = R(p2, 1) for every p2 ∈ [r′,∞].

Now, given β ∈ I(p), we have either L(∞) ≥ β ≥ L(r′) (that is β = L(p2) for some
p2 ∈ [r′,∞]) or L(r′) > β > R(r′, 0) (that is β = R(r′, θ) for some θ ∈ (0, 1)) so that in
either case L(p2) ≥ β > R(p2, θ) for some p2 ∈ [r′,∞], θ ∈ (0, 1). Consequently, (A.12) can
be satisfied for some p2 ∈ [r′,∞], θ ∈ (0, 1] and hence also for some p2 ∈ [r′,∞] and each
sufficiently small θ ∈ (0, 1]. This allows us to conclude that, whenever β ∈ I(p), (A.9) can
be satisfied with some p2, p3 ∈ [r′,∞] satisfying 1

p2
+ 1

p3
= 1

r′
and with any α < β + 1 close

enough to β + 1.
We remark that it is not possible to have both β 6∈ I(p) and (A.8)-(A.9) as, taking into

account that θ ∈ (0, 1], any such β will then lie outside the range of the left/right hand sides
of (A.12). �
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