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F. D. M. BEZERRA†, A. N. CARVALHO‡, J. W. CHOLEWA], AND M. J. D. NASCIMENTO?

Abstract. In this paper we consider a semilinear damped wave equation with supercrit-

ically fast growing nonlinearity using parabolic approximations governed by the fractional

powers of the wave operator.
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1. Introduction

We consider the problem of the form

(1.1)


utt + aut −∆Du = f(u), t > 0, x ∈ Ω,

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

where a > 0, Ω is a bounded smooth domain in RN , N > 3, and f ∈ C1(R) satisfies

(1.2) |f ′(s)| 6 C(1 + |s|ρ−1), s ∈ R,

for some

(1.3)
N

N − 2
< ρ <

N + 2

N − 2
,

and

(1.4) lim sup
|s|→∞

f(s)

s
< µ1

with µ1 being the first eigenvalue of the negative Dirichlet Laplacian −∆D in L2(Ω).
Semilinear wave equation have been considered by many authors; see e.g. Arrieta, Car-

valho and Hale [2], Babin and Vishik [3, 4], Chueshov, Lasiecka and Toundykov [10], Ghidaglia
and Temam [11], Khanmamedov [13], Pata and Zelik [15] and references therein.

In this paper we study (1.1) using approximation by parabolic type problems of “lower”
order. This complements in particular some earlier results in this direction by Carvalho,
Cholewa and Dlotko [7], where (1.1) was considered with a supercritical exponent (1.3) as

a limit as η ↘ 0 of a strongly damped wave equation involving term 2η(−∆D)
1
2 as in Chen

and Triggiani [8].
Recall that if X = L2(Ω) and A : D(A) ⊂ X → X is defined by

(1.5) Au = −∆Du for u ∈ D(A) = H2(Ω) ∩H1
0 (Ω),

then A is a positive self-adjoint operator and −A generates a compact analytic C0-semigroup
in X.

Denote by Xα the fractional power spaces associated to operator A; that is, Xα = D(Aα)
with the norm ‖Aα · ‖X : Xα → R+. For α > 0 define also X−α as the completion of X with

the norm ‖A−α ·‖X . Observe that with this notation X
1
2 = H1

0 (Ω) and X1 = H2(Ω)∩H1
0 (Ω).

Observe also from [1, Chapter V] that X−α = (Xα)′.
With the above set-up the problem (1.1) can be rewritten as an abstract Cauchy problem

(1.6)
d

dt
[ uv ] + Λ [ uv ] =

[
0

fe(u)−av
]
, t > 0, [ uv ]t=0 = [ u0

v0 ]
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where

Λ : D(Λ) ⊂ X
1
2 ×X → X

1
2 ×X,

Λ
[ ϕ
ψ

]
=
[

0 −I
A 0

] [ ϕ
ψ

]
for

[ ϕ
ψ

]
∈ D(Λ) = X1 ×X

1
2

(1.7)

and f e is given by

(1.8) f e(ϕ)(·) := f(ϕ(·))

for ϕ in any suitable function space which will be specified below (see Lemma 3.1).
Given Λ as in (1.7) we consider next a family of fractional powers Λα, α ∈ (0, 1). In

particular, we prove the following.

Proposition 1.1. i) For each α ∈ (0, 1) the operator Λα is a negative generator of an
analytic C0 semigroup {e−Λαt : t > 0}.
ii) The eigenvalues of −Λα converge as α↗ 1 to the corresponding eigenvalues of −Λ.
iii) The linear semigroups generated by −Λα behave continuously as α ↗ 1, that is, given
any θ ∈ (0, 1],

e−Λ
αt
[ ϕ
ψ

] X θ
2×X

θ−1
2−→ e−Λt

[ ϕ
ψ

]
as α↗ 1

uniformly for t in bounded time intervals and for
[ ϕ
ψ

]
in compact subsets of X

θ
2 ×X θ−1

2 .

Since (1.1) can be viewed in the form (1.6), due to Proposition 1.1 it is natural to consider
with (1.6) a family of problems

(1.9)
d

dt
[ u

α

vα ] + Λα [ u
α

vα ] =
[

0
fe(uα)−avα

]
, t > 0, [ u

α

vα ]t=0 = [ u0α
v0α ]

with α↗ 1.
Exploiting parabolic structure of (1.9) we prove local well posedness of (1.9) for all α < 1

close enough to 1 in a suitably large phase space of initial data containing the energy space
H1

0 (Ω)× L2(Ω) for (1.1).

Theorem 1.2. Assume (1.2)-(1.3) and fix any number s satisfying N
2

(1− 1
ρ
)− 1

ρ
< s < 1.

Then, for each α ∈ [N
2

(ρ− 1)− ρs, 1) the following hold.

i) For any [ u0α
v0α ] ∈ X s

2 ×X s−1
2 there exists a unique mild solution [ u

α

vα ] ∈ C([0, τu0α,v0α), X
s
2 ×

X
s−1

2 ) of (1.9) defined on a maximal interval of existence [0, τu0α,v0α). This solution de-

pends continuously on the initial data and satisfies a blow up alternative in X
s
2 × X

s−1
2 .

In particular, if ‖ [ u
α

vα ] ‖
X
s
2×X

s−1
2
−norm remains bounded as long as the solution exists then

τu0α,v0α =∞.
ii) The solution in part i) above is a regular solution. Namely,

(1.10) [ u
α

vα ] ∈ C((0, τu0α,v0α), X
1+α

2 ×X
α
2 ) ∩ C1((0, τu0α,v0α), X

1+σ
2 ×X

σ
2 ) for each σ < α

and [ u
α

vα ] satisfies (1.9).

iii) Actually, for any set B bounded in X
s
2 ×X s−1

2 there is a certain time τB > 0 such that
for each [ u0α

v0α ] ∈ B the solution [ u
α

vα ] through [ u0α
v0α ] in part i) exists (at least) until τB and
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given any τ ∈ (0, τB] there is a positive constant M = M(τ, B) such that

(1.11) sup
[u0α
v0α ]∈B

∥∥∥[ uα(τ)
vα(τ)

]∥∥∥
X

1+α
2 ×X

α
2
6M.

Using (1.4) and exploiting gradient structure of (1.9) we establish global well posedness
of (1.9) and obtain the existence of global attractors.

Theorem 1.3. Assume (1.2)-(1.3) and fix any number s satisfying N
2

(1 − 1
ρ
) − 1

ρ
< s < 1.

Assume also (1.4).
For all α < 1 close enough to 1 we then have the following.

i) For any [ u0α
v0α ] ∈ X

s
2 × X

s−1
2 the solution [ u

α

vα ] of (3.1) obtained in Theorem 1.2 exists
globally in time and satisfies for τ > 0 the estimate

(1.12)
∥∥∥[ uα(t)

vα(t)

]∥∥∥
X

1+α
4 ×X

−1+α
4
6 C

(
τ, [ u0α

v0α ]
)
, t > τ,

where C is a positive constant which can be chosen uniformly for [ u0α
v0α ] in bounded subsets of

X
s
2 ×X s−1

2 .
ii) The family of maps

Sα(t) [ u0α
v0α ] =

[
uα(t)
vα(t)

]
, [ u0α

v0α ] ∈ X
s
2 ×X

s−1
2 , t > 0, where [ u

α

vα ] is a solution of (3.1),

is a compact semigroup in X
s
2 ×X s−1

2 and Sα(τ)γ+(B) = ∪t>τSα(t)B is bounded in X
1+α

4 ×
X

−1+α
4 for any B bounded in X

s
2 ×X s−1

2 and for any τ > 0.
iii) There exists a global attractor Aα for {Sα(t) : t > 0} in X

s
2 ×X s−1

2 .

iv) Aα is bounded in X
1+α

2 ×X α
2 and, given any σ ∈ [s − 1, α), Aα attracts under {Sα(t) :

t > 0} bounded sets of X
s
2 ×X s−1

2 in X
1+σ

2 ×X σ
2 norm, that is, Aα is for σ ∈ [s − 1, α) a

global (X
s
2 ×X s−1

2 −X 1+σ
2 ×X σ

2 ) attractor.

We then derive some bounds for the solutions when α < 1 is close enough to 1. If α↗ 1,
[ u0α
v0α ] ∈ X 1+α

4 ×X −1+α
4 and

lim sup
α↗1

‖ [ u0α
v0α ] ‖

X
1+α

4 ×X
−1+α

4
<∞,

we show that there exists α∗ < 1 such that for all α ∈ (α∗, 1) the global solutions [ u
α

vα ] of
(3.1) through [ u0α

v0α ] are defined as in Theorem 1.3 and satisfy

sup
t>0

sup
α∈(α∗,1)

∥∥∥[ uα(t)
vα(t)

]∥∥∥
X

1+α
4 ×X

−1+α
4

<∞

(see Lemma 4.3). This enables us to obtain solutions of (1.6) with initial data in the “limit”

space X
1
2
lim ×Xlim, where

(1.13) X
1
2
lim = ∩06α<1X

1+α
4 , Xlim = ∩06α<1X

−1+α
4

are normed, respectively, by

(1.14) ‖ · ‖
X

1
2
lim

= lim
α↗1
‖ · ‖

X
1+α

4
and ‖ · ‖Xlim

= lim
α↗1
‖ · ‖

X
−1+α

4
.
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Note that the energy space X
1
2 ×X for (1.1) is contained in X

1
2
lim ×Xlim and that the latter

space is contained in X
s
2 ×X s−1

2 for every s < 1 (see Lemma 4.1).

Definition 1.4. Given [ u0
v0 ] ∈ X × X− 1

2 we say that [ uv ] is a global mild solution of (1.6)

provided that [ uv ] ∈ C([0,∞), X ×X− 1
2 ), f e(u) ∈ C([0,∞), X−

1
2 ) and [ uv ] satisfies for t > 0

the integral equation [
u(t)
v(t)

]
= e−Λt [ u0

v0 ] +

∫ t

0

e−Λ(t−s) [ 0
fe(u(s))−av(s)

]
ds.

Theorem 1.5. Assume (1.2)-(1.3) and (1.4).

Given any [ u0
v0 ] ∈ X

1
2
lim×Xlim there then exists a global mild solution [ uv ] of (1.6) which on

each time interval [0, T ] and for any ζ ∈ [−1, 1) is the uniform limit in X
1+ζ

4 ×X −1+ζ
4 of a

certain sequence {[ uαnvαn ]}, where αn ↗ 1 and [ u
αn

vαn ] is a solution of (3.1) through [ u0αn
v0αn

] = [ u0
v0 ]

as in Theorem 1.3.

For the solutions constructed via limiting procedure as in Theorem 1.5 we prove the
existence of an absorbing set.

Theorem 1.6. Assume (1.2)-(1.3) and (1.4).

There then exists a ball B0 in X
1
2
lim × Xlim such that, given any bounded subset B of

X
1
2
lim × Xlim, a global mild solution [ uv ] of (1.6) through [ u0

v0 ] ∈ B obtained via limiting
procedure in Theorem 1.5 satisfies[

u(t)
v(t)

]
∈ B0 for all t > tB,

where tB is independent of [ u0
v0 ] ∈ B.

We finally exhibit the existence of an attractor A1 for (1.1) in the sense of Theorem 5.5

which, in particular, is a compact set in X
1+ζ

4 ×X −1+ζ
4 for any ζ ∈ [−1, 1). Furthermore, we

show that the attractors Aα for (3.1) as in Theorem 1.3 has the property that

(1.15) sup
α∈[α0,1)

sup
[u0α
v0α ]∈Aα

‖ [ u0α
v0α ] ‖

X
1+α

4 ×X
−1+α

4
6 R,

for some constants α0 ∈ (0, 1) and R > 0. We then obtain upper semicontinuity of the
dynamics proving that

(1.16) lim
α↗1

d
X

1+ζ
4 ×X

−1+ζ
4

(Aα,A1) = 0 for each ζ ∈ [−1, 1)

(see Theorem 5.8), where d
X

1+ζ
4 ×X

−1+ζ
4

is the Hausdorff semidistance of sets as in (5.23).

The following Section 2 is devoted to abstract linear wave operator, its fractional powers,
associated extrapolated fractional power scale and to the proof Proposition 1.1.

In Section 3 we construct a family of approximate solutions for (1.1) proving Theorems 1.2
and 1.3.

In Section 4, following the limiting procedure, we show the existence of global mild solu-
tions to (1.6) and prove Theorem 1.5.
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Section 5 is devoted to a long time behavior of mild solutions to (1.6). In particular, we
prove therein Theorem 1.6 and exhibit properties of an attractor A1 for (1.6). We also show
that the family of attractors behave upper semicontinuously as α ↗ 1 proving (1.15) and
(1.16).

Acknowledgments

The authors wish to express their gratitude to an anonymous referee whose comments
have improved considerably the final version of the paper.

2. Analysis of linear wave operator

In this section we proceed with the analysis of the operator Λ which was specified in (1.5).

2.1. Fractional powers and associated linear semigroups.

Lemma 2.1. If A and Λ are as in (1.5) and in (1.7) respectively then we have all the
following.
i) 0 ∈ ρ(Λ) and

Λ−1 =

[
0 A−1

−I 0

]
.

ii) The adjoint Λ∗ of Λ is given by

Λ∗ =

[
0 I
−A 0

]
= −Λ.

iii) Operator iΛ is self-adjoint and Λ is the infinitesimal generator of a C0-group {eΛt : t > 0}
of unitary operators in X

1
2 ×X.

iv) Fractional powers Λα can be defined for α ∈ (0, 1) through

(2.1) Λ−α =
sin πα

π

∫ ∞
0

λ−α(λI + Λ)−1dλ.

v) For each α ∈ (0, 1) the operator Λα is a negative generator of an analytic C0-semigroup
{e−Λαt : t > 0}.
vi) Given any 0 < α < 1 we have that

Λ−α =

 cos πα
2
A−

α
2 sin πα

2
A

−1−α
2

− sin πα
2
A

1−α
2 cos πα

2
A−

α
2


and

(2.2) Λα =

 cos πα
2
A

α
2 − sin πα

2
A

−1+α
2

sin πα
2
A

1+α
2 cos πα

2
A

α
2

 .
vii) For each α ∈ (0, 1] the spectrum of −Λα is a point spectrum consisting of eigenvalues

(2.3) λ±α,n = e±i
π(2−α)

2 (µn)
α
2 , n ∈ N,
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where {µn}n∈N denotes the ordered sequence of eigenvalues of A including their multiplicity.

viii) Λ−α converges to Λ−1 in Ls(X
1
2 ×X) as α↗ 1.

ix) For each
[ ϕ
ψ

]
∈ X1 ×X 1

2

Λα
[ ϕ
ψ

]
→ Λ

[ ϕ
ψ

]
in X

1
2 ×X as α↗ 1.

Proof: Part i) is a consequence of (1.5) and (1.7).
Part iii) comes froms ii) and Stone’s theorem (see Pazy [17, Theorem 10.8]).
Parts iv) and v) follows from [14, Theorems 1, 2].
Concerning part vi) note that given λ ∈ C we have

λI + Λ =
[
λI −I
A λI

]
and

(λI + Λ)−1 =

 λ(λ2I + A)−1 (λ2I + A)−1

−A(λ2I + A)−1 λ(λ2I + A)−1

 for all λ ∈ ρ(−Λ).

Due to (2.1) for any 0 < α < 1 we get

Λ−α =

 cos πα
2
A−

α
2 sin πα

2
A

−1−α
2

− sin πα
2
A

1−α
2 cos πα

2
A−

α
2


which leads to (2.2).

Concerning vii) observe that λ ∈ C is an eigenvalue of −Λα if and only if there exists a
nontrivial solution of 

− cos
πα

2
A

α
2ϕ+ sin

πα

2
A

−1+α
2 ψ = λϕ

− sin
πα

2
A

1+α
2 ϕ− cos

πα

2
A

α
2ψ = λψ

which in turn holds if and only if

λ2 + 2λ cos
πα

2
A

α
2 + Aα = (λ− ei

π(2−α)
2 A

α
2 )(λ− e−i

π(2−α)
2 A

α
2 )

is not injective. The eigenvalues λ of −Λα are thus solutions of

(λ− ei
π(2−α)

2 µ
α
2
n )(λ− e−i

π(2−α)
2 µ

α
2
n ) = 0,

that is, λ±α,n are as in (2.3).
Part viii) follows from [1, Theorem III.4.6.2].

To prove part ix) we fix
[ ϕ
ψ

]
∈ X1 ×X 1

2 and observe that

cos
πα

2
A

α
2ϕ

X
1
2→ 0 and cos

πα

2
A

α
2ψ

X→ 0 as α↗ 1

because on the one hand cos
πα

2
→ 0 and, on the other, due to viii),

A
1
2A

α
2ϕ = A−

1−α
2 A1ϕ

X→ A1ϕ and A
α
2ψ = A−

1−α
2 A

1
2ψ

X→ A
1
2ϕ as α↗ 1.
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In a similar manner, using that sin
πα

2
→ 1 as α↗ 1 and that, due to viii),

A
1+α

2 ϕ = A
−1+α

2 A1ϕ
X→ Aφ and A

−1+α
2 A

1
2ψ

X→ A
1
2ψ

we get

sin
πα

2
A

1+α
2 ϕ

X→ Aφ and sin
πα

2
A

−1+α
2 ψ

X
1
2→ ψ as α↗ 1.

Hence we get cos πα
2
A

α
2 − sin πα

2
A

−1+α
2

sin πα
2
A

1+α
2 cos πα

2
A

α
2

[ϕ
ψ

]
X

1
2×X→

[
0 −I
A 0

] [
φ
ϕ

]
for each

[
ϕ
ψ

]
∈ X1 ×X

1
2 ,

which gives the result. �

2.2. Convergence of linear semigroups: proof of Proposition 1.1. Proposition 1.1
follows from the analysis of the wave operator carried out in Lemma 2.1. Namely, part i) is
contained in Lemma 2.1 v). Part iii) follows from (2.3). Finally part ii) is a consequence of
Lemma 2.1 ix) and [17, Chapter 3, Theorem 4.5]. �

We include below Figure 1 which reflects, in particular, the loss of a “good” sectoriality
property as α↗ 1.

Re(λ)

Im(λ)

rei
π(2−α)

2

re−i
π(2−α)

2

Eigenvalues of −ΛEigenvalues of −Λα
α↗ 1

α↗ 1

Figure 1. Note that eigenvalues of −Λα lie on the edges {re±i
π(2−α)

2 : r > 0} of a

sector of angle π(2−α)
2 which approaches the half-plane {λ ∈ C : Reλ > 0} as α→ 1

2.3. Associated extrapolated fractional power scale.

Lemma 2.2. The extrapolation space of X
1
2 ×X generated by Λ coincides with X ×X− 1

2 .
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Proof: Using Lemma 2.1 i) we have that∥∥Λ−1
[ ϕ
ψ

]∥∥
X

1
2×X

=
∥∥∥[ A−1ψ

−ϕ

]∥∥∥
X

1
2×X

=
∥∥[ ϕ

ψ

]∥∥
X×X− 1

2
for any

[ ϕ
ψ

]
∈ X

1
2 ×X

and taking the completion we get the result (see [5, Lemma 2] for a similar argument). �

Lemma 2.3. Let α ∈ (0, 1] be fixed and let {Eθ(α), θ ∈ [−1,∞)} be the extrapolated frac-

tional power scale of order 1 generated by (X
1
2 ×X,Λα).

Then

(2.4) Eθ(α) = X
1+αθ

2 ×X
αθ
2 for each θ ∈ [−1, 1].

Proof: Consider first α = 1. Due to Lemma 2.1 and Lumer-Phillips theorem (see [17])
Λ is a maximal accretive operator with zero in the resolvent set. Hence Λ is of the class
BIP (1, π

2
) (see [1, §III.4.7.3]) and its fractional power spaces can be characterized with the

aid of complex interpolation. Using this and repeating the proof of [5, Theorem 2] (see also
[5, Remark 2]) we get

(2.5) Eσ(1) = X
1+σ

2 ×X
σ
2 for each σ ∈ [−1, 1],

which proves (2.4) for α = 1.
In particular, given σ ∈ [−1, 0] we have from [1, Theorem V.1.4.12] that Eσ(1) =

(E−σ(1))′, or equivalently,

(2.6) X
1+σ

2 ×X
σ
2 = (D(Λ−σ))′ = (X

1−σ
2 ×X−

σ
2 )′ for σ ∈ [−1, 0].

Now for α ∈ (0, 1) we have, raising power to power, that

(2.7) D((Λα)θ) = D(Λαθ) for any θ ∈ (0, 1).

Using (2.7) and (2.5) with σ = αθ we get

Eθ(α) = X
1+αθ

2 ×X
αθ
2 for each θ ∈ (0, 1].

Finally, if α ∈ (0, 1) and θ ∈ [−1, 0) then due to [1, Theorem V.1.4.12] and (2.6) we obtain
using (2.7) and (2.6) with σ = αθ that

Eθ(α) = (E−θ(α))′ = (D(Λ−αθ))′ = (X
1−αθ

2 ×X−
αθ
2 )′ = X

1+αθ
2 ×X

αθ
2 ,

which completes the proof. �

3. Solutions of perturbed problems and their properties

In this section we consider a Cauchy problem

(3.1)
d

dt
[ u

α

vα ] + Λα [ u
α

vα ] = F ([ u
α

vα ]), t > 0, [ u
α

vα ]t=0 = [ u0α
v0α ]

with Λα as in Lemma 2.1 and with F defined by

(3.2) F
([ ϕ

ψ

])
:=
[

0
fe(ϕ)−aψ

]
for
[ ϕ
ψ

]
in any suitable function space which will be specified in Lemma 3.2 below.
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3.1. Action of nonlinear right hand side in extrapolated fractional power scale.
To obtain local well posedness of (3.1) we will use the analytic semigroup approach and a
concept of the extrapolated fractional power scale developed in [2, Chapter V]. The following
two lemmas will be useful in this.

Lemma 3.1. Assume (1.2)-(1.3).
If N

2
(1− 1

ρ
)− 1

ρ
< s 6 N

2
(1− 1

ρ
) then σ = N

2
(ρ− 1)− ρs ∈ [0, 1) and f e in (1.8) satisfies

(3.3) ‖f e(ϕ)‖
X−σ

2
6 c(1 + ‖ϕ‖ρ

X
s
2
) for each ϕ ∈ X

s
2

and

(3.4) ‖f e(ϕ1)−f e(ϕ2)‖
X−σ

2
6 c‖ϕ1−ϕ2‖X s

2
(1+‖ϕ1‖ρ−1

X
s
2

+‖ϕ2‖ρ−1

X
s
2

) for each ϕ1, ϕ2 ∈ X
s
2 ,

where c is a certain positive constant.

Proof: Due to (1.3) we have that 0 < N
2

(1− 1
ρ
)− 1

ρ
< 1 < N

2
(1− 1

ρ
).

If s ∈ (N
2

(1− 1
ρ
)− 1

ρ
, N

2
(1− 1

ρ
)] then s = N

2
(1− 1

ρ
)− σ

ρ
for a certain σ ∈ [0, 1). Observe that

σ = N
2

(ρ− 1)− ρs and define p = 2N
N+2σ

. For such parameters X
s
2 ↪→ Lpρ(Ω), Lp(Ω) ↪→ X−

σ
2

and

‖f e(ϕ)‖
X−σ

2
6 ‖C(1 + |ϕ|ρ)‖Lp(Ω) 6 C(|Ω|

1
p + ‖ϕ‖ρLpρ(Ω)) 6 c(1 + ‖ϕ‖ρ

X
s
2
), ϕ ∈ X

s
2 ,

which proves (3.3).
In a similar manner we get (3.4). �

Lemma 3.2. Assume (1.2)-(1.3) and let Eθ(α) (with θ ∈ [−1, 1] and α ∈ (0, 1]) be as in
(2.4).

If N
2

(1 − 1
ρ
) − 1

ρ
< s 6 N

2
(1 − 1

ρ
) then for any α ∈ [s − 1 + N

2
(ρ − 1) − ρs, 1) satisfying

N
2

(ρ − 1) − ρs < α there exist θ1 =
−N

2
(ρ−1)+ρs

α
∈ [−1, 0) and θ2 = s−1

α
∈ (θ1, 1) such that

θ2 − θ1 < 1 and for F in (3.2) we have∥∥F ([ ϕψ ])∥∥Eθ1 (α)
6 c(1 +

∥∥[ ϕ
ψ

]∥∥ρ
Eθ2 (α)

),
[ ϕ
ψ

]
∈ Eθ2(α)

and∥∥F ([ ϕ1

ψ1

])
− F

([ ϕ2

ψ2

])∥∥
Eθ1 (α)

6 c
∥∥[ ϕ1

ψ1

]
−
[ ϕ2

ψ2

]∥∥
Eθ2 (α)

(1 +
∥∥[ ϕ1

ψ1

]∥∥ρ−1

Eθ2 (α)
+
∥∥[ ϕ2

ψ2

]∥∥ρ−1

Eθ2 (α)
),
[ ϕ1

ψ1

]
,
[ ϕ2

ψ2

]
∈ Eθ2(α).

Proof: Recall that due to (1.3) we have 0 < N
2

(1 − 1
ρ
) − 1

ρ
< 1 < N

2
(1 − 1

ρ
). Recall

also that N
2

(ρ − 1) − ρs ∈ [0, 1) whenever s ∈ (N
2

(1 − 1
ρ
) − 1

ρ
, N

2
(1 − 1

ρ
)]. Furthermore, if

s ∈ (N
2

(1 − 1
ρ
) − 1

ρ
, N

2
(1 − 1

ρ
)] and N

2
(ρ − 1) − ρs < α ∈ [s − 1 + N

2
(ρ − 1) − ρs, 1) then

−1 <
−N

2
(ρ−1)+ρs

α
6 0 and 0 < s−1

α
− −

N
2

(ρ−1)+ρs

α
< 1.

We now apply (3.3) with σ = N
2

(ρ−1)−ρs = −αθ1 and s = 1+αθ2 where θ1 =
−N

2
(ρ−1)+ρs

α

and θ2 = s−1
α

to get

‖f e(ϕ)‖
X
αθ1

2
6 c(1 + ‖ϕ‖ρ

X
1+αθ2

2

) for each ϕ ∈ X
1+αθ2

2
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and then, due to (2.4),∥∥F ([ ϕψ ])∥∥Eθ1 (α)
6 c(1 +

∥∥[ ϕ
ψ

]∥∥ρ
Eθ2 (α)

),
[ ϕ
ψ

]
∈ Eθ2(α).

Applying then (3.4) with σ = N
2

(ρ−1)−ρs = −αθ1 and s = 1+αθ2 where θ1 =
−N

2
(ρ−1)+ρs

α

and θ2 = s−1
α

, and proceeding in a similar way as above, we get the result. �

3.2. Local well posedness of (3.1): proof of Theorem 1.2. Fix any number s satisfying
N
2

(1− 1
ρ
)− 1

ρ
< s < 1. Observe that, due to Lemma 3.2, F is Lipschitz continuous on bounded

sets from Eθ2(α) into Eθ1(α) where θ1 =
−N

2
(ρ−1)+ρs

α
and θ2 = s−1

α
. Observe also that the

analytic semigroup approach of [12] applies for the extension to extrapolated spaces of the
semigroup {e−Λαt : t > 0} obtained in part v) of Lemma 2.1. Hence we get the result in part
i) and, in addition, the solution satisfies

[ u
α

vα ] ∈ C((0, τu0α,v0α), X
1+α(θ1(s)+1)

2 ×X
α(θ1(s)+1)

2 ) ∩ C1((0, τu0α,v0α), X
1+σ

2 ×X
σ
2 )

for each σ < α(θ1 + 1).
To prove part ii) we now restart the solution at arbitrarily small positive time t0 ∈

(0, τu0α,v0α), that is, with the initial data [ u0α
v0α ] =

[
uα(t0)
vα(t0)

]
∈ X

s1
2 × X

s1−1
2 where s1 =

1 + α(θ1(s1) + 1). Hence we get

[ u
α

vα ] ∈ C((0, τu0α,v0α), X
1+α(θ1(s1)+1)

2 ×X
α(θ1(s1)+1)

2 ) ∩ C1((0, τu0α,v0α), X
1+σ

2 ×X
σ
2 )

for each σ < α(θ1(s1) + 1).
Note that repeating this step by step we obtain for j = 1, . . . , k that

[ u
α

vα ] ∈ C((0, τu0α,v0α), X
1+α(θ1(sj)+1)

2 ×X
α(θ1(sj)+1)

2 ) ∩ C1((0, τu0α,v0α), X
1+σ

2 ×X
σ
2 )

for each σ < α(θ1(sj) + 1).
Now observe that sj+1 = 1 +α(θ1(s1) + 1) is an increasing sequence which needs to exceed

s∗ := N
2

(1− 1
ρ
) as otherwise it would be bounded and its limit would satisfy a false relation.

The above ensures that in a final number of steps the solution enters X
s∗
2 × X

s∗−1
2 in

which case, due to Lemma 3.2, F is Lipschitz continuous on bounded sets from Eθ2(s∗)(α)
into Eθ1(s∗)(α) where θ1(s∗) = 0, that is, 1 + α(θ1(s∗) + 1) = 1 + α. Using this we get

[ u
α

vα ] ∈ C((t0, τu0α,v0α), X
1+α

2 ×X
α
2 ) ∩ C1((t0, τu0α,v0α), X

1+σ
2 ×X

σ
2 )

for each σ < α and since t0 can be chosen arbitrarily small we obtain (1.10).
Concerning part iii) we recall from [6, Theorem 5] that the regularizing properties of the

local solution exhibited in the proof of part ii) above are actually uniform on bounded sets.
Hence we get (1.11). �
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3.3. Lyapunov functionals associated with perturbed problems. Local solution to
(3.1) in Theorem 1.2 satisfies (see (1.10)

(3.5)

{
uαt + cos πα

2
A

α
2 uα − sin πα

2
A

−1+α
2 vα = 0,

vαt + sin πα
2
A

1+α
2 uα + cos πα

2
A

α
2 vα + avα = f(uα).

From the first equation we obtain that sin πα
2
vα = A

1−α
2

(
uαt + cos πα

2
A

α
2 uα
)

which leads to

(3.6) sin
πα

2
vαt = A

1−α
2

(
uαtt + cos

πα

2
A

α
2 uαt

)
.

Substituting (3.6) to the second equation in (3.5), after some calculations we get

(3.7) A
1−α

2 uαtt + 2 cos
πα

2
A

1
2uαt + A

1+α
2 uα + aA

1−α
2 uαt + a cos

πα

2
A

1
2uα = sin

πα

2
f(uα).

Multiplying the above equation by ut and integrating, we have that function Pα(uα, uαt )),
where

(3.8) Pα(uα, uαt ) =
1

2
‖uαt ‖2

X
1−α

4
+

1

2
‖uα‖2

X
1+α

4
+
a

2
cos

πα

2
‖uα‖2

X
1
4
− sin

πα

2

∫
Ω

∫ uα

0

f(s)dsdx

satisfies the differential equation

(3.9)
d

dt
(Pα(uα, uαt )) = −2 cos

πα

2
‖uαt ‖2

X
1
4
− a‖uαt ‖2

X
1−α

4
.

Since uαt = sin πα
2
A

−1+α
2 vα − cos πα

2
A

α
2 uα (see (3.5)), what was said above leads to the con-

sideration of a functional Lα,

Lα ([ wz ]) =
1

2
‖w‖2

X
1+α

4
+

1

2
‖ sin

πα

2
A

−1+α
2 z − cos

πα

2
A

α
2w‖2

X
1−α

4

+
a

2
cos

πα

2
‖w‖2

X
1
4
− sin

πα

2

∫
Ω

∫ w

0

f(s)dsdx

=
1

2
‖w‖2

X
1+α

4
+

1

2
‖ sin

πα

2
A

−1+α
4 z − cos

πα

2
A

1+α
4 w‖2

X

+
a

2
cos

πα

2
‖w‖2

X
1
4
− sin

πα

2

∫
Ω

∫ w

0

f(s)dsdx,

(3.10)

defined on the domain

D(Lα) = {[ wz ] ∈ X
1+α

4 ×X
−1+α

4 :

∫ w

0

f(s)ds ∈ L1(Ω)}.

Remark 3.3. i) Observe that D(Lα) = X
1+α

4 ×X −1+α
4 provided that α is close enough to 1.

Actually, there is a positive constant c0 such that for all α close enough to 1 we have

(3.11) Lα ([ wz ]) 6 c0(1 + ‖[ wz ]‖ρ+1

X
1+α

4 ×X
−1+α

4
), [ wz ] ∈ X

1+α
4 ×X

−1+α
4 .

ii) In particular, if s ∈
(
N
2

(1 − 1
ρ
) − 1

ρ
, 1
)

then, due to (1.10), Lα
([

uα(t)
vα(t)

])
is well defined

for all α ∈ [N
2

(ρ − 1) − ρs, 1) and t ∈ (0, τu0α,v0α) along each solution [ u
α

vα ] through [ u0α
v0α ] ∈

X
s
2 ×X s−1

2 from Theorem 1.2.
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iii) Actually, for positive times and as long as the solutions exist we have

Pα(uα, uαt ) = Lα
([

uα(t)
vα(t)

])
and hence

(3.12)
d

dt
(Pα(uα, uαt )) =

d

dt

(
Lα
([

uα(t)
vα(t)

]))
= −2 cos

πα

2
‖uαt ‖2

X
1
4
− a‖uαt ‖2

X
1−α

4
6 0.

We now prove that the functional is bounded from below as stated in the following lemma.

Lemma 3.4. Assume (1.2)-(1.3) and (1.4).
There are positive constants c1, c2 such that for all α < 1 close enough to 1 we have that
Lα in (3.10) satisfies the estimate

(3.13) Lα ([ wz ]) > c1 ‖[ wz ]‖
X

1+α
4 ×X

−1+α
4
− c2 for any [ wz ] ∈ X

1+α
4 ×X

−1+α
4 .

Proof: For µ < µ1 close enough to µ1 we get from (1.4)

Lα ([ wz ]) >
1

2
‖w‖2

X
1+α

4
+

1

2
‖ sin

πα

2
A

−1+α
4 z − cos

πα

2
A

1+α
4 w‖2

X − cµ −
µ

2
‖w‖2

X ,

where due to Poincaré’s inequality we have that

−µ
2
‖w‖2

X > −
1

2
µ
− 1+α

2
1 µ‖w‖2

X
1+α

4
.

For fixed ε ∈ (0, 1) we also have

‖ sin
πα

2
A

−1+α
4 z − cos

πα

2
A

1+α
4 w‖2

X > | sin
πα

2
‖z‖

X
−1+α

4
− cos

πα

2
‖w‖

X
1+α

4
|2

> (1− ε) sin2 πα

2
‖z‖2

X
−1+α

4
+ (1− 1

ε
) cos2 πα

2
‖w‖2

X
1+α

4
,

because

−2 sin
πα

2
‖z‖

X
−1+α

4
cos

πα

2
‖w‖

X
1+α

4
> −ε sin2 πα

2
‖z‖2

X
−1+α

4
− 1

ε
cos2 πα

2
‖w‖2

X
1+α

4
.

Consequently we get

Lα ([ wz ]) >

(
1

2
− 1

2
µ
− 1+α

2
1 µ− 1− ε

ε
cos2 πα

2

)
‖w‖2

X
1+α

4
+ (1− ε) sin2 πα

2
‖z‖2

X
−1+α

4
− cµ.

Since µ−1
1 µ < 1, given ν ∈ (µ−1

1 µ, 1) there exists α1 < 1 such that for all α ∈ (α1, 1)

µ
− 1+α

2
1 µ < ν,

1− ν
4

>
1− ε
ε

cos2 πα

2
and sin

πα

2
>

1

4
.

For ε, ν fixed as above and for any α ∈ (α1, 1) we thus have

Lα ([ wz ]) >
1

4
(1− ν)‖w‖2

X
1+α

4
+

1− ε
4
‖z‖2

X
−1+α

4
− cµ,

which gives the result. �
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Remark 3.5. Since (3.7) rewrites for A = Aα as

uαtt + 2 cos
πα

2
A

1
2uαt + Auα + auαt + a cos

πα

2
A

1
2uα = sin

πα

2
A−

1−α
2α f(uα),

this latter equation can be viewed as an approximation of (1.1) (see [8] and [5, 6] for the
extensive studies of the strongly damped wave equations).

3.4. Global well posedness and global attractors for (3.1): proof of Theorem 1.3.

Due to part iii) of Theorem 1.2 if B is bounded in X
s
2 ×X s−1

2 there is a certain time τB > 0
such that for each [ u0α

v0α ] ∈ B the solution [ u
α

vα ] through [ u0α
v0α ] exists until τB and (1.11) holds.

Recalling Remark 3.3 i)-ii) and using (1.11) and (3.11) we get that for each α < 1 close
enough to 1 a constant cα > 0 exists such that

Lα
( [

uα(τ)
vα(τ)

] )
6 cα

∥∥∥[ uα(τ)
vα(τ)

]∥∥∥
X

1+α
2 ×X

α
2
6 cαM(τ, B).

On the other hand, we have from (3.12) that

Lα
( [

uα(t)
vα(t)

] )
6 Lα

( [
uα(τ)
vα(τ)

] )
, τ 6 t < τu0α,v0α ,

whereas from (3.13) we obtain that

c1

∥∥∥[ uα(t)
vα(t)

]∥∥∥
X

1+α
4 ×X

−1+α
4
6 Lα

( [
uα(τ)
vα(τ)

] )
+ c2, τ 6 t < τu0α,v0α .(3.14)

Since

(3.15) X
1+α

4 ×X
−1+α

4 ↪→ X
s
2 ×X

s−1
2 for all α ∈ (2s− 1, 1),

we now conclude all results of part i).
Part ii) follows from part i) and from compactness of the embedding (3.15).
Concerning part iii) we first note that the set of equilibria of (3.1) is bounded. Indeed,

the first coordinate of equilibrium satisfies

A
1+α

2 u+ a cos
πα

2
A

1
2u = sin

πα

2
f(u)

(see (3.7)) which, after multiplying by u and using (1.4) gives the bound of u in X
1+α

4 . Using
this bound in the equation for equilibria which comes from (3.5), that is in

cos
πα

2
A

α
2 u− sin

πα

2
A

−1+α
2 v = 0,

we obtain the bound on the second coordinate of equilibrium, v, in X
−1+α

4 .
Using boundedness of equilibria, the properties of the semigroup in part ii) and using that
Lα is a Lyapunov functional we get the existence of a global attractor as stated in part iii).

Concerning part iv) note that since Aα is invariant it is bounded in X
1+α

2 ×X α
2 because of

part iii) of Theorem 1.2. Actually, due to Theorem 1.2 iii), Sα(t) is compact at any positive

time t from X
s
2 ×X s−1

2 into any space in which X
1+α

2 ×X α
2 is compactly embedded. Hence,

given any σ ∈ (s − 1, α) and using [9, Corollary 4.3] we get that Aα is actually a global

(X
s
2 ×X s−1

2 −X 1+σ
2 ×X σ

2 ) attractor. �
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4. Existence of global mild solutions to (1.6)

In this section, we will show that as α↗ 1 the solutions of (3.1) suitably converge along
subsequences to global mild solutions of (1.6).

4.1. Limit spaces. We now analyze briefly the spaces defined in (1.13)-(1.14) .

Lemma 4.1. If

X
±1+1

4
lim := ∩06α<1X

±1+α
4

then we have the following.

i) For each w ∈ X
±1+1

4
lim

(4.1) lim inf
α↗1

‖w‖
X

±1+α
4

= lim sup
α↗1

‖w‖
X

±1+α
4
.

In particular, for each u ∈ X
±1+1

4
lim there exists limα↗1 ‖w‖

X
±1+α

4
.

ii) Expressions
lim
α↗1
‖w‖

X
±1+α

4
and sup

α∈(0,1)

‖w‖
X

±1+α
4
,

define equivalent norms in X
±1+1

4
lim .

iii) X
±1+1

4
lim with the norm limα↗1 ‖w‖

X
±1+α

4
is a Hilbert space.

iv) X
±1+1

4 is embedded in X
±1+1

4
lim and

‖w‖
X

±1+1
4

= lim
α↗1
‖w‖

X
±1+α

4
for each u ∈ ‖w‖

X
±1+1

4
.

v) X
±1+1

4
lim is compactly embedded into X

±1+α
4 for every α < 1.

Proof: We prove the result for plus sign. For the minus sign the proof is similar.
We start from a straightforward inequality

lim inf
α↗1

‖w‖
X

1+α
4
6 lim sup

α↗1
‖w‖

X
1+α

4
6 sup

α∈(0,1)

‖w‖
X

1+α
4
, u ∈ X

1
2
lim.

Now, if 0 < β < α < 1 and w ∈ X
1
2
lim is such that ‖w‖X = 1 then using Fourier series (see

[18, Lemma 3.27]) we have

(4.2) ‖w‖
X

1+β
4
6 ‖w‖

1+β
1+α

X
1+α

4
‖w‖

α−β
1+α

X = ‖w‖
1+β
1+α

X
1+α

4
.

From this we get

‖w‖
X

1+β
4
6 (lim inf

α↗1
‖w‖

X
1+α

4
)

1+β
2

and, consequently,
lim sup
β↗1

‖w‖
X

1+β
4
6 lim inf

α↗1
‖w‖

X
1+α

4
.

This proves that (4.1) holds for all w ∈ X
1
2
lim with ‖w‖X = 1, which in turn implies that (4.1)

holds for all w ∈ X
1
2
lim. Hence we get part i).
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Using next first inequality in (4.2) and Poincaré’s inequality for any w ∈ X
1
2
lim we have

‖w‖
X

1+β
4
6 µ

−α−β
4

1 ‖w‖
X

1+α
4

and thus

‖w‖
X

1+β
4
6 µ

− 1−β
4

1 lim
α↗1
‖w‖

X
1+α

4
.

Consequently, we obtain that supβ∈(0,1) ‖w‖X 1+β
4

is bounded by a multiple of limα↗1 ‖w‖
X

1+α
4

,

which completes the proof of part ii).

Concerning part iii) we first observe that if w, z ∈ X
1
2
lim then, given any α < 1 and

w, z ∈ X 1+α
4 , since X

1+α
4 is a Hilbert space, we have

(4.3) ‖w + z‖2

X
1+α

4
+ ‖w − z‖2

X
1+α

4
= 2‖w‖2

X
1+α

4
+ 2‖z‖2

X
1+α

4
.

Passing to the limit as α↗ 1 we get from (4.3) that

‖w + z‖2

X
1
2
lim

+ ‖w − z‖2

X
1
2
lim

= 2‖w‖2

X
1
2
lim

+ 2‖z‖2

X
1
2
lim

.

Therefore, X
1
2
lim with the norm limα↗1 ‖w‖

X
±1+α

4
is a pre-Hilbert space (see [20]). Using the

equivalent norm supα∈(0,1) ‖w‖X 1+α
4

we observe that the space is complete, which proves part

iii).

Note that, due to [1, Theorem III.4.6.2], for any w ∈ X 1
2 we get

lim
α↗1
‖A

1+α
4 w‖X = lim

α↗1
‖A

α−1
4 A

1
2w‖X = ‖A

1
2w‖X

which gives the result of part iv).

Finally, part v) follows using supremum norm in X
1
2
lim and compactness of the scale. �

Remark 4.2. Observe from [1, (2.11.4), p. 36] that if 0 < α < 1 then

(X,X1)α,1 ⊂ Xα ⊂ (X,X1)α,∞

whereas, due to [19, Theorem 1.3.3],

X
1
2 ⊂ (X,X1) 1

2
,∞ = (X1, X) 1

2
,∞ ⊂ (X1, X)β,1 = (X,X1)1−β,1 ⊂ X1−β for all β ∈ (

1

2
, 1) .

This leads to the inclusions

X
1
2 ⊂ (X,X1) 1

2
,∞ ⊂ X

1
2
lim

which in turn indicate that X
1
2  X

1
2
lim.
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4.2. Estimate for solutions of (3.1) as α↗ 1. We now obtain estimate for the solutions

of (3.1) uniformly for initial data in bounded subsets of X
1
2
lim ×Xlim.

Lemma 4.3. Assume (1.2)-(1.3) and (1.4).

There then exists α∗ < 1 and given B bounded in X
1
2
lim × Xlim there also exists M =

M(B) > 0 such that for any α ∈ (α∗, 1) and any [ wz ] ∈ B there is a global solution [ u
α

vα ] of
(3.1) through [ u0α

v0α ] = [ wz ] as in Theorem 1.3 and

sup
t>0

∥∥∥[ uα(t)
vα(t)

]∥∥∥
X

1+α
4 ×X

−1+α
4
6M.

Proof: Observe that B ⊂ D(Lα). Hence, for any α < 1 close enough to 1, Theorem 1.3

applies with s = (1+α)
2

, so in addition the solution [ u
α

vα ] of (3.1) through [ u0α
v0α ] = [ wz ] satisfies

(3.14) with τ = 0. Hence we get

(4.4) ‖ [ u
α

vα ] ‖
X

1+α
4 ×X

−1+α
4
6 c (1 + Lα([ wz ]))

for some positive constant c which does not depend on α, t and [ wz ] ∈ B. Since B is bounded

in X
1
2
lim ×Xlim, we have that there is a positive constant cB independent of α ∈ [−1, 1) and

such that

‖ [ wz ] ‖
X

1+α
4 ×X

−1+α
4
6 cB for all [ wz ] ∈ B.

Hence Lα([ wz ]) is bounded from above by a constant independent of [ wz ] ∈ B and of α close
enough to 1 (see (3.11) in Remark 3.3)), which together with (4.4) gives the result. �

Corollary 4.4. Assume (1.2)-(1.3) and (1.4).
There is a certain α∗ ∈ (0, 1) such that if αn ↗ 1 and {[ wnzn ]} is a sequence of elements

[ wnzn ] ∈ X 1+αn
4 ×X −1+αn

4 satisfying

sup
n∈N
‖ [ wnzn ] ‖

X
1+αn

4 ×X
−1+αn

4
6 r

then a global solution [ u
αn

vαn ] of (3.1) through [ u0αn
v0αn

] = [ wnzn ] as in Theorem 1.3 exists for all n
large enough and

sup
{n∈N: αn>α∗}

sup
t>0

∥∥∥[ uαn (t)
vαn (t)

]∥∥∥
X

1+αn
4 ×X

−1+αn
4
6M(r).

Proof: Following the proof of Lemma 4.3 we get (4.4) with [ wz ] replaced now by [ wnzn ] where,
by assumption and (3.11), Lα([ wnzn ]) is bounded from above uniformly for n. �

4.3. Limiting procedure: proof of Theorem 1.5. Theorem 1.5 is a consequence of the
following result.

Theorem 4.5. Assume (1.2)-(1.3) and (1.4).
If r > 0, αn ↗ 1, a sequence {[ wnzn ]} of elements satisfying ‖ [ wnzn ] ‖

X
1+αn

4 ×X
−1+αn

4
< r

is convergent for some ζ ∈ (−1, 1) in X
1+ζ

4 × X −1+ζ
4 to [ u0

v0 ] ∈ X
1
2
lim × Xlim and if [ u

αn

vαn ] is
a solution of (3.1) through [ u0αn

v0αn
] = [ wnzn ] as in Theorem 1.3, then there is a subsequence
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uαnk
vαnk

]}
of {[ uαnvαn ]} and there exists a bounded function [ uv ] : [0,∞) → X

1
2
lim × Xlim such

that, given any ζ ∈ [−1, 1),

(4.5) sup
t∈[0,T ]

∥∥∥[ uαnk (t)

vαnk (t)

]
−
[
u(t)
v(t)

]∥∥∥
X

1+ζ
4 ×X

−1+ζ
4
→ 0 for every T > 0

and [ uv ] is a global weak solution of (1.6) as in Definition 1.4

Proof: By assumption on {[ wnzn ]} we infer from Corollary 4.4 that

(4.6) sup
t>0

sup
n>n0

∥∥∥[ uαn (t)
vαn (t)

]∥∥∥
X

1+αn
4 ×X

−1+αn
4
6M

for some positive constant M . Using (4.6) and (1.2)-(1.3) we then infer from (3.5) that

sup
t>0

sup
n>n0

∥∥∥[ uαnt (t)

vαnt (t)

]∥∥∥
X×X− 1

2
< M̃,

where M̃ is a multiple of 1 + Mρ. Hence Arzelá-Ascoli Theorem applies (see [16, Section

7.10]) and there is a subsequence {αnk} and a function [ uv ] ∈ C([0,∞), X ×X− 1
2 ) such that

(4.7) sup
t∈[0,T ]

∥∥∥[ uαnk (t)

vαnk (t)

]
−
[
u(t)
v(t)

]∥∥∥
X×X− 1

2
→ 0 for every T > 0.

As a consequence of (4.6) and embedding properties of the scale a certain M̂ > 0 exists
such that for any ζ ∈ [−1, 1) there is a number nζ ∈ N such that

(4.8) sup
t>0

sup
nk>nζ

∥∥∥[ uαnk (t)

vαnk (t)

]∥∥∥
X

1+ζ
4 ×X

−1+ζ
4
6 M̂.

Combining (4.7)-(4.8) and using interpolation inequality we infer that, given any ζ ∈
[−1, 1),

(4.9) sup
t∈[0,T ]

∥∥∥[ uαnk (t)

vαnk (t)

]
−
[
u(t)
v(t)

]∥∥∥
X

1+ζ
4 ×X

−1+ζ
4
→ 0 for every T > 0.

Using now (4.7) Lemma 3.1 with s = 1+ζ
2
∈ (N

2
(1 − 1

ρ
) − 1

ρ
, N

2
(1 − 1

ρ
)) we have for σ =

N
2

(ρ− 1)− ρs ∈ [0, 1) that

sup
t∈[0,T ]

∥∥∥F ([ uαnk (t)

vαnk (t)

])
− F

([
u(t)
v(t)

])∥∥∥
X

1−σ
2 ×X−σ

2
→ 0 whenever T > 0.

Observe that due to (4.8)-(4.9) we get∥∥∥[ u(t)
v(t)

]∥∥∥
X

1+ζ
4 ×X

−1+ζ
4
6 M̂ for every t > 0 and ζ ∈ [−1, 1)

with constant M̂ independent on t and ζ. Hence, on the one hand, we have∥∥∥[ u(t)
v(t)

]∥∥∥
X

1
2
lim×Xlim

6 M̂ for every t > 0,

and, on the other, since [ uv ] ∈ C([0,∞), X ×X− 1
2 ) and the scale is compactly embedded,

[ uv ] ∈ C([0,∞), X
1+ζ

4 ×X
−1+ζ

4 ) for every ζ ∈ [−1, 1).
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Consequently, using once more (4.7) Lemma 3.1 with s = 1+ζ
2
∈ (N

2
(1− 1

ρ
)− 1

ρ
, N

2
(1− 1

ρ
)) we

have for σ = N
2

(ρ− 1)− ρs ∈ [0, 1) that

(4.10) F ([ uv ]) ∈ C([0,∞), X
1−σ

2 ×X−
σ
2 ).

It remains to prove that [ uv ] satisfies[
u(t)
v(t)

]
= e−Λt [ u0

v0 ] +

∫ t

0

e−Λ(t−s)F
([

u(s)
v(s)

])
ds, t > 0.

This follows using that functions
[
uαnk
vαnk

]
satisfy[

uαnk (t)

vαnk (t)

]
= e−Λ

αnk t
[ wnk
znk

]
+

∫ t

0

e−Λ
αnk (t−s)F

([
uαnk (s)

vαnk (s)

])
ds, t > 0

and using (4.9)-(4.10) together with convergence of the linear semigroups in Proposition 1.1
iii) (see [7], where a similar argument was used). �

5. Long time behavior of global mild solutions of (1.6)

This section is devoted to asymptotic behavior of global mild solutions of (1.6) obtained
via limiting procedure exhibited in the proof of Theorem 4.5.

5.1. Additional estimates for the solutions of (3.1). Using Lα as in (3.10) we will
consider here the functional

(5.1) Lδ,α ([ wz ]) = Lα ([ wz ]) + Vδ,α ([ wz ]) ,

where

Vδ,α ([ wz ]) = δ

∫
Ω

A
1−α

2 w(sin
πα

2
A

−1+α
2 z − cos

πα

2
A

α
2w)dx.(5.2)

Remark 5.1. i) Note that for all α < 1 close enough to 1 the real map Lδ,α is well defined

in X
1+α

4 ×X −1+α
4 (see Remark 3.3) and

Vδ,α ([ wz ]) = δ sin
πα

2

∫
Ω

A
1−α

4 wA
−1+α

4 zdx− δ cos
πα

2
‖A

1
4w‖2

X .

ii) Thus note that due to (3.11) and Lemma 3.4 there are constants c0, c1, c2 > 0 and δ0 < 1
such that for all δ ∈ (0, δ0) and any α < 1 close enough to 1 we have

(5.3) Lδ,α ([ wz ]) 6 c0(1 + ‖[ wz ]‖ρ+1

X
1+α

4 ×X
−1+α

4
), [ wz ] ∈ X

1+α
4 ×X

−1+α
4 ,

and

(5.4) Lδ,α ([ wz ]) >
1

2
c1 ‖[ wz ]‖

X
1+α

4 ×X
−1+α

4
− c2, [ wz ] ∈ X

1+α
4 ×X

−1+α
4 .

Lemma 5.2. Assume (1.2)-(1.3) and (1.4).
There then exists R0 > 0 such that for each α < 1 close enough to 1, and given any

r > 0 and any [ u0
v0 ] in a ball Blim(r) of radius r around zero in X

1
2
lim×Xlim, we have that the

solution [ u
α

vα ] of (3.1) through [ u0α
v0α ] = [ u0

v0 ] as in Theorem 1.3 enters the ball Bα(R) of radius
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R0 around zero in X
1+α

4 ×X −1+α
4 at a certain positive time tr (independent of α < 1 close

enough to 1 and [ u0
v0 ] ∈ Blim(r)) and remains in Bα(R0) for all t > tr.

Proof: Going to (3.1) and using (3.7) we get

d

dt

∫
Ω

A
1−α

2 uαuαt dx = 〈A
1−α

2 uαt , u
α
t 〉L2(Ω) + 〈uα, A

1−α
2 uαtt〉L2(Ω)

= ‖uαt ‖2

X
1−α

4
− 〈uα, 2 cos

πα

2
A

1
2uαt 〉L2(Ω) − 〈uα, A

1+α
2 uα〉L2(Ω)

− 〈uα, aA
1−α

2 uαt 〉L2(Ω) − 〈uα, a cos
πα

2
A

1
2uα〉L2(Ω) + 〈uα, sin πα

2
f(uα)〉L2(Ω)

= ‖uαt ‖2

X
1−α

4
− 2 cos

πα

2

∫
Ω

uαA
1
2uαt dx− ‖uα‖2

X
1+α

4

− a
∫

Ω

uαA
1−α

2 uαt dx− a cos
πα

2
‖uα‖2

X
1
4

+ sin
πα

2

∫
Ω

f(uα)uαdx.

From (1.4) we infer that for each µ < µ1 close enough to µ1

sin
πα

2

∫
Ω

uαf(uα)dx 6 µ‖uα‖2
X + cµ 6 µµ

− 1+α
2

1 ‖uα‖2

X
1+α

4
+ Cµ,

whereas for any ε > 0 we also have

2

∣∣∣∣cos
πα

2

∫
Ω

uαA
1
2uαt dx

∣∣∣∣ = 2

∣∣∣∣cos
πα

2

∫
Ω

A
1+α

4 uαA
1−α

4 uαt dx

∣∣∣∣ 6 ε‖uα‖2

X
1+α

4
+

1

ε
‖uαt ‖2

X
1−α

4
,

and

a

∣∣∣∣∫
Ω

uαA
1−α

2 uαt dx

∣∣∣∣ = a

∣∣∣∣∫
Ω

A
1+α

4 uαA
1−3α

4 uαt dx

∣∣∣∣ 6 ε‖uα‖2

X
1+α

4
+ Cε‖uαt ‖2

X
1−α

4
.

Consequently, we obtain

d

dt

∫
Ω

A
1−α

2 uαuαt dx 6 −
(

1− 2ε− µµ−
1+α

2
1

)
‖uα‖2

X
1+α

4
− a cos

πα

2
‖uα‖2

X
1
4

+

(
1 +

1

ε
+ Cε

)
‖uαt ‖2

X
1−α

4
+ Cµ.

(5.5)

Now, recalling the expression for Pα(uα, uαt ) in (3.8) and letting

(5.6) Pδ,α(uα, uαt ) = Pα(uα, uαt ) + δ

∫
Ω

A
1−α

2 uαuαt dx,

we observe that (3.9) and (5.5)-(5.6) give

d

dt
Pδ,α(uα, uαt ) 6 −δ

(
1− 2ε− µµ−

1+α
2

1

)
‖uα‖2

X
1+α

4
− δa cos

πα

2
‖uα‖2

X
1
4

−
(
a− δ − δ

ε
− δCε

)
‖uαt ‖2

X
1−α

4
+ δCµ.

Since µ−1
1 µ < 1, given ν ∈ (µ−1

1 µ, 1) there exists α1 < 1 such that for all α ∈ (α1, 1)

µ
− 1+α

2
1 µ < ν.
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For suitably small ε > 0 we then have

1− 2ε− µµ−
1+α

2
1 >

1− ν
2

.

Having fixed ν, ε as above for any δ > 0 small enough we have a − δ − δ
ε
− δCε > a

2
+ δ

2
,

Cµ > δCµ and hence

d

dt
Pδ,α(uα, uαt ) 6 −δ1− ν

2
‖uα‖2

X
1+α

4
− δa cos

πα

2
‖uα‖2

X
1
4
− δ

2
‖ut‖2

X
1−α

4
− a

2
‖ut‖2

X
1−α

4
+ Cµ.

For η = min{δ(1− ν), 2δ, 1} this in turn implies that

d

dt
Pδ,α(uα, uαt ) 6 −η(

1

2
‖uα‖2

X
1+α

4
+
a

2
cos

πα

2
‖uα‖2

X
1
4

+
1

2
‖ut‖2

X
1−α

4
)− a

2
‖ut‖2

X
1−α

4
+ Cµ.

(5.7)

On the other hand, due to Lemma 4.3, there exists M = M(r) > 0 such that the solutions
to (3.1) satisfy

(5.8) sup
t>0
‖
[
uα(t)
vα(t)

]
‖
X

1+α
4 ×X

−1+α
4
6M(r) for all α ∈ (α∗, 1), [ u0α

v0α ] = [ u0
v0 ] ∈ B

X
1
2
lim×Xlim

(r).

Letting f0 = f − f(0) and using (1.2) we can find a constant c̄ > 1 such that

(5.9) −
∫

Ω

∫ uα

0

f0(s)dsdx 6 c̄‖uα‖2

X
1+α

4
(1 + ‖uα‖ρ−1

X
1+α

4
).

Hence we obtain

(5.10) − d̄
∫

Ω

∫ uα

0

f0(s)dsdx 6 ‖uα‖2

X
1+α

4
for all α ∈ (α∗, 1), [ u0α

v0α ] = [ u0
v0 ] ∈ B

X
1
2
lim×Xlim

(r)

with a constant

(5.11) d̄ =
1

c̄(1 +M(r)ρ−1)
6 1

and consequently

−η
4
‖uα‖2

X
1+α

4
6
ηd̄

4

∫
Ω

∫ uα

0

f0(s)dsdx =
ηd̄

4

∫
Ω

∫ uα

0

(f(s)− f(0))dsdx

6
ηd̄

4

∫
Ω

∫ uα

0

f(s)dsdx+
ηd̄

4
|f(0)|(1 + ‖uα‖2

L2(Ω))

6
ηd̄

4

∫
Ω

∫ uα

0

f(s)dsdx+D,

(5.12)

for D = ηd̄
4
|f(0)|(1 + supα∈(0,1) µ

− 1+α
2

1 M2(r)).
Since sin πα

2
< 1 we actually have from (5.12)

−η
4
‖uα‖2

X
1+α

4
6 −η

4
sin

πα

4
‖uα‖2

X
1+α

4
6
ηd̄

2
sin

πα

4

∫
Ω

∫ uα

0

f(s)dsdx+D.(5.13)
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Connecting (5.7) and (5.13) we get

d

dt
Pδ,α(uα, uαt ) 6 −η

2

(1

2
‖uα‖2

X
1+α

4
+

1

2
‖uαt ‖2

X
1−α

4
+
a

2
cos

πα

2
‖u‖2

X
1
4

)
− a

2
‖ut‖2

X
1−α

4
+ Cµ

+
ηd̄

4
sin

πα

2

∫
Ω

∫ uα

0

f(s)dsdx+D

and, since ηd̄ 6 η (see (5.11)),

d

dt
Pδ,α(uα, uαt ) 6 −ηd̄

2

(1

2
‖uα‖2

X
1+α

4
+

1

2
‖uαt ‖2

X
1−α

4
+
a

2
cos

πα

2
‖u‖2

X
1
4

)
− a

2
‖ut‖2

X
1−α

4
+ Cµ

+
ηd̄

4
sin

πα

2

∫
Ω

∫ uα

0

f(s)dsdx+D

We also have

ηδd̄

4

∫
Ω

A
1−α

2 uαuαt dx 6
ηδd̄

4

∣∣∣∣∫
Ω

A
1+α

4 uαA
1−3α

4 uαt dx

∣∣∣∣ 6 ηδd̄

4
‖uα‖2

X
1+α

4
+
ηδd̄

4
b‖uαt ‖2

X
1−α

4
,

where b = supα∈(0,1) µ
−α
1 . Hence, taking into account that δ > 0 can be small enough, we get

ηδd̄

4

∫
Ω

A
1−α

2 uαuαt dx 6
ηδd̄

4
‖uα‖2

X
1+α

4
+
a

2
‖uαt ‖2

X
1−α

4
,

so that

d

dt
Pδ,α(uα, uαt ) 6 −ηd̄

4

(1

2
‖uα‖2

X
1+α

4
+

1

2
‖uαt ‖2

X
1−α

4
+
a

2
cos

πα

2
‖u‖2

X
1
4

)
− ηδd̄

4

∫
Ω

A
1−α

2 uαuαt dx+ Cµ +
ηd̄

4
sin

πα

2

∫
Ω

∫ uα

0

f(s)dsdx+D

This ensures the inequality

d

dt
(Pδ,α(uα, uαt )) 6 −ηd̄

4
Pδ,α(uα, uαt ) + Cµ +D.(5.14)

Since we have

(5.15) Lδ,α ([ u
α

vα ]) = Pδ,α(uα, uαt ) and
d

dt
(Lδ,α ([ u

α

vα ])) =
d

dt
(Pδ,α(uα, uαt )) ,

(see (3.5), (5.1)-(5.2) and (5.6)), using (5.14)-(5.15) we actually get

d

dt
(Lδ,α ([ u

α

vα ])) 6 −ηd̄
4
Lδ,α ([ u

α

vα ]) + Cµ +D.

which together with (5.4) (see Remark 5.1) implies that

1

2
c1 ‖[ u

α

vα ]‖
X

1+α
4 ×X

−1+α
4
− c2 6 Lδ,α ([ u0

v0 ]) e−
ηd̄
4
t +

4(Cµ +D)

ηd̄
.
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Taking into account that [ u0
v0 ] is in a ball B

X
1
2
lim×Xlim

(r) and using (5.3) we have from all above

that, for a certain tr > 0,

1

2
c1 ‖[ u

α

vα ]‖
X

1+α
4 ×X

−1+α
4
− c2 6 1 +

4(Cµ +D)

ηd̄
, t > tr,

which gives the result.

Corollary 5.3. Assume (1.2)-(1.3) and (1.4).
There then exist R0 > 0, α∗ ∈ (0, 1) and given any r > 0 there is a certain tr > 0 such

that for each sequence αn ↗ 1, and any sequence {[ wnzn ]} of elements [ wnzn ] ∈ X 1+αn
4 ×X −1+αn

4

satisfying

sup
n∈N
‖[ wnzn ]‖

X
1+αn

4 ×X
−1+αn

4
6 r,

we have that the solution [ u
αn

vαn ] of (3.1) through [ u0αn
v0αn

] = [ wnzn ] as in Theorem 1.3 exists for
all n large enough and

sup
{n∈N: αn>α∗}

sup
t>tr
‖[ uαnvαn ]‖

X
1+αn

4 ×X
−1+αn

4
6 R0.

Proof: The proof follows the lines of the proof of Lemma 5.2 with the only differences
that [ u

α

vα ] is replaced by the solution [ u
αn

vαn ] through [ u0αn
v0αn

] = [ wnzn ] and that (instead of using
Lemma 4.3 to get (5.8)) we use Corollary 4.4 to get that there is M = M(r) > 0 such that

sup
t>0

∥∥∥[ uαn (t)
vαn (t)

]∥∥∥
X

1+αn
4 ×X

−1+αn
4
6M(r) for all αn > α∗, ‖[ wnzn ]‖

X
1+αn

4 ×X
−1+αn

4
6 r,

which plays a role of the counterpart of (5.8). The rest is unchanged. �

5.2. Absorbing set for (1.6): proof of Theorem 1.6. Let B be bounded in X
1
2
lim×Xlim

and [ uv ] is a global mild solution of (1.6) through [ u0
v0 ] ∈ B obtained via limiting procedure as

in Theorem 1.5. Then, for each ζ ∈ [−1, 1),
[
u(t)
v(t)

]
is a limit in X

1+ζ
4 ×X −1+ζ

4 of a sequence[
uαnk (t)

vαnk (t)

]
of solutions to (3.1) through [ u0α

v0α ] = [ u0
v0 ] (see (4.5)). Observe that for R0 as in

Lemma 5.2

sup
k∈N

∥∥∥[ uαnk (t)

vαnk (t)

]∥∥∥
X

1+ζ
4 ×X

−1+ζ
4
6 R0 for every t > tr.

Due to embedding properties of the scale a certain c0 > 0 exists such that for any ζ ∈ [−1, 1)
there is a number nζ ∈ N such that

(5.16) sup
nk>nζ

∥∥∥[ uαnk (t)

vαnk (t)

]∥∥∥
X

1+ζ
4 ×X

−1+ζ
4
6 c0R0 for every t > tr.

Combining (5.16) and (4.5) we get∥∥∥[ u(t)
v(t)

]∥∥∥
X

1+ζ
4 ×X

−1+ζ
4
6 c0R0 for every t > tr and ζ ∈ [−1, 1),

which leads to the result of Theorem 1.6. �
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5.3. Attractor for (1.6). Given R0 > 0 as in Corollary 5.3 let Bα(R0) be the ball in

X
1+α

4 ×X −1+α
4 of radius R0 around zero.

Denoting by [ u
αn

vαn ] (tn, [
wn
zn ]) the solution of (3.1) through [ u0αn

v0αn
] = [ wnzn ] we let

A1 :=
{

[ wz ] ∈ X
1
2
lim ×Xlim : there are sequences tn →∞,

αn ↗ 1, and [ wnzn ] ∈ Bαn(R0),

such that for each ζ ∈ [−1, 1)

[ u
αn

vαn ] (tn, [
wn
zn ])

X
1+ζ

4 ×X
−1+ζ

4−→ [ wz ]
}
.

(5.17)

We also define the following class of global mild solutions to (3.1).

Definition 5.4. We say that
[
φ
ϕ

]
∈ LS if and only if one of the following conditions holds.

(i)
[
φ
ϕ

]
(0) ∈ A1 and

[
φ
ϕ

]
is a global weak solution of (1.6) being for each ζ ∈ [−1, 1)

(uniform for t in compact subsets of [0,∞)) limit in X
1+ζ

4 ×X −1+ζ
4 of a sequence of

solutions of (3.1) of the form [ u
αn

vαn ] (·, [ uαnvαn ] (tn, [
wn
zn ])), where tn → ∞, αn ↗ 1 and

[ wnzn ] ∈ Bαn(R0);

(ii)
[
φ
ϕ

]
(0) ∈ X

1
2
lim ×Xlim \ A1 and

[
φ
ϕ

]
is a global weak solution of (1.6) being for each

ζ ∈ [−1, 1) (uniform for t in compact subsets of [0,∞)) limit in X
1+ζ

4 × X
−1+ζ

4 of
a sequence of solutions of (3.1) of the form [ u

αn

vαn ] (·,
[
φ
ψ

]
(0)), where tn → ∞ and

αn ↗ 1.

With this set-up we have the following result.

Theorem 5.5. Assume (1.2)-(1.3) and (1.4) and let LS be as in Definition 5.4.
Then all below hold.

i) (Existence) Given [ u0
v0 ] ∈ X

1
2
lim ×Xlim there exists

[
φ
ϕ

]
∈ LS with

[
φ
ϕ

]
(0) = [ u0

v0 ].

ii) (Bounded dissipative) There is a bounded subset B0 of X
1
2
lim ×Xlim such that for any

B bounded in X
1
2
lim × Xlim, each

[
φ
ϕ

]
from the class LS with

[
φ
ϕ

]
(0) ∈ B enters B0

in a certain time τB > 0 and stays in B0 for all t > τB.

iii) (Attractor) A1 is a bounded and closed subset in X
1
2
lim ×Xlim which satisfies

a) (Compactness) A1 is compact in X
1+ζ

4 ×X −1+ζ
4 for any ζ ∈ [−1, 1),

b) (Positive invariance)
{[

φ
ϕ

]
(t);

[
φ
ϕ

]
∈ LS,

[
φ
ϕ

]
(0) ∈ A1, t > 0

}
⊂ A1,

(Negative invariance) for each [ wz ] ∈ A1 and for any t > 0 there is a certain[
φ̄
ϕ̄

]
∈ LS with

[
φ̄
ϕ̄

]
(0) ∈ A1 such that

[
φ̄(t)
ϕ̄(t)

]
= [ wz ],

c) (Attracting property) for any B bounded in X
1
2
lim ×Xlim and any ζ ∈ [−1, 1)

(5.18) sup[
φ
ϕ

]
∈LS with

[
φ
ϕ

]
(0)∈B

inf
[wz ]∈A1

∥∥[ φ
ϕ

]
(t)− [ wz ]

∥∥
X

1+ζ
4 ×X

−1+ζ
4

t→∞−→ 0.

Proof: Part i) is a consequence of Theorem 4.5 and part ii) comes from Theorem 1.6.
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If [ wz ] ∈ A1 then [ wz ] is approximated by a suitable sequence {[ uαnvαn ] (tn, [
wn
zn ])} as in (5.17)

and hence there is c0 > 0 and, given any ζ ∈ [−1, 1) there is also nζ ∈ N such that

‖[ wz ]‖
X

1+ζ
4 ×X

−1+ζ
4

= lim ‖[ uαnvαn ] (tn, [
wn
zn ])‖

X
1+ζ

4 ×X
−1+ζ

4

6 c0 sup
n>nζ
‖[ uαnvαn ] (tn, [

wn
zn ])‖

X
1+αn

4 ×X
−1+αn

4
.(5.19)

Using that tn →∞, [ wnzn ] ∈ Bαn(R0) and applying Corollary 5.3 with r = R0 we can actualy
replace the supremum on the right hand side of (5.19) by c0R0 and hence we get

(5.20) ‖[ wz ]‖
X

1+ζ
4 ×X

−1+ζ
4
6 c0R0.

Since this can be done for every ζ ∈ [−1, 1) and c0, R0 are independent of such ζ we conclude

that A1 is bounded in X
1
2
lim ×Xlim.

If {[ anbn ]} ⊂ A1 and if we choose some ζ ∈ [−1, 1) then in X
1+ζ

4 ×X −1+ζ
4 each element [ anbn ] is,

in particular, a limit as m→∞ of a sequence
[
uαm

(n)

vαm
(n)

] (
t
(n)
m ,
[
w

(n)
m

z
(n)
m

])
where

[
w

(n)
m

z
(n)
m

]
∈ Bαm(R0)

and αm ↗ 1, t
(n)
m →∞. Thus the distance of [ anbn ] from some element

[
u
αmn
(n)

v
αmn
(n)

](
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])
is

in this space less than 1
n
, where

[
w

(n)
mn

z
(n)
mn

]
∈ Bαmn (R0) and we can choose {t(n)

mn} increasing to∞.

Due to Corollary 5.3,

[
u
αmn
(n)

v
αmn
(n)

](
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])
∈ Bαmn (R0) for almost all mn. Given any ζ̃ ∈

[−1, 1) there then exists Nζ̃ ∈ N such that

{[
u
αmn
(n)

v
αmn
(n)

](
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])
: mn > Nζ̃

}
is bounded

in X
1+ζ̃

4 × X −1+ζ̃
4 . There is thus a subsequence of

{[
u
αmn
(n)

v
αmn
(n)

](
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])}
convergent in

X ×X− 1
2 to a certain [ wz ] and, moreover, from each subsequence of this subsequence we can

still choose a subsequence convergent now in X
1+ζ̃

4 ×X −1+ζ̃
4 (thus again to [ wz ]) where ζ̃ can

be any number from [−1, 1). This proves that a subsequence of

{[
u
αmn
(n)

v
αmn
(n)

](
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])}
which converges to [ wz ] in X × X−

1
2 actually converges to [ wz ] in X

1+ζ̃
4 × X

−1+ζ̃
4 for each

ζ̃ ∈ [−1, 1). Recalling that

[
u
αmn
(n)

v
αmn
(n)

](
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])
∈ Bαmn (R0) and repeating the argument

as in (5.19)-(5.20) we obtain that [ wz ] ∈ X
1
2
lim ×Xlim. We thus conclude that [ wz ] ∈ A1. Due

to the above argument there is thus a subsequence of {[ anbn ]} which converges to [ wz ] ∈ A1 in

X
1+ζ

4 ×X −1+ζ
4 . This proves that A1 is compact in X

1+ζ
4 ×X −1+ζ

4 and since this can be done
for arbitrarily chosen ζ ∈ [−1, 1) we get the result of part a).

Observe that having proved part a) we also have that A1 is closed in X
1
2
lim×Xlim as having

{[ anbn ]} ⊂ A1 such that [ anbn ]→ [ ab ] in X
1
2
lim×Xlim and repeating the proof of part a) above we

obtain that a subsequence of {[ anbn ]} converges to some [ wz ] ∈ A1 in X
1+ζ

4 ×X −1+ζ
4 for some

ζ ∈ [−1, 1). Since [ ab ] needs to coincide with [ wz ], we obtain that [ ab ] ∈ A1.
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Positive invariance in part b) comes from the fact that, given
[
φ
ϕ

]
(0) ∈ A1 and given

approximating this element sequence [ u
αn

vαn ] (tn, [
wn
zn ]) as in (5.17), due to Corollary 5.3 for all

n large enough and any t > 0 we have that

[ u
αn

vαn ] (t, [ u
αn

vαn ] (tn, [
wn
zn ])) = [ u

αn

vαn ] (t+ tn, [
wn
zn ]) ∈ Bαn(R0).

Hence each value
[
φ
ϕ

]
(t) is obtained as in Definition 5.4 (i) so that each value

[
φ
ϕ

]
(t) is an

element of A1.
For negative invariance take [ wz ] ∈ A1 and consider a sequence {[ uαnvαn ] (tn − t, [ wnzn ])}, where

[ u
αn

vαn ] (tn, [
wn
zn ]) approximates [ wz ] as in the definition of A1 (see (5.17)). Given any t > 0,

observe that [ u
αn

vαn ] (tn − t, [ wnzn ]) ∈ Bαn(R0) for all n large enough (see Corollary 5.3) and
hence there is c0 > 0 and, given any ζ ∈ [−1, 1) there is also nζ ∈ N such that

‖[ uαnvαn ] (tn − t, [ wnzn ])‖
X

1+ζ
4 ×X

−1+ζ
4
6 c0 ‖[ u

αn

vαn ] (tn − t, [ wnzn ])‖
X

1+αn
4 ×X

−1+αn
4

6 c0R0 whenever ζ ∈ [−1, 1) and n > nζ .
(5.21)

Since the embeddings are compact we can choose a subsequence {
[
uαnk
vαnk

] (
tnk − t,

[ wnk
znk

])
}

which converges in X × X− 1
2 to a certain [ w̄z̄ ] ∈ X × X− 1

2 . Then we observe that, due to
(5.21), for each ζ ∈ (−1, 1) and from any subsequence of {

[
uαnk
vαnk

] (
tnk − t,

[ wnk
znk

])
} we can

choose a subsequence which converges in X
1+ζ

4 ×X −1+ζ
4 (thus to [ w̄z̄ ]). Hence we have that,

on the one hand, the sequence {
[
uαnk
vαnk

] (
tnk − t,

[ wnk
znk

])
} actually converges in X

1+ζ
4 ×X −1+ζ

4

for each ζ ∈ [−1, 1) (thus [ w̄z̄ ] ∈ X 1+ζ
4 ×X −1+ζ

4 for each ζ ∈ [−1, 1)) and, on the other, that

‖[ w̄z̄ ]‖
X

1+ζ
4 ×X

−1+ζ
4
6 c0R0 for each ζ ∈ [−1, 1)

(because of (5.21)). Consequently, [ w̄z̄ ] ∈ A1 and we apply Theorem 4.5 to get a global

mild solution
[
φ̄
ϕ̄

]
of (1.6) being for each ζ ∈ [−1, 1) (uniform for t in compact sub-

sets of [0,∞)) limit in X
1+ζ

4 × X
−1+ζ

4 of a sequence of solutions of (3.1) of the form[
uαnk
vαnk

] (
·,
[
uαnk
vαnk

] (
tnk − t,

[ wnk
znk

]))
, where tnk → ∞, αnk ↗ 1 and

[
uαnk
vαnk

] (
tnk − t,

[ wnk
znk

])
⊂

Bαnk
(R0). This implies, in particular, that

[
φ̄
ϕ̄

]
(t) = [ wz ], which concludes part b).

Now observe that if (5.18) fails then there is ζ ∈ [−1, 1) and there exists a sequence

{
[
φn
ϕn

]
} ⊂ LS with {

[
φn
ϕn

]
(0)} ⊂ B, where B is bounded in X

1
2
lim × Xlim, and there is also

a sequence of times tn → ∞ such that a sequence {
[
φn
ϕn

]
(tn)} is separated from A1 in

X
1+ζ

4 ×X −1+ζ
4 . Then observe that, due to Theorem 1.6, almost all elements of {

[
φn
ϕn

]
(tn)}

are in a bounded subset B0 of X
1
2
lim ×Xlim. In particular, we have from Lemma 4.1 v) that

there is a subsequence
{[

φnk
ϕnk

]
(tnk)

}
, which converges in X

1+ζ
4 ×X −1+ζ

4 . Since
{[

φnk
ϕnk

]}
⊂

LS, it follows from Definition 5.4 that, given k ∈ N, either the distance of
[
φnk
ϕnk

]
(tnk) in

X
1+ζ

4 ×X −1+ζ
4 is less than 1

k
from some

[
uαm

(k)

vαm
(k)

] (
tnk ,

[
uαm

(k)

vαm
(k)

] (
t
(k)
m ,
[
w

(k)
m

z
(k)
m

]))
, where

(5.22)
[
uαm

(k)

vαm
(k)

] (
tnk ,

[
uαm

(k)

vαm
(k)

] (
t(k)
m ,
[
w

(k)
m

z
(k)
m

]))
=
[
uαm

(k)

vαm
(k)

] (
tnk + t(k)

m ,
[
w

(k)
m

z
(k)
m

])
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(let us call it case (I)) or the distance of
[
φnk
ϕnk

]
(tnk) in X

1+ζ
4 × X −1+ζ

4 is less than 1
k

from

some
[
uαm

(k)

vαm
(k)

]
(t

(k)
n ,
[
φ

(k)
m

ϕ
(k)
m

]
(0)) (let us call it case (II)). One of these two cases has to happen

for infinitely many k. If this is case (I), then using that [ wmzm ] ∈ Bαm(R0) and tnk → ∞ we
have, due to Corollary 5.3, that the right hand side of (5.22) belongs to Bαm(R0) (which
gives, in particular, boundedness of infinitely elements of the right hand side of (5.22) in

X
1+ζ̃

4 ×X −1+ζ̃
4 for ζ̃ ∈ [−1, 1) similarly as in (5.21)). Therefore, in this case there will be a

subsequence of
[
uαm

(k)

vαm
(k)

] (
·,
[
uαm

(k)

vαm
(k)

] (
t
(k)
m ,
[
w

(k)
m

z
(k)
m

]))
convergent in X ×X− 1

2 and thus in X
1+ζ̃

4 ×

X
−1+ζ̃

4 for any ζ̃ ∈ [−1, 1) (thus with a limit point in A1). If this is case (II), then using that{[
φnk
ϕnk

]
(0)
}
⊂ B we have, due to Corollary 5.3, that

[
uαm

(k)

vαm
(k)

]
(
tnk
2
,
[
φ

(k)
m

ϕ
(k)
m

]
(0)) ∈ Bαm(R0) and[

uαm
(k)

vαm
(k)

]
(tnk ,

[
φ

(k)
m

ϕ
(k)
m

]
(0)) ∈ Bαm(R0) for almost all k (which gives, in particular, boundedness

of almost all elements of sequences
{[

uαm
(k)

vαm
(k)

]
(
tnk
2
,
[
φ

(k)
m

ϕ
(k)
m

]
(0))

}
and

{[
uαm

(k)

vαm
(k)

]
(tnk ,

[
φ

(k)
m

ϕ
(k)
m

]
(0))

}
in X

1+ζ̃
4 × X

−1+ζ̃
4 for every ζ̃ ∈ [−1, 1) similarly as in (5.21)). Hence, there will be a

subsequence of
[
uαm

(k)

vαm
(k)

]
(tnk ,

[
φ

(k)
m

ϕ
(k)
m

]
(0)) convergent in X × X−

1
2 and thus in X

1+ζ̃
4 × X

−1+ζ̃
4

for any ζ̃ ∈ [−1, 1) to a certain limit point. Observe that this limit point will be in A1

because we can write
[
uαm

(k)

vαm
(k)

]
(tnk ,

[
φ

(k)
m

ϕ
(k)
m

]
(0)) as

[
uαm

(k)

vαm
(k)

]
(
tnk
2
,
[
uαm

(k)

vαm
(k)

]
(
tnk
2
,
[
φ

(k)
m

ϕ
(k)
m

]
(0))) which is

an approximating sequence as required in (5.17). In either case we get that {
[
φn
ϕn

]
(tn)} fails

to be separated from A1 in X
1+ζ

4 ×X −1+ζ
4 , which is absurd. Hence we have (5.18). �

5.4. Upper semicontinuity of the dynamics: proofs of (1.15) and (1.16). We first
prove the estimate (1.15).

Theorem 5.6. There exists a certain α0 ∈ (0, 1) such that for any α ∈ [α0, 1) Theorem 1.3
applies and the family {Aα}α∈[α0,1), where Aα is a global attractor for the semigroup of global
solutions to (3.1) has the property that

sup
α∈[α0,1)

sup
[u0α
v0α ]∈Aα

‖ [ u0α
v0α ] ‖

X
1+α

4 ×X
−1+α

4
6 R

for some positive constant R.

Proof: Choose any α0 < 1 close enough to 1. Observe, due to part iv) of Theorem 1.3, that

Aα0 is bounded in X
1
2 ×X which, due to part iv) of Lemma 4.1, ensures that Aα0 is bounded

in X
1
2
lim×Xlim. Using Lemma 5.2 with α = α0 and with Blim(r) such that it contains Aα0 we

obtain that, for some tr > 0, Sα0(tr)Aα0 is contained in a ball of radius R0 around zero in

X
1+α0

4 ×X
−1+α0

4 . Using now that Sα0(tr)Aα0 = Aα0 we actually obtain that A0 is contained

in a ball of radius R0 around zero in X
1+α0

4 ×X
−1+α0

4 . Since this argument applies for each
α0 < 1 close enough to 1, we get the result. �
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Remark 5.7. Note that Theorem 5.6 can be proved independently of Lemma 4.1 using
that the semigroup associated to (3.1) has a Lyapunov functional and that the equilibria
are bounded independently of α < 1 close enough to 1.

Given a metric space V and compact sets B1, B2 in V we now denote

(5.23) dV (B1, B2) := sup
b1∈B1

inf
b2∈B2

distV (b1, b2)

and prove the upper semicontinuity result in (1.16).

Theorem 5.8. Assume (1.2)-(1.3) and (1.4).
Then for each ζ ∈ [−1, 1) we have that Aα behaves upper semicontinuously with respect to

Hausdorff semidistance d
X

1+ζ
4 ×X

−1+ζ
4

as α↗ 1, that is,

lim
α↗1

d
X

1+ζ
4 ×X

−1+ζ
4

(Aα,A1) = 0,

where Aα is a global attractor for (3.1) as in Theorem 1.3 and A1 given by (5.17) is an
attractor for (1.6) in the sense of Theorem 5.5 iii).

Proof: Suppose that for some ζ ∈ [−1, 1) we do not have that limα↗1 d
X

1+ζ
4 ×X

−1+ζ
4

(Aα,A1) =

0.
Then there are sequences αn ↗ 1 (where αn > ζ) and [ anbn ] ∈ Aαn such that the sequence

{[ anbn ]} is separated from A1 in X
1+ζ

4 × X
−1+ζ

4 . In this latter space each [ anbn ] is, due to

invariance of Aαn , a limit as m → ∞ of a sequence
{

[ u
αn

vαn ]
(
t
(n)
m ,
[
w

(n)
m

z
(n)
m

])}
⊂ Aαn where

{
[
w

(n)
m

z
(n)
m

]
} ⊂ Aαn and t

(n)
m → ∞. Thus the distance of [ anbn ] from some [ u

αn

vαn ]
(
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])
is

in X
1+ζ

4 × X −1+ζ
4 less than 1

n
, where

[
w

(n)
mn

z
(n)
mn

]
∈ Aαn and we can choose {t(n)

mn} increasing to

∞. Note that if Bα(r) denotes a ball in X
1+α

4 ×X −1+α
4 of radius r around zero then, due to

Theorem 5.6,
[
w

(n)
mn

z
(n)
mn

]
∈ Bαn(R). Hence, due to Corollary 5.3, [ u

αn

vαn ]
(
t
(n)
mn

2
,
[
w

(n)
mn

z
(n)
mn

])
∈ Bαn(R0)

for almost all n and [ u
αn

vαn ]
(
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])
∈ Bαn(R0) for almost all n as well. Given any

ζ̃ ∈ [−1, 1) there then exists Nζ̃ ∈ N such that
{

[ u
αn

vαn ]
(
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])
: n > Nζ̃

}
is bounded

in X
1+ζ̃

4 × X
−1+ζ̃

4 . There is thus a subsequence of
{

[ u
αn

vαn ]
(
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])}
convergent in

X ×X− 1
2 to a certain [ wz ] and, moreover, from each subsequence of this subsequence we can

still choose a subsequence convergent now in X
1+ζ̃

4 ×X −1+ζ̃
4 (thus again to [ wz ]) where ζ̃ can

be any number from [−1, 1). This proves that a subsequence of
{

[ u
αn

vαn ]
(
t
(n)
mn ,
[
w

(n)
mn

z
(n)
mn

])}
which

converges to [ wz ] in X×X− 1
2 actually converges to [ wz ] in X

1+ζ̃
4 ×X −1+ζ̃

4 for each ζ̃ ∈ [−1, 1).

After repeating the argument as in (5.19)-(5.20) we obtain that [ wz ] ∈ X
1
2
lim × Xlim. Then,

recalling that tmn
2
→∞ and [ u

αn

vαn ]
(
t
(n)
mn

2
,
[
w

(n)
mn

z
(n)
mn

])
∈ Bαn(R0) we obtain that actually [ wz ] ∈ A1.
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Due to the above argument there is thus a subsequence of {[ anbn ]} which converges to [ wz ] ∈ A1

in X
1+ζ

4 ×X −1+ζ
4 , which now contradicts that {[ anbn ]} is separated from A1 in X

1+ζ
4 ×X −1+ζ

4 .
Hence we have that limα↗1 d

X
1+ζ

4 ×X
−1+ζ

4
(Aα,A1) = 0. �
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