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ABSTRACT. In this paper we consider a semilinear damped wave equation with supercrit-
ically fast growing nonlinearity using parabolic approximations governed by the fractional
powers of the wave operator.
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1. INTRODUCTION

We consider the problem of the form

uy + auy — Apu = f(u), t>0, zef,
(1.1) u(0,z) = up(x), u(0,2) =wvo(z), x€€Q,
u(t,z) =0, t>0, x €0,

where a > 0, Q is a bounded smooth domain in RN, N > 3, and f € C'(R) satisfies

(1.2) ()| S C(A+]s”™"), seR,
for some

N N+2
1. —_— —_—
(1.3) N3 <P< Ny
and
(1.4) lim sup /(s) <

|s|—o00 S

with g being the first eigenvalue of the negative Dirichlet Laplacian —Ap in L?(2).

Semilinear wave equation have been considered by many authors; see e.g. Arrieta, Car-
valho and Hale [2], Babin and Vishik [3][4], Chueshov, Lasiecka and Toundykov [10], Ghidaglia
and Temam [I1], Khanmamedov [I3], Pata and Zelik [15] and references therein.

In this paper we study using approximation by parabolic type problems of “lower”
order. This complements in particular some earlier results in this direction by Carvalho,
Cholewa and Dlotko [7], where was considered with a supercritical exponent as
a limit as 7 N\, 0 of a strongly damped wave equation involving term 2n(—A D)% as in Chen
and Triggiani [§].

Recall that if X = L?(Q2) and A: D(A) C X — X is defined by

(1.5) Au=—Apu for ue D(A) = HX(Q) N HL(Q),

then A is a positive self-adjoint operator and —A generates a compact analytic C°-semigroup
in X.

Denote by X the fractional power spaces associated to operator A; that is, X* = D(A®)
with the norm ||A%-||x : X® — R*. For a > 0 define also X~ as the completion of X with
the norm ||A=-||x. Observe that with this notation X2 = Hi () and X' = H*(Q)NH}(Q).
Observe also from [I, Chapter V] that X« = (X°)".

With the above set-up the problem (|1.1]) can be rewritten as an abstract Cauchy problem

(1.6 DAl = ] 150 (2l = (8]
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where
A:DA) C X2 x X — X2 x X,

(1.7) —
ALE] =134 [6] for [J] € D) =X"xX>2

and f¢ is given by

(1.8) F@)() = fle())

for ¢ in any suitable function space which will be specified below (see Lemma .
Given A as in (|1.7) we consider next a family of fractional powers A% « € (0,1). In
particular, we prove the following.

Proposition 1.1. i) For each a € (0,1) the operator A* is a negative generator of an
analytic C° semigroup {e=*"* 1 t > 0}.
ii) The eigenvalues of —A* converge as aw /1 to the corresponding eigenvalues of —A.

iii) The linear semigroups generated by —A* behave continuously as o /1, that is, given
any 6 € (0,1],
0 0-1
ST ] w0

uniformly for t in bounded time intervals and for [i] in compact subsets of X% x X%,

Since (|1.1)) can be viewed in the form (|1.6]), due to Proposition [1.1|it is natural to consider
with (1.6 a family of problems

d . oo o u
(1.9) L]+ A7 ] = [l ] £>0, 0[] = [W2]

with o 1.
Exploiting parabolic structure of ([1.9)) we prove local well posedness of (1.9)) for all a < 1

close enough to 1 in a suitably large phase space of initial data containing the energy space
HY(Q) x L(9) for (L)),

Theorem 1.2. Assume - and fix any number s satisfying %(1 — %) — % <s<l1.
Then, for each o € [§(p — 1) — ps, 1) the following hold.

i) For any [0=] € X% x X"2 there exists a unique mild solution [45] € C([0, Tugn wos )> X 2 X

ngl) of defined on a maximal interval of existence [0, Tugywos ). This solution de-

pends continuously on the initial data and satisfies a blow up alternative in X2z X X5,

In particular, if || [ %] ij i51 —norm remains bounded as long as the solution exists then
X 2
Tan"UOQ = 0.

ii) The solution in part i) above is a reqular solution. Namely,

14+a 4o

(1.10)  [¥2] € C((0, Tugpwna ), X 2 X X2) N CH(0, Tuppon ), X 2 X X2) for each 0 <
d [Ya] sati 1.9).
and [Ya | satisfies 1

iii) Actually, for any set B bounded in X2 x X% there is a certain time T > 0 such that
for each [43e] € B the solution [Ya] through [0 ] in part i) exists (at least) until 75 and
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giwen any T € (0, 7] there is a positive constant M = M (1, B) such that
(1.11) sup

[UOQ
Voo

=l
O xx 8

Using ([1.4)) and exploiting gradient structure of ((1.9) we establish global well posedness
of ([1.9) and obtain the existence of global attractors.
Theorem 1.. Assume — and fix any number s satisfying %(1 — %) — % <s < 1.
Assume also .

For all « < 1 close enough to 1 we then have the following.
i) For any [“2] € X2 x X"% the solution [“] of obtained in Theorem exists
globally in time and satisfies for T > 0 the estimate

201 e e <C(nL2]), £
x X

where C' is a positive constant which can be chosen uniformly for [, ] in bounded subsets of

[e3

(1.12) ‘

ii) The family of maps

Sa(t) [v] = [;‘Zg] , [He] e X3 x X7, t>0, uwhere (42 ] is a solution of (3.1]),

is a compact semigroup in X3 x X7 and So(7)yH(B) = Uys,Sa(t) B is bounded in X 5° x
T and for any T > 0.

iii) There exists a global attractor A, for {S,(t) :
i) Ay is bounded in X2 x X% and, given any o € [s — 1,a), A, attracts under {S,(t) :
t > 0} bounded sets of X2 x X5 in X3° x X% norm, that is, A, is foroe[s—1,a)a

1+o0

global (X2 x X2 — X 3% x X %) attractor.

We then derive some bounds for the solutions when o < 1 is close enough to 1. If & "1,
[Wa] e X5 x X1~ and

hrgfsyp I [ooa ] Il 140 =13e < 00,

we show that there exists o < 1 such that for all a € (a*,1) the global solutions [% ] of
(3.1) through [ | are defined as in Theorem |1.3| and satisfy

sup sup [v ”‘ 1+a *1+Ot < 0
x X

120 ae(a*,l)‘
(see Lemma [4.3). This enables us to obtain solutions of ((1.6)) with initial data in the “limit”
1

space X2 X Xjim, where

(113) X]?m - r_]0<cy<1‘X—1+& Xhm - ﬂ0<a<1X71+a
are normed, respectively, by
(1.14) Il y = tin -l s and -y, = lim |- | e

X2 a1 X1 ' a1
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1
Note that the energy space X 7 x X for 1} is contained in X X Xj, and that the latter
space is contained in X2 x X T for every s < 1 (see Lemma .

Definition 1.4. Given [3)] € X x X% we say that [] is a global mild solution of (|1.6))
provided that [*] € C(]0,00), X x X~2), f¢(u) € C([0,00), X" 2) and [*] satisfies for t > 0
the integral equation

t
u(t) | _  —At 1w —A(t—s 0
L] =e t[v3]+/0 eI petuo)-ants) | d.

Theorem 1.5. Assume (1.9)-(1.3) and (1.4).
1
Given any [ v ] € X}, X Xum there then exists a global mild solution [] of (L.6) which on

each time interval [0,T] and for any ¢ € [—1,1) is the uniform limit in X5 x X5 of a
certain sequence {[ Y |}, where a, /1 and [Yar | is a solution of through [veer ] = [39]

as in Theorem [1.3.

For the solutions constructed via limiting procedure as in Theorem we prove the
existence of an absorbing set.

Theorem 1.6. Assume — and .
1

There then exists a ball By in Xfm X Xim such that, given any bounded subset B of
1

X2 X Xym, a global mild solution [%] of (L1.6) through [23] € B obtained via limiting

procedure in Theorem[1.7 satisfies
[zgi] € By forall t>tg,
where tg is independent of [2] € B.
We finally exhibit the existence of an attractor A; for (1.1)) in the sense of Theorem
which, in particular, is a compact set in X5 x X1 for any ¢ € [—1,1). Furthermore, we
show that the attractors A, for (3.1]) as in Theorem has the property that

11T g case <R,

(1.15) sup  sup

a€lagp,l) [582]6”4“
for some constants oy € (0,1) and R > 0. We then obtain upper semicontinuity of the
dynamics proving that

(1.16) li/r% dx%gxx%-&-((Aa,Al) =0 foreach ¢€[-1,1)

(see Theorem , where dX L =l is the Hausdorff semidistance of sets as in ([9.23]).
The following Section [2|is devoted to abstract linear wave operator, its fractional powers,
associated extrapolated fractional power scale and to the proof Proposition [L.1]
In Section We construct a family of approximate solutions for proving Theorems
and [L.3

In Section [4] following the limiting procedure, we show the existence of global mild solu-

tions to (1.6) and prove Theorem [1.5]
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Section |5 is devoted to a long time behavior of mild solutions to (1.6)). In particular, we
prove therein Theorem and exhibit properties of an attractor 4, for (1.6). We also show
that the family of attractors behave upper semicontinuously as a * 1 proving ((1.15)) and
(1.16)).

ACKNOWLEDGMENTS

The authors wish to express their gratitude to an anonymous referee whose comments
have improved considerably the final version of the paper.

2. ANALYSIS OF LINEAR WAVE OPERATOR
In this section we proceed with the analysis of the operator A which was specified in ([1.5)).
2.1. Fractional powers and associated linear semigroups.

Lemma 2.1. If A and A are as in and n respectively then we have all the
following.
i) 0 € p(A) and
o At
rofo A
ii) The adjoint A* of A is given by

«_ |0 I _
P O

iii) Operator i/ is self-adjoint and A is the infinitesimal generator of a Cy-group {e* : t > 0}
of unitary operators in X3 x X.
i) Fractional powers A“ can be defined for a € (0,1) through

sin o

(2.1) A = /OO AT+ A) A

T 0
v) For each o € (0,1) the operator A® is a negative generator of an analytic C°-semigroup
{e 2t > 0}.
vi) Given any 0 < a < 1 we have that

@ . —1—
cos AT sinTrAT:

A7 =
) 1—
—sinZ2A3  cosT@A~2
2 2
and
o . —14«
cos %A 2 —sin % 2
(2.2) N =
. 1o a
sin %A 2 CoS %Az

vii) For each o € (0,1] the spectrum of —A® is a point spectrum consisting of eigenvalues

.m(2—a) a

(2.3) )\in = ¢t ()2, n €N,
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where { i, tnen denotes the ordered sequence of eigenvalues of A including their multiplicity.
viii) A~ converges to A™' in L (X2 x X) as o S 1.
iz) For each [{] € X' x X2

Ao‘[m —>A[:ﬂ in X2xX as a 1.
Proof: Part i) is a consequence of ([1.5) and (1.7)).

Part iii) comes froms ii) and Stone’s theorem (see Pazy [I7, Theorem 10.8]).
Parts iv) and v) follows from [14, Theorems 1, 2.
Concerning part vi) note that given A € C we have

A+ A= [550]
and
AN T+ AL (NI + A
M+ )71 = for all A € p(—A4).
— AN T+ A AN T+ AL
Duetoforany0<a<1weget

—l—«a

(e} .
CoS %A_E sin % 2

A% =
—sin %AFT& cos %A’%
which leads to ([2.2)).

Concerning vii) observe that A € C is an eigenvalue of —A® if and only if there exists a

nontrivial solution of

— cos ?A%go + sin %A%w = \p

—sin ?AHTQQO — €08 ?A%@b =\

which in turn holds if and only if

T(2—a) a 7:71'(2*(1) a

)\2+2/\COS%A% +A°‘:()\—ei = A2)(A—e "z A2)

is not injective. The eigenvalues A of —A“ are thus solutions of

.r(2—a) & .m(2—a) &

A=—e" 2 i) (A—e™ 2 i) =0,

that is, AZ,, are as in ([2.3).
Part viii) follows from [I, Theorem I11.4.6.2].
To prove part ix) we fix [i] € X! x X2 and observe that

cos ?A%go 220 and  cos %A%z/z X0 asa yan!

T
because on the one hand cos 5 — 0 and, on the other, due to viii),

—a

AiASp=A""Alp B Alp  and ASy=A"T A2 5 Alp as a 1.
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T
In a similar manner, using that sin 7 — 1 as a /1 and that, due to viii),

1 X

1=

Al+a(’0

and

we get

1
sin?Alwgp—)A(b and sin%Ail;an—i Y as a 1.

Hence we get

—14+a

CoS —A 2 —sinTFrAT N
[ﬂ XIxx [0 _I] [ﬂ for each {ﬂ e X' x X%,
Y A 0] [y Y
sin —A 7 cos —A 2
which gives the result. U

2.2. Convergence of linear semigroups: proof of Proposition Proposition
follows from the analysis of the wave operator carried out in Lemma . Namely, part i) is
contained in Lemma v). Part iii) follows from . Finally part ii) is a consequence of
Lemma ix) and [I7, Chapter 3, Theorem 4.5]. O

We include below Figure [1| which reflects, in particular, the loss of a “good” sectoriality
property as a 7 1.

_m(2=a)

re 2 Im(X) y

\

a 1

Eigenvalues of —A“ Eigenvalues of —A
\ / R;(A)
a 1
;=)
re’ 2

FIGURE 1. Note that eigenvalues of —A? lie on the edges {re* 2  :7 >0} of a

7T(2

sector of angle %) which approaches the half-plane {\ € C: ReA > 0} as a — 1

2.3. Associated extrapolated fractional power scale.

Lemma 2.2. The extrapolation space of Xz xX generated by A coincides with X x Xz,
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Proof: Using Lemma i) we have that

1A [ ea o = | [0

and taking the completion we get the result (see [5, Lemma 2] for a similar argument). O

=1[{]llg, 3 foramy [£]eX7xX

1
X2xX

Lemma 2.3. Let a € (0,1] be fized and let {E°(a),0 € [~1,00)} be the extrapolated frac-
tional power scale of order 1 generated by (X% x X, A%).
Then
14+ab

(2.4) E’(a)=X"2 x X% for each 0 € [—1,1].

Proof: Consider first « = 1. Due to Lemma and Lumer-Phillips theorem (see [17])
A is a maximal accretive operator with zero in the resolvent set. Hence A is of the class
BIP(1,%) (see [1], §111.4.7.3]) and its fractional power spaces can be characterized with the
aid of complex interpolation. Using this and repeating the proof of [5, Theorem 2] (see also
[5, Remark 2]) we get

140

(2.5) E°(1)= X2 x X3 foreach o€ [-1,1],

which proves (2.4)) for a = 1.
In particular, given o € [—1,0] we have from [I, Theorem V.1.4.12] that E7(1) =

(E=7(1)), or equivalently,

1—0o

(2.6) X2 x X5 =(DA ) =(X2 x X %) for o€[-1,0].
Now for a € (0,1) we have, raising power to power, that
(2.7) D((A*)?) = D(A%%) for any 0 € (0,1).

Using (2.7) and ({2.5) with 0 = af we get
14+ab

E(a) = X"%" x X% for each 0 € (0,1].

Finally, if « € (0,1) and 6 € [—1,0) then due to [I, Theorem V.1.4.12] and (2.6 we obtain
using (2.7) and ([2.6) with 0 = «f that
afb af 1+ab

E'(a) = (E™() = (D(A™)) = (X 3" x X7%) = X 75" x X%,
which completes the proof. U

3. SOLUTIONS OF PERTURBED PROBLEMS AND THEIR PROPERTIES

In this section we consider a Cauchy problem

doo . . .
(3.1) g Lo ] F A Gl = F([5]), >0, [Ga]img = [w62]
with A® as in Lemma [2.1] and with F defined by

(32) F([7]) = [r0)-au]

for [i] in any suitable function space which will be specified in Lemma below.
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3.1. Action of nonlinear right hand side in extrapolated fractional power scale.
To obtain local well posedness of we will use the analytic semigroup approach and a
concept of the extrapolated fractional power scale developed in [2, Chapter V]. The following
two lemmas will be useful in this.

Lemma 3.1. Assume (2-9)-({1.3)

If 51— %) — 2 < s < 21— —) then o = S (p—1) — ps € [0,1) and f° in satisfies
(3.3) £l y-5 < c(L+llel?5) for cach g € X3
and
(3.4) [If5(p1) = F (@)l x5 <cllor—ealls A+ llonllys +lwell’y) for each o1, o2 € X2,
where ¢ is a certain positive constant.
Proof: Duetowehavethat0< (1——)——<1< (1——)

Ifse (F(1- —) -2 —(1— —)] then s=25(1- )— Z for a certain o € [0,1). Observe that
For such parameters X3 LPP(Q), LP(Q) — X2

o= %(p— 1) —ps and deﬁnep =
and

1F@)llx-5 <NCQ+lel)llzr) < CUQLT + ol fan) < X+ llel’ ), © € X3,
which proves (3.3)).

In a similar manner we get ((3.4)). O

Lemma 3.2. Assume (1.9)-(1.3) and let E%(a) (with 6 € [~1,1] and o € (0,1]) be as in

.
If %(1 - /l)) — % <'s (1 - —) then for any o € [s — 1+ (p — 1) — ps, 1) satisfying

S(p—1) — ps < a there emst 0, = w € [-1,0) and 6, = =L € (61,1) such that
Oy — 61 <1 and for F in we have

17 (1% DHEel(a) A+ [[[D] 50w [6] € (@)

N+2

and
([0 ]) = F ([ D o
<[] = [ g @+ NI on ) + I8 eaey)s [81].[52] € E%(@).

Proof: Recall that due to 1' we have 0 < (1 — 1) — ll) <1< Z1- %) Recall

2 p
also that §(p — 1) — ps € [0,1) whenever s € (§(1 — l) - %, 21— %)] Furthermore, if
s € (%(1—%)—/—3 —(1——)] and J(p—1)—ps <a€[s—1+ZF(p—1)— ps,1) then
N
—1<w\0and0<‘%1—2(p—1)+p8<1.

N (p_1)4ps
We now apply 1’ with o = %(p—l) —ps = —aby and s = 1+ab, where 0; = %
and 0y = % to get

/(¢ )H ay <c(1+4 HQOHP 1+a92) for each p € X

1+a02
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and then, due to (2.4),
1 (LoD s oy < A L2 202 0y): [5] € B ().

N (p1)40s
Applying then (3.4) with o = §(p—1)—ps = —ab; and s = 1+ b, where 6; = A A

(03
and 0, = T’ and proceedlng in a similar way as above, we get the result. O

3.2. Local well posedness of (3.1)): proof of Theorem Fix any number s satisfying

%(1 — %) —% < s < 1. Observe that, due to Lemma 2| F'is Lipschitz continuous on bounded

sets from E%(a) into E%(a) where 6, = w nd 6, = =1, Observe also that the
analytic semigroup approach of [12] applies for the extension to extrapolated spaces of the
semigroup {e~A* : ¢+ > 0} obtained in part v) of Lemma . Hence we get the result in part
i) and, in addition, the solution satisfies

1+a(f1(s)+1) a(01(s)+1)

ut] € C((0, Tug. vy ), X 2 Xx X2 ) NCY(0, Tug v ), X 7 x X2
v 0a V0 0a V0

for each o < a(0y + 1).
To prove part ii) we now restart the solution at arbitrarily small positive time t, €

(0, Tuge 0 ), that is, with the initial data [40e] = [zzgg” € X7 x X7 where s, =
1+ a(61(s1) +1). Hence we get

140

)N CH(0, Tugy vpn), X 2 X X

14a(Bq(s1)+1) a(f1(s1)+1)
12 1 X X 1 21

(VB

[%Z] E C(([)’ TUODHUOQ)7X )

for each o < a(01(s1) + 1).
Note that repeating this step by step we obtain for j = 1,...,k that

1+a(01(s)+1) a(f1(s;)+1) 1to

[%g] E O((07 TUOaﬂJOa)7X 2 X X 2 ) m Ol((07 7—u00¢77~10o¢)7‘)(T X X

(VB

)

for each o < a(6y(s;) +1).
Now observe that s;11 = 14 «(61(s1)+ 1) is an increasing sequence which needs to exceed

s* (1 — ) as otherwise it would be bounded and its limit would satisty a false relation.

The above ensures that in a final number of steps the solution enters X% x X*7 in

which case, due to Lemma F is Lipschitz continuous on bounded sets from E%")(q)
into £%C")(a) where 0;(s*) = 0, that is, 1 + a(6;(s*) + 1) = 1 + a. Using this we get

[ 1+a 140

gg] S C((t07Tan7vOa)’XT X X%> n Cl((tO’TUOmon)’XT X X%)

for each o < « and since ty can be chosen arbitrarily small we obtain (|1.10)).
Concerning part iii) we recall from [0, Theorem 5] that the regularizing properties of the
local solution exhibited in the proof of part ii) above are actually uniform on bounded sets.

Hence we get ((1.11]). O
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3.3. Lyapunov functionals associated with perturbed problems. Local solution to

(3.1) in Theorem |1.2] satisfies (see (1.10)
{ut + cos —A2u —sin A

—1+4+a«

o
5 v* =0,

3.5 o
(3:5) v —|—Sm%A T + cos T AzvY + av® = f(u®).

From the first equation we obtain that sin Zrv® = A" <ut +cos Z2A%u > which leads to
a —a a o
(3.6) sin %vf‘ = A" (ug + cos %Aﬂﬁ).
Substituting (3.6 to the second equation in ({3.5)), after some calculations we get

(3.7) AFTaug + 2 cos %A%uf‘ + ATy 4 aAFTau? + acos ?A%u“ = sin ?f(ua).

Multiplying the above equation by u; and integrating, we have that function P, (u®, u)),
where

1 1 a o
(3.8) Po(u®,uy) = —|| t||2 1ma T3 ||u°‘||2 +§COS%||UOC||§( —sm—// f(s)dsdx

satisfies the differential equation
d
dt
Since ug = sin 2 0™ — cos %Afuo‘ (see (i3 ), what was said above leads to the con-
sideration of a functional L,

(3.9) (Pa(u®, ) = =2 COS_”ut Iy — allef |l e

1 ye’ +a
La(2]) = 0l e + 5llsin 0 AT —cos T A,
+gcos—||w||2 —Sln—// f(s)dsdx
(3.10)
——||wH2 Lia ||sm%A T z—cos—AlzawHX

= cos—||w|| 1 - sm—/ / f(s)dsdx,
defined on the domain

D(Ly)={[¥]e X T x X7i" /w f(s)ds € L)},

1+a

Remark 3.3. i) Observe that D(L,) = X ©

Actually, there is a positive constant ¢y such that for all a close enough to 1 we have

x X 73" provided that « is close enough to 1.

(3.11) cawn<mrwummmxﬁgm%exﬁxx””
it) In particular, if s € (5(1 — l) — = ) then, due to (1.1(), L, ([Z%g]) is well defined

foralla € [S(p—1)—ps,1) and ¢ E (0, Tug, w0, ) @long each solution [ ] through [332] €
X3 x X5 from Theorem .
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ii1) Actually, for positive times and as long as the solutions exist we have
a o u™(t
pu - (28]
and hence

d a o« d u® e’ a o
(312) = (Palu®,up) = - (ca ([vagg})) = —2c08 Tl Iy — alluf | 1 < 0.

We now prove that the functional is bounded from below as stated in the following lemma.

Lemma 3.4. Assume — and .

There are positive constants c1,co such that for all o < 1 close enough to 1 we have that

L, in satisfies the estimate

14a
(3.13) Loa([2D) 2 e [N e 1o —co Jorany [2] € X5 x X

—1+4+a
4 .

Proof: For 1 < p; close enough to p; we get from (|1.4])

T |, —1+a T | 14«

1 1, . lta
La([41) 2 Il e + 5 lsin T AT 2 — cos T2 A wlffe - ¢ = Sl

where due to Poincaré’s inequality we have that

p 1 L=
Sl = =5 7 plwl? .

For fixed € € (0, 1) we also have

. T —1ta T | 1to
||81H7A a 2—008714 x

iy’ e’
I > [5in o1zl i —cos S [l age

1 e
e + (11— Z) cos? Tle‘ilfTa’

N o
> (1—¢) sin? 7\|zH§(

because
1

. T T Lo T T
—2sin 7H2||X71+a coS 7”w|lx# > —esin? 7”,2”1,1;& - cos? THwHi(lfTa
Consequently we get

1 1 e 1—e TQ T
w - = 2 _ 2 2 _ in2 2 —
Lo ([%]) > (2 Sl " e — cos” ) HwHXLZa + (1 —¢€)sin 5 HZHX714+D¢ Cp-

Since uy 'y < 1, given v € (u; i, 1) there exists a; < 1 such that for all a € (ay, 1)

-5 <v 1_V>1_€<:0827T0é and sin7mé>1
o mAS T 4 i 2 2 ~

For €, v fixed as above and for any «a € (ay, 1) we thus have

1 1—c¢
L (8] 2 70 =)0l e + = e — i

which gives the result.
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Remark 3.5. Since (3.7)) rewrites for A = A% as
T 1 T 1 . T _i-a
ugy + 2 cos TAEU? + Au” + auy’ + acos TAfua = sin TA 2 f(u®),

this latter equation can be viewed as an approximation of (1.1) (see [8] and [5, 6] for the
extensive studies of the strongly damped wave equations).

3.4. Global well posedness and global attractors for (3.1)): proof of Theorem .
Due to part iii) of Theorem [1.2]if B is bounded in X2 x X2 there is a certain time 75 > 0
such that for each [0 ] € B the solution [“ | through [3% ] exists until 75 and holds.
Recalling Remark i)-ii) and using and (3.11) we get that for each a < 1 close
enough to 1 a constant ¢, > 0 exists such that

£a([53]) < e [0

Ot(T
On the other hand, we have from (3.12)) that

Ea( [zzgg] ) < Ea( [zzgi] >’ T < 1 < Tuga,voas

whereas from (3.13]) we obtain that

}H < caM(r,B).
XTXX7

By al[E8]] e e < ([FD]) Her 7 <t <
Since
(3.15) X x X 1 Xix X7 foral ac€(2s—1,1),

we now conclude all results of part i).

Part ii) follows from part i) and from compactness of the embedding (3.15).

Concerning part iii) we first note that the set of equilibria of is bounded. Indeed,
the first coordinate of equilibrium satisfies

1+o

AT u—i—acos?fbu—sm%f( w)

(see ) which, after multiplying by v and using (|1.4)) gives the bound of u in X . Using
this bound in the equation for equilibria which comes from (3.5)), that is in

T T
cos—A2u—81n7A el U—O

Using boundedness of equilibria, the properties of the semigroup in part ii) and using that
L, is a Lyapunov functional we get the existence of a global attractor as stated in part iii).

Concerning part iv) note that since A, is invariant it is bounded in X5 x X% because of
part iii) of Theorem - Actually, due to Theorem E iii), S,(t) is compact at any positive
time ¢ from X2 x X2 into any space in which X x X 2 is compactly embedded. Hence,
given any o € (s — 1,«a) and using [9, Corollary 4.3] we get that A, is actually a global
(X3 x X7 — X'2° x X%) attractor. O
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4. EXISTENCE OF GLOBAL MILD SOLUTIONS TO (|1.6))

In this section, we will show that as o 1 the solutions of (3.1)) suitably converge along
subsequences to global mild solutions of (1.6]).

4.1. Limit spaces. We now analyze briefly the spaces defined in (1.13])-(1.14]) .
Lemma 4.1. If

:E14+1
Xlim
then we have the following.
+1+41
i) For each w € X, !
(4.1) hgl/l:{lf ||w||X% = llr(il/‘Sklp Hw||Xi14+a.

+1+1
. El41 L
In particular, for each u € X' there exists lim, ~ ||U)||X;t1+a )

ii) Expressions
lim [w]|  21+a and sup [|wl|| =
tig ol e and - sup ] g
+1+41

. . L
define ﬁ%walent norms in X

iit) Xy, with the norm limg q [|w||  t14a is a Hilbert space.

. 141 i1+1
i) X1 is embedded in X,

hm

and
|w|| 2121 = lim ||w||  +1+a  for each u € ||w]|  +1+1.
X 14 a1 X 14 X 14

141

+
v) X,.b s compactly embedded into X " for every o < 1.

Proof: We prove the result for plus sign. For the minus sign the proof is similar.
We start from a straightforward inequality

ligl/‘}{lf||w||X1+Ta < 1irilsup||w||X%a < e [l 15, © € X

Novv,if()<ﬁ<oz<1andwEX2

2 is such that ||w|x = 1 then using Fourier series (see
[18, Lemma 3.27]) we have

75 a=p 1+
(4.2) lwl oz < Hlwll Ui lwll ™ = [lwll 5

=

3

o -

fF

From this we get
148

el 1 < (iminf ] sge) s
and, consequently,

hl;l;}lp ol 1o < Himinf [lw]] o

1
This proves that |D holds for all w € X2 with ||w||x = 1, which in turn implies that 1'
holds for all w € X2 . Hence we get part i).
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1
Using next first inequality in |) and Poincaré’s inequality for any w € X7, we have

a=pB
lwll j1gs < pp " flwll | 1ge

and thus
_1-8
ol g < g™ T flol] s

Consequently, we obtain that supge g 1) ||w||X# is bounded by a multiple of lim, ||w||X%g )

which completes the proof of part ii).

1
Concerning part iii) we first observe that if w,z € X}

" 2 i, then, given any o« < 1 and
w,z € X1 ,since X 1 is a Hilbert space, we have

2 2
(4.3) lw + 2] e+ lw = 2[5 ge = 20|wl]? 1+ 2]12]1% 15
Passing to the limit as @ 1 we get from (4.3)) that

lw+z|* 1 +lw—z*1 =2w|?: +2||z) . .
Xligm X112m X li?m Xli?m

1
Therefore, X;?

lim

with the norm limg » [|w]|, £14e is a pre-Hilbert space (see [20]). Using the
equivalent norm sup,,¢ 1) ||w||X 11 we observe that the space is complete, which proves part
iii).

Note that, due to [I, Theorem I11.4.6.2], for any w € X3 we get

lim [|A 5 w|[x = lim [|A"T Azw||x = ||A2w]||x
a1 a1

which gives the result of part iv).

1
Finally, part v) follows using supremum norm in X}’ and compactness of the scale. [
Remark 4.2. Observe from [1, (2.11.4), p. 36] that if 0 < o < 1 then
(X, XMt € X*C (X, XYoo

whereas, due to [I9, Theorem 1.3.3],

, 1
X2 C (X, X100 = (X1 X)1 0 (XN X)g1 = (X, X150 C X7 forall p e (5.1

l o0
2’
This leads to the inclusions

X2 C (X, XY C X2

1
29

1
which in turn indicate that X2 ¢ X§

lim *
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4.2. Estimate for solutions of (3.1]) as @ /1. We now obtain estimate for the solutions
1
of 1} uniformly for initial data in bounded subsets of X} X Xjip,.

Lemma 4.3. Assume (1.5 - and (1.4

There then exists o* < 1 and given B bounded in Xhm X Xijim there also exists M =
M(B) > 0 such that for any a € (a*,1) and any [¥] € B there is a global solution [%] of
(5.1) through [0 ] = [¥] as in Theorem[1.§ and

E[R—

X1><XZI

sup
t=0

Proof: Observe that B C D(L,). Hence, for any a < 1 close enough to 1, Theorem
applies with s = lza) so in addition the solution [“ ] of (3.1)) through [ ] =[] satisfies
(3.14) with 7 = 0. Hence we get

(4.4) DT g mage < e (14 La([2])

for some positive constant ¢ which does not depend on «, t and [%] € B. Since B is bounded
in lem X Xjim, we have that there is a positive constant cp independent of o € [—1,1) and
such that

18]ty =tpa < forall [¥] € B.

Hence £,([%]) is bounded from above by a constant independent of [%] € B and of « close
enough to 1 (see (3.11)) in Remark [3.3)), which together with (4.4) gives the result. O

Corollary 4.4. Assume — and .

There is a certain o € (0,1) such that if o, /1 and {[%"]} is a sequence of elements

[“n] € XT3™ x X satisfying
Sup ITE ] e =1gen <7

then a global solution [%ar | of (-) through [weer ] = [%"] as in Theorem exists for all n
large enough and

sup  sup
{neN: a,>a*} t20

Proof: Following the proof of Lemma we get (4.4) with [%] replaced now by [ %7 ] where,
by assumption and (3.11)), L, ([%2]) is bounded from above uniformly for n. O

< M(r).

|:u°‘n (t)

g | e—

4.3. Limiting procedure: proof of Theorem [1.5 Theorem [I.5]is a consequence of the
following result.

Theorem 4.5. Assume — and .

If r >0, a, /1, a sequence {[2]} of elements satisfying || [w"

H|XH#><X7HML <r

is convergent for some ( € (—1,1) in X to [w] € X1 X Xym and if [Yan ] is
a solution of through [voer ] = [%*] as in Theorem 1.5 . then there is a subsequence
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{[ Uk 1} of {[4n]} and there exists a bounded function [%] : [0,00) — lem
that, given any ¢ € [—1,1),

[ i t)] [u(t)] H S 0 for every T > 0
k() X xx T

X Xiim such

(4.5) sup
te[0,T

and [%] is a global weak solution of (L.6]) as in Definition [1.)]

Proof: By assumption on {[%"]} we infer from Corollary [4.4] that

uen t
|: ):| H 1+an —1+an < M

X1 xX 14

(4.6) sup sup

t=0 n>ng

for some positive constant M. Using (4.6) and - . we then infer from . that

ug
[vz‘w} HXXX—% <M,

where M is a multiple of 1 + M?. Hence Arzelé-Ascoli Theorem applies (see [16, Section
7.10]) and there is a subsequence {ay,, } and a function [%] € C([0, 00), X x X~2) such that

sup sup
t>0 n>ng

(4.7) sup
t€[0,T]

[“a”’“(t)} _ [“ ”‘ ., — 0 for every T > 0.
v® llxxx-3%

vk (1)

As a consequence of 1’ and embedding properties of the scale a certain M > 0 exists
such that for any ¢ € [—1,1) there is a number n, € N such that

u®mk (t)
vk ()

Combining (4.7))-(4.8) and using interpolation inequality we infer that, given any ( €
[_17 1)7

~

14¢ —14¢ <M
X4 xX 14

(4.8) sup sup

t=0 ng an

(4.9) sup
te€[0,T]

Using now 1} Lemma with s = ¢ e (§(1 - /13) - /1;, 21— %)) we have for o =
Y(p—1)— ps €10,1) that

2
sup HF <[ZZZ:E3D - F <[358])H o g 0 whenever T > 0.
t€[0,T] T2 XX~

Observe that due to (4.8))-(4.9) we get

CIME I ——

ong (¢) o) | || x5 5 =4

[U(t)”‘ 14¢ -4 < M for every t >0 and ¢ €[-1,1)
X4 xX 4

with constant M independent on ¢ and (. Hence, on the one hand, we have

|

and, on the other, since [“] € C([0,00), X x X~2) and the scale is compactly embedded,
[v] € C’([O,oo),X1Z x X1 ) for every ( € [—1,1).

[u(t ] H < M for every t > 0,
U(t) X2 XXhm
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Consequently, using once more 1' Lemma with s = % e (F(1- %) - %, - %)) we
have for o = §(p — 1) — ps € [0, 1) that
(4.10) F([4]) € O([0,00), X 2" x X75).

It remains to prove that [%] satisfies

t
] = e+ [ereor ([1]) ds o0
0

This follows using that functions [ZZ:’; ] satisfy

t
uk (1) | —A%Mk¢ [Wn — A%k (t—s u®mk (s)
] = m) [l ([g]) as >0
and using (4.9)-(4.10]) together with convergence of the linear semigroups in Proposition
iii) (see [7], where a similar argument was used). O

5. LONG TIME BEHAVIOR OF GLOBAL MILD SOLUTIONS OF (|1.6|)

This section is devoted to asymptotic behavior of global mild solutions of (1.6 obtained
via limiting procedure exhibited in the proof of Theorem [4.5

5.1. Additional estimates for the solutions of (3.1)). Using £, as in (3.10) we will
consider here the functional

(5.1) Lsa ([2]) = La ([2]) + Via ([2])
where
(5.2) Via ([Y]) = 6/ = w(sin —Ail‘jaz—cos %A%w)d:c.

Remark 5.1. z) Note that for all < 1 close enough to 1 the real map Lsq is well defined
in X 5% x X1 (see Remark.) and

V[;,a([lz”])—ésm%/AlfwAled:c—écos%“A}leg(.
0

ii) Thus note that due to and Lemmam there are constants cg,c1,co > 0 and 6y < 1
such that for all § € (0, do) and any o < 1 close enough to 1 we have

(53) Loa (4] S o+ [21IMM oa), [$]€ X707 x X0
and

w 1 w w o =1t
(5.4) Loa (4D 2 g l[¥] 3o e =y []€ XF x X

Lemma 5.2. Assume — and .

There then exists Ry > 0 such that for each o« < 1 close enough to 1, and given any
1

r >0 and any [)] in a ball ma( ) of radius r around zero in X2 X Xy, we have that the
solution [ %] of (3.1) through 4532 ] = [49] as in Theorem[1.5 enters the ball B,(R) of radius
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Ry around zero in X =% at a certain positive time t,. (independent of @ < 1 close
enough to 1 and [)] € Bum(r)) and remains in By (Ry) for all t > t,.

Proof: Going to (3.1)) and using (3.7)) we get
d l1—«

7 A2 uugdr = <A1_Tauf, ug') 2y + (u”, Al_Taufft)p(Q)
Q

« o1, a Ito o
= [|ud|? . ige —(u ,20087A2Ut>p(9) — (u, A7 u®) 2

=2« o o 1, a .. X o
- (uo‘,aA 2 U 2i0) — (u®, acos —A2u Yr2o) + (u ,sm?f(u )) L2

= g2 o ——2cos———h/‘ e

- / uAT utdx—acos ||u°‘H2 —|—sm—/f Ju®dz.
Q

From ([1.4) we infer that for each pu < up close enough to i1
T

_lta
sin —- | u”f(u)de < pllu i + cu < ppy 2 ) sge + G
0

whereas for any € > 0 we also have

Viyes 1
cos—/uaA2u§‘dx
2 Jo

/ urAT “uldx
Q

Consequently, we obtain

d 1-a Lia T
S A e < = (1= 20— g T ) el g — acos Tl

2 =2

COSH/AHQ AT ugdx
2 Ja

< eful e + —Hut [y
and

=a

/AH& u AT “uldr| <
Q

el g + Cel 2 1

(5.5) X
+(1+E+C€> 1], 15e + Cha

Now, recalling the expression for P, (u®, uf) in (3.8) and letting
(5.6) Pso(u®, uy) :Pa(uo‘,ut)+5/ A=y “ugdx,

Q
we observe that (3.9) and ( @— 5.6|) give
d

« + a||2 @ a2
Prau ) < =0 (1= 20— iy * ) Ju]l? e — dacos T llu”2

5
—(a—a—g—aq)mela+5c

Since py'p < 1, given v € (uy ', 1) there exists oy < 1 such that for all a € (ay, 1)

1+a

Py * p<v.
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For suitably small € > 0 we then have
_lta ] —vp
1—2e—ppy > > 5

Having fixed v, € as above for any ¢ > 0 small enough we have a — § — g —0Ce > 5+ g
¢, > 6C,, and hence

d o« o 1—v T 02 ) ) a )
ZPoalutuf) < —0— e — dacos - [|u|y = Sllwall e — Sllulage + G
For n = min{§(1 — v), 24,1} this in turn implies that
d o a Looane a T e
(5.7 %Pa,a(u yup) < —77(§||U ||X1+T“+§ 0057||U [t
: | )
Ll ) = Sl e+ G

On the other hand, due to Lemma [4.3] there exists M = M(r) > 0 such that the solutions

o (3.1]) satisfy
(5:8) sup | [0 ] 2o e S M) forall € (0”0, []=[8]€B, ()

XQ XXlim

lim

Letting fo = f — f(0) and using (1.2) we can find a constant ¢ > 1 such that

(5.9) / / Fo(s)dsdz < a2 o (14 [P L, ).

Hence we obtain

(5.10) — J/ / fo(s)dsdx < ||u°‘||§(1+7a for all a € (™ 1), [ve]=[%]€ B 1 (r)
o Jo ‘

X§ ><){lim

lim

with a constant

(5.11) :

T+ M(rye )

S

<1

and consequently

e <™ / / fo(s)dsda = 12 / / " (F(5) — f0))dsi

(5.12) 1 / / £s dsdw+—|f( N+ 1 220)

Z/Q/O F(s)dsdz + D,

7 _lia
for D = "d\f( L+ Supacony i+ M2(r)).
Since sin I < 1 we actually have from ([5.12))

d

3

LT d . 7ma u?
(5.13) _Znuan;%& < —gsmzﬂu 2 10 < %smT/Q/O f(s)dsdz + D.
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a T a
cos - [ul; ) = 5wl e +

Connecting (|5.7) and - we get

n 1 al|2 1 2
—§(§Hu 12 150 + 5101 1 + 5

d
+n—sinﬂ// f(s)dsdx + D
4 2 JaJo

%P&a (ua’ U?) g

and, since nd < 7 (see ((5.11))),

d /1 1 a T
—Pralu ) < =T (Sl e + Sl I e + 5 cos Tl ) = Sl g +C
d u
—i—n—sinﬂ// f(s)dsdx + D
4 2 JoJo
We also have
5d od o 0 5d 5d
Loy By “dr < noa /AlZuC“A1 iy ufdr| < 77—HUO‘H2 14e + n—b||uf‘||2 1o,
4, 4\, En 4 Xz
where b = sup,¢ 1) #1 *- Hence, taking into account that 4 > 0 can be small enough, we get
5d 5d
T [ AT wupde < T e + S 12 e
4 QO X 4
so that
d d 1 a
Pral® ) <~ (I g+ I e 5 cos T )
s)dsdx + D

d
no A 2 uuldr + C) + — sm—//

4

This ensures the inequality

d d
(5.14) = (Poalu®,u?)) < == Psa(u® uf) + G+ D,

Since we have
u a d u d a .«
(5-15) Lo ([U"‘]) :PE,a(U 7“1&) and E(ﬁé,a([va])) = E(P&a(u y Uy ))v

(see (3.9), (5.1)-(5.2) and (5.6))), using (5.14)-(5.15)) we actually get

L (s ([81) €~ Lo (1) + C+ D,

which together with (5.4]) (see Remark implies that
1 _nd
e Il e e — 2 S Loa ([]) e ”
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Taking into account that [§]isin aball B (r) and using 1' we have from all above

lim X Xlim

that, for a certain ¢, > 0,
1 u® 4(C,U + D)
501”[”& %ﬂ—ngl—l—T
which gives the result.

Corollary 5.3. Assume — and .

There then exist Ry > 0, a* € (0,1) and given any r > 0 there is a certain t, > 0 such

, =ty

Il 250
X1 xX

that for each sequence o, /1, and any sequence {['2* |} of elements [%] € ylten |y =lfen
satisfying
sp 12 )y <1

we have that the solution [Yan | of ' through [wer ] = [%"] as in Theorem exists for
all n large enough and

{neN:SIiEZa*}fsg e Il g pn o =150n < Ro.
Proof: The proof follows the lines of the proof of Lemma with the only differences
that [% ] is replaced by the solution [%. ] through [woo" | = [%7] and that (instead of using
Lemma to get (5.8)) we use Corollary to get that there is M = M (r) > 0 such that

uen (t * Wn,
St;lg) [ an(t):| H Lian | =1ten < M(r) for all o, > o, ||[ 2" ]||X1+4an Ly lpen ST
which plays a role of the counterpart of (5.8)). The rest is unchanged. 0

5.2. Absorbing set for (1.6]): proof of Theorem [1.6. Let B be bounded in lem X Xiim

and [ %] is a global mild solution of ([L.€]) through 0] € B obtained via hmltlng procedure as
in Theorem. Then, for each ¢ € [—1,1), [ (t)} is a limit in X5 x X771 of a sequence

(t)

[ z::((z)]mf solutions to (3.1 through [30e] = [%9] (see ) Observe that for Ry as in

Lemma

sup [ aZ: ® ]H JRESEE: < Ry for every t > t,.

keN

Due to embedding properties of the scale a certain ¢y > 0 exists such that for any ¢ € [—1,1)
there is a number n, € N such that

(5.16) sup

nk>n

Combining (|5.16)) and . we get
’ [ZE;]H e 1xe SRy forevery t>t, and (€ [-1,1),
X T xX 1

which leads to the result of Theorem [1.6 O

[ z::((z)] H 1 SRy for every t > t,.

XT><X 1
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5.3. Attractor for (1.6). Given Ry, > 0 as in Corollary let B,(Rp) be the ball in
% x X7 of radius Ry around zero.

X1
Denoting by [“an | (tn, [%"]) the solution of (3.1)) through [voe™ |

[n] we let

1
A = {[’f;’] € X, X Xjm : there are sequences t, — 00,

a, /1, and [Y] € Ba, (Ro),
(5.17) such that for each (e [-1,1)

X%CXX%JLC
S5 e

[Gan ] (s [50])
We also define the following class of global mild solutions to (3.1J).

Definition 5.4. We say that [Zﬂ € LS if and only if one of the following conditions holds.
(i) [2](0) € Ay and [2] is a global weak solution of @ being for each ¢ € [—1,1)
(uniform for t in compact subsets of [0,00)) limit in X5 x X1 of a sequence of
solutions of of the form [Yan] (-, [%n | (tn, [92])), where t, — o0, a,, /1 and
[le:] S Ban(]l%o>;
(ii) [2] (0) € X2, x Xy \ Ay and [2] is a global weak solution of being for each
¢ € [-1,1) (uniform fort in compact subsets of [0,00)) limit in X5 x X7 of
a sequence of solutions of of the form [“n] (-, Mﬂ (0)), where t,, — oo and
o, 1.

With this set-up we have the following result.

Theorem 5.5. Assume - and and let LS be as in Definition .
Then all below hold.

i) (Ezistence) Given [42] € X2, X Xy there exists [$] € LS with [2] (0) = [43].
ii) (Bounded dissipative) There is a bounded subset By of X2 X Xy such that for any

B bounded in Xh%m X Xijim, each [fﬁ] from the class LS with [:ﬁ} (0) € B enters By
in a certain time g = 0 and stays in By for allt > 7p.
iii) (Attractor) Ay is a bounded and closed subset in Xli%m X Xjim which satisfies
a) (Compactness) Ay is compact in X ox X

* for any ¢ € [-1,1),
b) (Positive invariance) {[%] (t); [2] € £LS,[2](0) € A1, t =0} C A,
(Negative invariance) for each [%] € Ay and for any t > 0 there is a certain
[é} € LS with [f‘;} (0) € Ay such that [28] =[Y],

c) (Attracting property) for any B bounded in X2, X Xym and any ¢ € [—1,1)

(5.18) sup inf H [45} (t) _ [g]H e iac t~>_o>o 0.
[Zﬂeﬁs with [fm(o)eg[?]em v X THxX A

Proof: Part i) is a consequence of Theorem and part ii) comes from Theorem [1.6]
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If [¥] € A; then [¥] is approximated by a suitable sequence {[ % | (¢, [%7])} as in
and hence there is ¢y > 0 and, given any ¢ € [—1,1) there is also n; € N such that

- NI g msee = lom [220] (b, [0 DI g
- <COS;ISC||[van](tm[z§])HXT T

Using that t,, — 0o, [2"] € B,, (Ro) and applying Corollary [5.3| with = Ry we can actualy
replace the supremum on the right hand side of (5.19) by ¢oRy and hence we get

(5.20) T s =1 < coRo.

Since this can be done for every ¢ € [—1,1) and ¢, Ry are independent of such ¢ we conclude
1
that A; is bounded in X7 X Xjip,.
If {[4"]} C A; and if we choose some ¢ € [—1,1) thenin X & x X 7 each element [ §"] is,
(n)

. . . ' (n) (n)
in particular, a limit as m — oo of a sequence [”%n’%] < m s [Zg}) D where [Z’{g) } € B,,,(Ro)

m

u&mn (n)
and a,, 7 1, 1% — oo. Thus the distance of (5" ] from some element [ o 1 (tsﬁfz, [w(jigl D is
V()

(n)
in this space less than +, where [w(n) } € B,,, (Ro) and we can choose {t)} increasing to co.

Zmp,

mn (n) ~
Due to Corollary , [U%n } (tfnr)” [w(vng D € B,,,, (Ro) for almost all m,. Given any ¢ €

(n)

u&mn (n)
[—1,1) there then exists N¢ € N such that { { o } (tﬁ,’{z” [w(";?]) Y Né} is bounded
Un)

. 14¢
in X«

_14¢ amn (n)
7%, There is thus a subsequence of {{ f;lfm] (t%, [w’Z’;])} convergent in
Yn) z

mn
1 . .
X x X2 to a certain [¥] and, moreover, from each subsequence of this subsequence we can

still choose a subsequence convergent now in X MO xR (thus again to [¥]) where ¢ can
uam” n w™

be any number from [—1,1). This proves that a subsequence of { [ Ji,’m] <t7(n7)1, [ (M"?D}
Y(n)

which converges to [“] in X x X~2 actually converges to [¥] in X' x X1 for each

~ u>mn (n)
¢ € [-1,1). Recalling that [ &’f}m} (t,(ﬁ,)l, [w('fl;bD € B,,,, (Ro) and repeating the argument
Y(n) Zmp,

as in (5.19)-(5.20) we obtain that [¥] € X2 X Xj,. We thus conclude that [¥] € A;. Due

to the above argument there is thus a subsequence of {[}" |} Wthh converges to [7] € A; in
X . This proves that A; is compact in X S x X1 and since this can be done

for arbitrarily chosen ¢ € [—1,1) we get the result of part a).
1
Observe that having proved part a) We also have that A, is closed in X7 x Xy, as having
{[27]} € Ajp such that [ ] — [ ]mX

1 X Xiim and repeating the proof of part a) above we

obtain that a subsequence of {[}" ]} converges to some [¥] € A; in X5 x X1 for some
¢ € [-1,1). Since [§] needs to coincide with [7], we obtain that [§] € A;.
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Positive invariance in part b) comes from the fact that, given [¢] (0) € A; and given
approximating this element sequence [“ | (£, [%7]) as in - due to Corollary [5.3| for all
n large enough and any ¢t > 0 we have that

[yan [ (& e ] (8, [52])) = [Gan ] (8 40, [ 50 ]) € Ba, (Ro)-

Hence each value [ %] (¢) is obtained as in Definition (i) so that each value [2] (t) is an
element of A;.

For negative invariance take [¥] € A; and consider a sequence {[ “an ] (t, —t,[9"])}, where
[“an ] (tn, [%2]) approximates [¥] as in the definition of A; (see (5.17)). Given any ¢ > 0,
observe that [Yan | (t, —t,[%9"]) € Ba,(Ro) for all n large enough (see Corollary and
hence there is ¢y > 0 and, given any ¢ € [—1, 1) there is also n, € N such that

1) = 15D e mse < coll[220) (= 6150 D g 5o

(5.21)
< coRy whenever ¢ € [-1,1) and n > n.

Since the embeddings are compact we can choose a subsequence {[ any ] (tnk —t, [”;”: - ])}

which converges in X x X2 to a certain [?] € X x X~ 2. Then we observe that, due to

, for each ¢ € (—1,1) and from any subsequence of {[2‘22’;} (tnk —t, [w"’“ ])} we can

an

T (thus to [%]). Hence we have that,

z
1+C

choose a subsequence which converges in X
on the one hand, the sequence {[ an, ] (tnk — t, [w"’“ ])} actually converges in X5 x X
for each ¢ € [-1,1) (thus [?] € XlJrC x X1 for each ¢ € [—1,1)) and, on the other, that

ITE 4¢ =1ec S coRo for each ¢ €[-1,1)

(because of (5.21)). Consequently, [¢] € A; and we apply Theorem to get a global
¢
@

mild solution ] of 1} being for each ( € [—1,1) (uniform for ¢ in compact sub-

sets of [0,00)) limit in X " x X1 of a sequence of solutions of (3.1) of the form
(5o ] (- [Yank ] (tny — £, [ 228 ])), where t,, — 00, o, A 1 and [%ank ] (tn, —t, [=F]) C

B, (Ro). This implies, in particular, that [ ({;} (t) = [¥], which concludes part b).
Now observe that if (5.18) fails then there is ( € [—1,1) and there exists a sequence

{[¢]} c £S with {[&2] (0)} C B, where B is bounded in lem X Xiim, and there is also
a sequence of times ¢, — oo such that a sequence { :ﬁ’;] (tn)} is separated from .4; in
X ©°. Then observe that, due to Theorem , almost all elements of {[ %] (t,)}

are in a bounded subset B, of Xli§m X Xjim. In particular, we have from Lemma {4.1| v) that

there is a subsequence { [22’;} (tnk)}, which converges in X 1 x X7 . Since :ﬁZ’; } } C

LS, it follows from Definition that, given k € N, either the distance of [:ﬁ:‘l’;} (tn,) in

_ am (k)
X' x X7 is less than L from some | &) tn (’“) t(k) W where
k Vk) LGS ' 1))

o w&m w® wﬁ,’f)
s [ (o (B (0. 5D) = [B] o [5])
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(let us call it case (I)) or the distance of [¢":] (tn,) in X x X7 is less than = from

some [ufﬁ} (tgk), [ 55)] (0)) (let us call it case (II)). One of these two cases has to happen

(k)
(k) Pm
for infinitely many k. If this is case (I), then using that [27]| € B, (Ry) and t,, — oo we

have, due to Corollary [5.3] that the right hand side of - 5.22)) belongs to B, (Ro) (which

gives, in particular boundedness of infinitely elements of the right hand side of (5.22)) in

X x
(k) w6 ] (k) [wl® : -1 oy

subsequence of [v ] (-, [vam] ( m [ i ])) convergent in X x X 72 and thus in X x
*) (k)

X7 for any ¢ € [—1,1) (thus with a limit point in Al) If this is case (II), then using that

{[:ﬁ’;’;} (0)} C B we have, due to Corollary | that [ (('“)) } (L, [Zg] (0)) € Ba,, (Ro) and

usm (k)
[”%:7)31] (tny s [ﬁ] (0)) € Ba,,(Ry) for almost all k (which gives, in particular, boundedness

of almost all elements of sequences {[Z(&g} (t"T’“, [(p;’zii} (0))} and {[ZE{,}?} (o [ %’Zi} (0))}

in X7 x X5 for every ¢ € [—1,1) similarly as in (5.21)). Hence, there will be a
(

subsequence of [Uﬁfil] (s [¢>(k>] (0)) convergent in X x X~z and thus in X5 % xR
(k) Pm

[—1,1) similarly as in (5.21])). Therefore, in this case there will be a

for any ¢ € [~1,1) to a certain limit point. Observe that this limit point will be in A,

L ruen ® WY b [U a6 -
because we can write [vg}%] (tn, s [Zﬁf)] (0)) as [Ufa:%} (5, [UE%)L] (5=, [Z%)] (0))) which is
an approximating sequence as required in 1) In either case we get that {| o~ | (¢,)} fails

to be separated from A; in X Tx X %, which is absurd. Hence we have 1) U

5.4. Upper semicontinuity of the dynamics: proofs of (1.15) and ([1.16)). We first
prove the estimate ([1.15]).

Theorem 5.6. There exists a certain ag € (0,1) such that for any a € [ag, 1) Theorem[1.5
applies and the family {Aqy}acao,1), Where Aq is a global attractor for the semigroup of global
solutions to (3.1)) has the property that

I [%ee

sup  sup [ [5a ]l 1ge  cipe <R

a€lao,1) [0 ]e A,

for some positive constant R.

Proof: Choose any o < 1 close enough to 1. Observe, due to part iv) of Theorem that
Aa, is bounded in X7 x X which, due to part iv) of Lemma , ensures that A,, is bounded

in X X Xiim. Using Lemma with a = ag and with By, () such that it contains A,, we

lim

obtain that, for some t, > 0, Sy, (t,)Aq, is contained in a ball of radius Ry around zero in
1+ap

X—7 x X1 . Using now that S, (t )A Aao we actually obtain that 4, is contained

in a ball of radius Ry around zero in X P X T2 Since this argument applies for each
ag < 1 close enough to 1, we get the result. U
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Remark 5.7. Note that Theorem can be proved independently of Lemma using
that the semigroup associated to (3.1) has a Lyapunov functional and that the equilibria
are bounded independently of a < 1 close enough to 1.

Given a metric space V' and compact sets By, By in V' we now denote

(5.23) dy(Bi, By) := sup inf disty(by,bs)

b E€B; ba € B2
and prove the upper semicontinuity result in (|1.16)).

Theorem 5.8. Assume — and .

Then for each ¢ € [—1,1) we have that A, behaves upper semicontinuously with respect to
Hausdorff semidistance dx% (oL as @ A1, that s,
X

hmd 14¢ X%—*'C(AaaAl) = O

a1 X4 x

where A, is a global attractor for [B.1) as in Theorem [1.3 and A, given by (5.17) is an
attractor for @ in the sense of Theorem- iii).

Proof: Suppose that for some ¢ € [—1, 1) we do not have that lim,, ~ dx# S (An, Ap) =
X

0.
Then there are sequences «;,, 1 (where o, > () and [}"] € A,, such that the sequence
{[%"]} is separated from A4 in X' x X7, In this latter space each (5] is, due to

. . .. an (n)
invariance of A, , a limit as m — oo of a sequence {[;jan] <t£:f), [w(;) ])} C A,, where
PAY

(n)
{[ ol }} C A,, and " 5 50. Thus the distance of [5] from some [“) ] (t,(ﬁ,)” [w(’ng is
(n) o

in X5 x X771 less than . where [w(f;] € A,, and we can choose {tfﬁi} increasing to

oo. Note that if B ) denotes a ball in X% x X75° of radius r around zero then, due to
(n)

(n)
Theoreml wf;gl € B,, (R). Hence, due to Corollary [“an ] <t”5”, [wm” ]) € B,, (Ro)

mn,

(n)
for almost all n and [% ] (tﬁ,?,{, [w(’Z;lD € B,,(Ry) for almost all n as well. Given any
. . (n)
¢ € [~1,1) there then exists N; € N such that {[ "] (tﬁ,@b, [wg’;’;]) tn > Ng:} is bounded

. 1+
in X1

(n)
There is thus a subsequence of {[gjﬁ] (tfq?,)l, [%Z?D} convergent in

mn,

X x X~z to a certain [Y] and, moreover, from each Subsequence of this subsequence we can

still choose a subsequence convergent now in X MO xR (thus again to [¥]) where ¢ can
(n)

be any number from [—1,1). This proves that a subsequence of {[ an ] (t,(m)” [wg“;;‘ } ) } which

mn

converges to [%*] in X x X~ actually converges to [%]in X & Fx X for each ¢ € [~1,1).
After repeating the argument as in ((5.19)-(5.20) we obtain that [% ] lem X Xjim- Then,

(n (n)
recalling that “2= — oo and [ %7 | (tmT", [wg“;? D € B,, (Ro) we obtain that actually [¥] € A;.
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Due to the above argument there is thus a subsequence of {[ " |} which converges to [¥] € A,

in X x X_14+C, which now contradicts that {[;" ]} is separated from 4; in X x X7
Hence we have that lima 1 d 1c  -1sc (Aa, A1) = 0. O
REFERENCES
[1] H. Amann, Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear Theory, Birkh&user
Verlag, Basel, 1995.
[2] J. M. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent,
Comm. Partial Differential Equations 17 (5-6) (1992), 841-866.
[3] A. V. Babin and M. I. Vishik, Regular attractors of semigroups of evolutionary equations, J. Math.
Pures et Appl. 62 (1983), 441-491.
[4] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its
Applications, 25, New York, 1992.
[5] A. N. Carvalho and J. W. Cholewa, Local well posedness for strongly damped wave equations with
critical nonlinearities, Bull. Austral. Math. Soc. 66 (2002), 443-463.
[6] A.N. Carvalho and J. W. Cholewa, Strongly damped wave equations in WO1 P(Q) x LP(Q), Discrete and
Continuous Dynamical Systems, Supplement 2007, 230-239.
[7] A. N. Carvalho, J. W. Cholewa and T. Dlotko, Damped wave equations with fast growing dissipative
nonlinearities, Discrete Contin. Dyn. Syst. 24 (4) (2009), 1147-1165.
[8] S. Chen and R. Triggiani, Proof of extension of two conjectures on structural damping for elastic systems.
Pacific J. Math. 136 (1989), 15-55.
[9] J. W. Cholewa, A. Rodriguez-Bernal, Extremal equilibria for monotone semigroups in ordered spaces
with application to evolutionary equations, J. Differential Equations, 249 (2010) 485-525.

[10] I. Chueshov, I. Lasiecka, D. Toundykov, Long-term dynamics of semilinear wave equation with nonlinear
localized interior damping and a source term of critical exponent, Discrete Contin. Dyn. Syst. 20 (2008),
459-509.

[11] J.-M. Ghidaglia, R. Temam, Regularity of the solutions of second-order evolution equations and their
attractors, Annali Scuola Norm. Sup. Pisa IV 14 (1987), 485-511.

[12] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840,
Springer-Verlag, Berlin, 1981.

[13] A.Kh. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical
exponents, J. Differential Equations 230 (2006), 702-719.

[14] T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad. 36 (1960), 94-96.

[15] V. Pata and S. Zelik, A remark on the damped wave equation, Commun. Pure Appl. Anal. 5 (3) (2006),
611-616.

[16] H. L. Royden, Real Analysis. Third edition. Prentice Hall, New Jersey, 1988.

[17] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-
Verlag, New York, 1983.

[18] J. C. Robinson, Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs
and the theory of global attractors, Cambridge University Press, Cambridge, 2001.

[19] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Berlin, 1978.

[20] K. Yosida, Functional Analysis, Springer, Berlin, 1978.



30 F. D. M. BEZERRA, A. N. CARVALHO, J. W. CHOLEWA, AND M. J. D. NASCIMENTO

(F. D. M. Bezerra) UNIVERSIDADE FEDERAL DA PARAIBA, DEPARTAMENTO DE MATEMATICA, 58051-
900 JoAo PEssoa PB, BRAZIL.
E-mail address: flank@mat.ufpb.br

(A. N. Carvalho) DEPARTAMENTO DE MATEMATICA, INSTITUTO DE CIENCIAS MATEMATICAS E DE
COMPUTACAO, UNIVERSIDADE DE SAO PAULO-CAMPUS DE SAO CARLOS, CAIXA POSTAL 668, 13560-
970 SA0 CARLOS SP, BRAZIL.

E-mail address: andcarva@icmc.usp.br

(J. W. Cholewa) INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY, 40-007 KATOWICE, POLAND
E-mail address: jan.cholewa@Qus.edu.pl

(M. J. D. Nascimento) UNIVERSIDADE FEDERAL DE SAO CARLOS, DEPARTAMENTO DE MATEMATICA,
13565-905 SA0 CARLOS SP, BRAZIL.

FE-mail address: marcelo@dm.ufscar.br



	1. Introduction
	Acknowledgments
	2. Analysis of linear wave operator
	2.1. Fractional powers and associated linear semigroups
	2.2. Convergence of linear semigroups: proof of Proposition ??
	2.3. Associated extrapolated fractional power scale

	3. Solutions of perturbed problems and their properties
	3.1. Action of nonlinear right hand side in extrapolated fractional power scale
	3.2. Local well posedness of (??): proof of Theorem ??
	3.3. Lyapunov functionals associated with perturbed problems
	3.4. Global well posedness and global attractors for (??): proof of Theorem ??

	4. Existence of global mild solutions to (??)
	4.1. Limit spaces
	4.2. Estimate for solutions of (??) as 1
	4.3. Limiting procedure: proof of Theorem ??

	5. Long time behavior of global mild solutions of (??)
	5.1. Additional estimates for the solutions of (??)
	5.2. Absorbing set for (??): proof of Theorem ??
	5.3. Attractor for (??)
	5.4. Upper semicontinuity of the dynamics: proofs of (??) and (??)

	References

