
Instituto de Ciências Matemáticas e de Computação

ISSN - 0103-2569

Applying the Virtual Programming Lab with Python

Paulo Henrique Pisani
André C. P. L. F. de Carvalho

No 419

ICMC TECHNICAL REPORT

São Carlos, SP, Brazil
July/2017

Applying the Virtual Programming Lab with Python

Paulo Henrique Pisani1

André C. P. L. F. de Carvalho1

1Instituto de Ciências Matemáticas e de Computação (ICMC)
Universidade de São Paulo (USP) - Campus de São Carlos

13560-970 São Carlos - SP, Brazil
e-mail: {phpisani, andre}@icmc.usp.br

July, 2017

Abstract

Evaluation programming exams/assignments can require a large amount

of time, particularly if there are too many exams to be evaluated. Some propos-

als of automatic evaluation of this kind of exams have been presented. This

technical report particularly describes how we applied the Virtual Program-

ming Lab in Moodle to evaluate programs coded in Python. Several aspects for

this application are described and discussed: creating the activity, writing the

evaluation code, testing it, applying and grading the exam.

Keywords: Moodle, Virtual programming lab, Python

Contents

1 Introduction 1

2 Creating a VPL activity 1
2.1 Basic setup . 1

2.2 Execution options and requested files 3

2.3 Automatic grader setup . 6

3 Evaluation code: eval.py 8
3.1 Outputting the grade and comments to the student 9

3.2 Implementing different exam versions 9

3.3 Evaluating student questions . 11

3.3.1 Type 1: Input and Output program 11

3.3.2 Type 2: Function . 15

3.3.3 Type 3: Expression . 16

4 Testing the VPL activity 18

5 Applying the exam 19

6 Grading 20

1 Introduction

The Virtual Programming Lab (VPL) is a type of activity that can be created

in the Moodle Environment. VPL enables the automatic grading of program-

ming exams/assignments. The home page of the VPL is http://vpl.dis.

ulpgc.es/.

This report shows how we have used VPL for the evaluation of Python pro-

grams in an Introduction to Computer Science class. This report is written

in a step by step way, making it easier for other instructors use the VPL sys-

tem. Next sections are organized as follows: Section 2 describes how to create

a VPL activity; Section 3 discusses suggestions to implement the evaluation

code; Section 4 presents methods to test the evaluation code and the activity;

Section 5 introduces a set of guidelines we have adopted to apply a VPL-based

exam; and, Section 6 shows how to perform grading, including both automatic

and manual grading.

2 Creating a VPL activity

This section describes how to create a VPL activity. Some fields are not

described, so they can be left with the default values.

2.1 Basic setup

• Turn editing on in the course page (it is a button in the top right corner).

• Click on add activity or resource and choose Virtual Programming Lab, as

shown in Figure 1.

• The main form for the activity will open, as shown in Figure 2:

– Fill the name, description and submission period: Include the

questions and other information for the students in the full descrip-

tion field.

– Submission restrictions:

∗ Maximum number of files: it is the number of files that the stu-

dent will submit. For example, if there are 4 questions and each

require a file, then this number must be 4. As discussed later in

this text, different versions of the exam can be created and this

can be implemented by the inclusion of a file that contains the

exam version. In this case, the number of files is 5 (one for the

exam version plus four for the questions).

1

http://vpl.dis.ulpgc.es/
http://vpl.dis.ulpgc.es/

Figure 1: Adding a VPL activity.

∗ Type of work: keep as individual work.

∗ Disable external file upload, part and drop external content
- VPL editor only: Yes means that the submission can only be

performed if the student writes the answer in the editor of the

VPL. Copy and paste are disabled in this case. If the option No
is selected, then the student can work on the answer outside the

VPL and then simply copy and paste it in the VPL editor.

∗ This activity acts as an example: keep as No.

∗ Maximum upload file size: it is usually not a problem for simple

programming questions. Anyway, to avoid excessive large files, it

can be set to 32KB, for example.

∗ Password: defines a password to access the exam. The students

will need to insert this password. If left blank, no password is

required.

– Grade:

2

Figure 2: Basic settings.

∗ Grade: fill the maximum grade (e.g. 10). It is important to cor-

rectly fill in this field because it may be hard to change it after

the grading has started (some changes are even not allowed by

the system).

∗ Visible: it is recommended to keep it as No. This is way, the

students cannot access the grades. After the grades have been

assigned (either manually or with the automatic grader), this can

be changed to Yes, so all the students can check their grades.

– Common module settings:

∗ Visible: Change it to Hide. When the exam is applied, then

change it to Show. This way, the students do not access the

questions before the exam.

• Click on Save and display

Now the basic data for the activity has been set. The next steps involve

setting up execution options and the request files.

2.2 Execution options and requested files

• In the Administration menu in the left (Figure 3), go to Execution options.

3

Figure 3: Administration menu (left side).

– Run, Debug and Evaluation: If any of these options are left as

Yes, the student can run, debug or evaluate all questions during

the exam. When all are set to No, the student can only submit the

questions, without running it.

– Automatic grade: If set to Yes, the automatic grade is used by the

Moodle directly. If this is set to No, running the automatic grader will

not assign a grade. Instead, it will just output any message coded in

the grader, which can be used later by the instructor to manually set

the grades.

– Observation (application scenario 1): in our previous exams, we

have adopted No for all options in the page. Therefore, the students

can submit their questions, but cannot execute anything via the VPL

system. This was done because we faced some network problems

during a preliminary test, in which only part of the computers (the

ones connected via wireless network) were able to run the VPL, while

the others (connected via wired network) were unable to run it. It was

probably a firewall issue in the wired network, since the evaluation

occurs by a local connection to the VPL server.

In this case, only after the exam was finished, we set Evaluate and

Automatic grade to Yes. Then, the automatic grader was executed

(more details on that will be shown later in this report). After that, we

returned to this page and set to No both options. This is important

to avoid that the students click on the Evaluate button on their tests

afterwards.

A key disadvantage of the current application scenario is that the

4

students were allowed to use an external Python development envi-

ronment during the exam. This way, the students could test their

programs before copying and pasting into the VPL for submission.

The problem is the difficulty to recognize student attempts to copy

from previous exercises in the class. This is because a file opened

in the external Python development environment cannot be easily

recognized whether it is a file loaded by the student from a previous

class or a file that was produced during the exam. To deal with this

problem, application scenario 2 shown next can be a solution.

– Observation (application scenario 2): if the network problem is

solved, all computers would be able to run VPL. Then, we recom-

mend to use application scenario 2. though it has never been tested

before by our group (but can be checked in the future). In this case,

option Run can be enabled, so the student can test the code in the

VPL. This way, there is no need to use an external Python envi-

ronment during the exam, making it much easier to spot student

attempts to copy from previous exercises. To make it even more ef-

fective, the option Disable external file upload, part and drop external
content - VPL editor only from the initial setup can be set to Yes. As a

consequence, the student has to type the code in the VPL editor and

cannot copy and paste from an external source.

• In the Administration menu in the left, go to Requested files. In the first

time it is opened, it will ask for the name of the first file. If an exam

version file is used (it will be discussed later), then insert the name of

this file, e.g., “Prova.txt”. If a single exam version is used, then insert the

name of the first file to be submitted, e.g., “Q1 Somatorio.py”.

– Additional files can be added using the new file button.

– After adding all files, click in the Save button.

– Observation - amount of files: The maximum number of files in the

basic setup should be set correctly before adding the files here. For

example, if the maximum number is set to 1 there, then it will not

be possible to add more than one file here.

– Observation - file contents: leave all files blank. This is how the

files will appear to the students when they access the exam.

– Observation - changing files later: please, pay additional attention

to this step. From our tests, if there is a need to change file names or

add more files after leaving this section, it will not work well. Instead,

the VPL activity will stay “broken”. The only solution we found in

5

case we really had to rename or add a file was to create a new VPL

activity and discard the current one. Hence, please carefully plan

the file names to fill in the their names in the system.

The next steps involve setting up the code for the automatic grader.

2.3 Automatic grader setup

• In the Administration menu in the left, go to Advanced settings, then

go to Execution files (Figure 4). As default, four files are already in-

cluded, they are: “vpl run.sh”, “vpl debug.sh”, “vpl evaluate.sh” and

“vpl evaluate.cases”. To setup the automatic grader code, just the file

“vpl evaluate.sh” has to be edited, as follows:

vpl evaluate.sh version to enable the use of a custom grader in

Python.

#! /bin/bash

echo "#! /bin/bash" > vpl_execution

echo "python3 eval.py" >> vpl_execution

chmod +x vpl_execution

• Observations regarding the evaluation files:

– This code tells the automatic grader to call the file “eval.py” to eval-

uate the student exams. The file “eval.py” has to meet some require-

ments on how to output the grade. This will be discussed later here.

– All required files for the grader should be uploaded here. At least

one file is required: “eval.py”. If this file requires others, then upload

all of them. In our implementation, we created an additional file

named “vplfunctions.py” plus one for each question: “evalQ1.py”,

“evalQ2.py”, “evalQ3.py” and “evalQ4.py”. We will describe how to

write these files later.

– Click in the Save button after adding all files.

– Note that the code above is using Python 3. All the code here is for

Python 3, so it is important to keep it that way. In the first tests,

we used Python 2.7 too. For that, “python3” has to be changed to

“python2.7”. In addition, the “eval.py” becomes a bit more complex

due to the increased difficulty to load a subprocess and insert/read

data from a subprocess in Python 2.7.

6

Figure 4: Execution files.

• In the Administration menu in the left, go to Advanced settings, then go

to Maximum execution resources limits.

– Maximum execution time: it is important to set a limit, as some

students may submit code that run infinite loops. In a previous

exam, we adopted the value 16 seconds.

– Maximum memory used: student program can consume too much

memory if not properly written, then it is important to set a limit. We

adopted 32MB in a previous exam.

– Maximum execution file size: we adopted 256KB in a previous

exam (this is the lowest allowed value).

– Click in Save options.

• In the Administration menu in the left, go to Advanced settings, then go

to Files to keep when running (Figure 5). Check all uploaded files. The

four “vpl ” files do not need to be checked. Click in save options.

7

Figure 5: Files to keep during when running.

3 Evaluation code: eval.py

The “eval.py” has the following general structure:

eval.py - general structure.

import sys

import vplfunctions

import evalQ1

import evalQ2

import evalQ3

import evalQ4

def evalQuestions():

grade_value = 0.0

try:

vplfunctions.comment("Iniciando avaliacao")

grade_value += evalQ1.evaluateQ1()

grade_value += evalQ2.evaluateQ2()

grade_value += evalQ3.evaluateQ3()

grade_value += evalQ4.evaluateQ4()

if (grade_value > 10.0): # should not happen

print(’!ERRO!’)

grade_value = 0.0

vplfunctions.grade(grade_value)

8

except:

print(’Erro: ’ + sys.exc_info()[0])

evalQuestions()

• This code if for an exam with 4 questions.

• It follows a simple structure. First, it evaluates each question sepa-

rately. The code to evaluate each question is on evalQ1, evalQ2, evalQ3

and evalQ4, respectively. The points are added to the grade value, which

is then output using the function vplfunctions.grade.

• When the evaluation starts, the VPL creates a virtual machine that con-

tains the files submitted by the student in the same path that the “eval.py”

is executed. It is performed one student at a time.

• So, it is possible to load the students files as a text file to check whether

functions not allowed in the exam were used. It is also possible to run

the program or load it as library to access its functions. This is discussed

later here.

3.1 Outputting the grade and comments to the student

The VPL recognizes two key expressions for grading and comments. If the

expression Comment :=>> Teste, the comment “Teste” will be shown to the

student. For grading, VPL has the expression Grade :=>> 8.0. It would output

the grade 8.0. To make it easier, we included this key expressions in the

“vplfunctions.py” file.

vplfunctions.py.

def comment(s):

print(’Comment :=>> ’ + s)

def grade(num):

print(’Grade :=>> ’ + str(num))

As the VPL receives the grade and comments from a “print” command, it is

recommended to run students programs in another thread (subprocess). This

way, the student program would not be able to print a comment or a grade in

the main thread.

3.2 Implementing different exam versions

In our latest exams, we applied different versions of the exams in order to

avoid that one student copies the answer from another student. For example,

9

there could be two exam versions: A and B. Then, we can adopt a criterion to

separate part of the students to work on exam A and part on exam B. We also

adopted three versions in some exams: A, B and C.

In order to implement that, we divided the students between A and B in the

beginning of the exam. Then, we took notes of which student did which version

in a list. During the submission of the exam, apart from the codes for the

questions, the students also had to submit the letter (A, B or C) corresponding

to the exam version. After the exam was finished, we had to manually check if

all students correctly filled the exam version file according to the list we took

note in the beginning of the exam.

The “eval.py” file with exam version is shown below. Note that the

examV ersion is passed as an argument for the evaluation of each question.

eval.py - with different exam versions.

import sys

import vplfunctions

import evalQ1

import evalQ2

import evalQ3

import evalQ4

def getExamVersion():

provaTXT = open("Prova.txt")

exam_version = provaTXT.read(1).upper()

if (exam_version == ’P’): # Aluno digitou "Prova X" ao inves de colocar

somente a letra

exam_version = provaTXT.read(6).upper()[5]

provaTXT.close()

if ((exam_version != ’A’) and (exam_version != ’B’)):

raise Exception(’Tipo invalido de prova = ’ + exam_version + ’ (

deveria ser A ou B)’)

return exam_version

def evalQuestions():

grade_value = 0.0

try:

vplfunctions.comment("Iniciando avaliacao")

examVersion = getExamVersion()

vplfunctions.comment("Prova: " + examVersion)

grade_value += evalQ1.evaluateQ1(examVersion)

grade_value += evalQ2.evaluateQ2(examVersion)

grade_value += evalQ3.evaluateQ3(examVersion)

10

grade_value += evalQ4.evaluateQ4(examVersion)

if (grade_value > 10.0): # should not happen

print(’!ERRO!’)

grade_value = 0.0

vplfunctions.grade(grade_value)

except:

print(’Erro: ’ + sys.exc_info()[0])

evalQuestions()

Another way to implement multiple exam versions would be to create two

VPL activities, one for each version. Then, the student would have to choose

the correct one. This approach may need an additional care to compute the

grades in Moodle. A possible solution is to create a grading group and includ-

ing both versions of the exam in this group. The final grade then comes from

this group. Apart from checking if the student did the correct exam version,

in this case it is also needed to check whether the student did just one of the

versions.

3.3 Evaluating student questions

In this section we discuss how to implement the evaluateQX functions,

where X is the number of the question. The implementation will depend on

the the question type. We list three types of questions used in previous exams.

3.3.1 Type 1: Input and Output program

This is the simplest and probably most common type of question. In this

type, the question asks the student to write a program that will receive one or

multiple inputs and will output something in the screen. An example would

be: write a Python program that receives the numbers A and B, then output the
sum of these numbers. The program should work as follows:

Example of the program execution.

A:10

B:50

60

We suggest that the input and output format be as simple as possible. In

addition, we strongly recommend that an example of the program execution

is shown. It is to ensure that the student submit a program that meets the

requirements for the automatic grader.

11

Before implementing the evaluation code, a function to load the student

program in a separate process is needed. This function will input data into the

program and read output. This function can be added to the “vplfunctions.py”,

as follows:

vplfunctions.py - function to load a student program to check its

output for a given set of inputs.

import subprocess

from signal import signal, SIGPIPE, SIG_DFL

signal(SIGPIPE, SIG_DFL)

...

def getStudentOutput(testInput, arquivoPrograma):

proc = subprocess.check_output(["python3", arquivoPrograma], input=’\n

’.join(testInput), universal_newlines=True)

studentOutput = proc.split(’\n’)

studentOutput = studentOutput[:-1]

return studentOutput[0]

Now, lets implement the function evaluateQ1. For that, we will assume

that the answer for this question is stored in the file “Q1 Somatorio.py”. The

code is shown below. It basically inserts random values for A and B in the

program and check whether the answer is as expected. Note that the output

format of the student program should meet the expected one, emphasizing the

importance of adopting a simple input/output format and including a program

execution example.

evalQ1.py - evaluation of question 1.

import random

import vplfunctions

def getSomatorio(A, B):

soma = A + B

return soma

def getDesiredResultQ1(A, B):

return getSomatorio(A, B)

def getStudentOutputForQ1(A, B):

testInput=list()

testInput.append(str(A))

testInput.append(str(B))

studentOutput = vplfunctions.getStudentOutput(testInput, "Q1_Somatorio.

py")

12

studentOutput = str(studentOutput).split(’:’)[2]

return float(studentOutput)

def roundOutput(soma):

return float("{0:.3f}".format(soma))

def evaluateQ1():

try:

’’’ A questao vale 4 pontos ’’’

grade_value_q1 = 4.0

Q2 - Caso 2

for testIndex in range(1,5):

vplfunctions.comment(’Q1 - Caso ’ + str(testIndex) + ’ - Inicio

’)

testInput1=random.randint(1, 20)

testInput2=random.randint(1, 20)

studentOutput = roundOutput(getStudentOutputForQ1(testInput1,

testInput2))

desiredResult = roundOutput(getDesiredResultQ1(testInput1,

testInput2))

if (studentOutput != desiredResult):

vplfunctions.comment(’Q1 - Caso ’ + str(testIndex) + ’ -

Finalizado(0)’)

return 0.0

else:

vplfunctions.comment(’Q1 - Caso ’ + str(testIndex) + ’ -

Finalizado(OK)’)

return grade_value_q1

except:

vplfunctions.comment(’Q1 - Erro’)

return 0.0

Lets assume now that there are two exam versions. Version A is the sum

we just described. Version B will be: write a Python program that receives the
numbers A and B, then output the double of the sum of these numbers. The
program should work as follows:

Example of the program execution.

A:10

B:50

120

This can be implemented as follows. Note that the examVersion is received

13

by the evaluateQ1 function. The version is loaded by the eval.py as described

in Section 3.

evalQ1.py - evaluation of question 1 considering two exam versions.

import random

import vplfunctions

def getSomatorioVersaoA(A, B):

soma = A + B

return soma

def getSomatorioVersaoB(A, B):

soma = A + B

soma = 2 * soma

return soma

def getDesiredResultQ1(examVersion, A, B):

if (examVersion==’A’):

return getSomatorioVersaoA(A, B)

elif (examVersion==’B’):

return getSomatorioVersaoB(A, B)

else:

raise Exception(’Q1: Invalid examVersion = ’ + examVersion)

def getStudentOutputForQ1(A, B):

testInput=list()

testInput.append(str(A))

testInput.append(str(B))

studentOutput = vplfunctions.getStudentOutput(testInput, "Q1_Somatorio.

py")

studentOutput = str(studentOutput).split(’:’)[2]

return float(studentOutput)

def roundOutput(soma):

return float("{0:.3f}".format(soma))

def evaluateQ1(examVersion):

try:

’’’ A questao vale 4 pontos ’’’

grade_value_q1 = 4.0

for testIndex in range(1,5):

vplfunctions.comment(’Q1 - Caso ’ + str(testIndex) + ’ - Inicio

’)

testInput1=random.randint(1, 20)

14

testInput2=random.randint(1, 20)

studentOutput = roundOutput(getStudentOutputForQ1(testInput1,

testInput2))

desiredResult = roundOutput(getDesiredResultQ1(examVersion,

testInput1, testInput2))

if (studentOutput != desiredResult):

vplfunctions.comment(’Q1 - Caso ’ + str(testIndex) + ’ -

Finalizado(0)’)

return 0.0

else:

vplfunctions.comment(’Q1 - Caso ’ + str(testIndex) + ’ -

Finalizado(OK)’)

return grade_value_q1

except:

vplfunctions.comment(’Q1 - Erro’)

return 0.0

Lets assume now that the question does not allow the use of the function

SUM available in Python. A possible way to check if the student used it is to

load the submitted file and search for the string “SUM”, as follows:

checking the usage of not allowed functions.

...

def evaluateQ1(exam_type):

try:

programFile = open(’Q1_Somatorio.py’).read().upper()

if (’SUM’ in programFile):

vplfunctions.comment(’Q1 - Exit’)

return 0.0

...

A problem of this approach is that the student cannot use the word SUM,

even if it is part of a variable name only. Otherwise, the automatic grader

returns zero for the question.

3.3.2 Type 2: Function

In this type of question, the student is asked to implement a function.

Hence, only the function code should be submitted. This type of question

is easier to test as we only need to import the student file and then call the

function. Example of question: write a function in Python that receives the

15

numbers A and B, then returns the sum of the two numbers. The function should
be called somanumeros(A,B).

We will assume that the answer for this question is stored in the file

“Q2 FuncaoSoma.py”. The same code for the type 1 question can be used

here. We just need to change the function getStudentOutputForQ1(A,B) to load

the student file in a different way, as shown below:

evalQ2.py - evaluation of question 2.

...

def getStudentOutputForQ2(A, B):

try:

import Q2_FuncaoSoma

studentOutput = Q2_FuncaoSoma.somanumeros(A, B)

return studentOutput

except:

vplfunctions.comment("Q2 - Error while calling student

function")

raise Exception()

...

It is important to check if the student file has a PRINT or an INPUT com-

mand. Otherwise, importing the student file could print data in the output of

the automatic grader. The same procedure shown in the previous section to

check if the function SUM was used can be used for this purpose.

3.3.3 Type 3: Expression

The third type of question involves asking the student to write a Python

expression. Example of question: write an expression in Python that returns
the sum of A and B. In this question, the student is expected to write just the

expression, e.g., A+B.

Assuming that the expression is stored in the file “Q3 Expressao.txt”,

the evaluation code could be implemented just by changing the function

getStudentOutputForQ3(A,B) from the type 1 example, as follows:

evalQ3.py - evaluation of question 3 (arithmetic expression).

...

def getStudentOutputForQ3(A, B):

try:

file = open(’Q3_Expressao.txt’, ’r’)

expressaoA=file.readline().upper()

studentOutput = eval(expressaoA)

16

return studentOutput

except:

vplfunctions.comment("Q3 - Error while using the expression

")

raise Exception()

...

The same principle can be used to evaluate logical expressions too. For ex-

ample: write a logical expression in Python that returns whether a given number
is a multiple of 15. In this question, the student is expected to write just the

expression, e.g., z%15 == 0.

Assuming that the expression is saved in the file “Q3 Expressao.txt”, the

evaluation code could be implemented as follows:

evalQ3.py - evaluation of question 3 (logical expression).

import random

import vplfunctions

def evaluateQ3():

Carrega expressoes

vplfunctions.comment(’Q3 - Carrega expressoes’)

try:

file = open(’Q3_Expressao.txt’, ’r’)

expressaoA=file.readline().upper()

Expressao A -> Z % 15 == 0

vplfunctions.comment(’Q3 - Expressao A - Teste’)

if expressaoA == ’’:

vplfunctions.comment(’Q3 - Expressao A: Esta em branco.’)

else:

expressaoA_OK = True

Z = 15

if (not eval(expressaoA)): expressaoA_OK = False

Z = 75

if (not eval(expressaoA)): expressaoA_OK = False

Z = 1320

if (not eval(expressaoA)): expressaoA_OK = False

Z = 16

if (eval(expressaoA)): expressaoA_OK = False

Z = 10

if (eval(expressaoA)): expressaoA_OK = False

Z = random.randint(1, 50000)

if (eval(expressaoA)!=(Z % 15 == 0)): expressaoA_OK = False

Z = random.randint(1, 50000)

if (eval(expressaoA)!=(Z % 15 == 0)): expressaoA_OK = False

17

if expressaoA_OK:

return 1.0

else:

return 0.0

except:

return 0.0

vplfunctions.comment(’Q3 - Expressao A: Erro na execucao’)

4 Testing the VPL activity

This section describes two kinds of tests to be performed:

• Testing the evaluation code locally: the first is to test the evaluation code

locally before uploading it to the VPL system. It is possible to run the

“eval.py” in the local computer (using a Python programming environ-

ment). This allows to debug possible problems in the evaluation code. We

recommend that several possibilities be tested here to avoid unexpected

errors when the code is used in the VPL system.

The virtual machine of the VPL runs Linux, so the code shown here was

designed for this operating system. To run it in Windows, some small

changes have to performed in the “vplfunctions.py” file, as described

next:

– Remove the following lines:

from signal import signal, SIGPIPE, SIG_DFL

signal(SIGPIPE, SIG_DFL)

– Change “python3” to “python”. In Windows, we must ensure in the

Python programming environment that the correct Python verion is

being used.

• Testing the activity: the second test involves testing the VPL activity on-

line to certify that everything is working as expected for the exam. All the

code for the activity evaluation should be uploaded first. Then, the test

can be performed by clicking on the Test Activity → Edit in the Adminis-
tration panel (Figure 6).

– This shows how the activity will look like for the students.

– To test it, just insert the code for the questions, then click on Eval-

uate to check the uploaded evaluation code. It should present the

given grade in the right panel.

18

Figure 6: Test VPL activity.

– We recommend to test some answer possibilities to check if the code

is working properly.

5 Applying the exam

When the exam is applied, the first thing to do is to explain the rules for the

students, some of them are shown next. After explaining the rules, make the

activity visible. This can be done by editing the activity settings in Common
module settings, then changing Visible to Yes.

This is a list of guidelines we have followed in previous exams:

• Submit the questions ONLY via the Edit tab. This can be done by includ-

ing the code in the tab correspondent to each question.

• The student must click on Save to confirm the submission.

– The student can save the questions as many times as needed during

the submission period. So, the student can save the code for ques-

tion 1, then come back later and fix an error in the same question

and save it again.

– Sometimes, the machine of the student can stop working for unex-

pected reasons. So, it is important to recommend that the students

19

save their work regularly during the exam to avoid data loss in case

an unfortunate problem like that occurs.

• The student can check if the submission is ok by clicking on the Sub-
mission view tab. If all files are shown there correctly, then everything is

ok.

• Remind the students to insert the exam version in the corresponding file.

During the exam, check if all students already included the letter of the

exam in the system.

• In the last exams, we have asked the students to sign a list when they

leave the classroom. The instructor would then write the time that the

student left the classroom.

– After the exam is finished, the instructor can check if the last sub-

mission time is lower than the time written in the list. If it is not, it

is likely that the last submission was done outside the classroom.

– In addition, the instructor has to check whether there is a student

that submitted the exam but has not signed the list. This could

indicate someone that submitted from outside the class.

This is a simple measure to avoid submissions from outside the classroom,

although not entirely effective. A better way to avoid such a problem would be

to restrict the access to the activity to the local network.

6 Grading

After the exam is over, the grading of the programs can be performed. It

consists of two main phases: automatic grading and manual check (which can

involve manual grading). The steps for the automatic grading are shown next:

• Enable automatic grading: in the Administration panel, click on Execu-
tion options, then set Evaluate and Automatic grade to Yes, as shown in

Figure 7.

• Execute automatic grader: go back to the main page of the activity.

Then go to the Submission list tab (Figure 8).

– In Submissions selection, set it to All submissions.

– Then, in the Evaluate drop box, click on All.

– The automatic grader then starts. It may take a while to finish.

20

Figure 7: Enable automatic grader.

Figure 8: Submission list.

• Disable automatic grading: after the automatic grader finishes, in the

Administration panel, click on Execution options, then set Automatic grade
and Evaluate to No. This is important to ensure that the students do not

trigger the automatic grader later.

After performing these steps, all students will be graded by the automatic

grader. It is recommended to check if the evaluation worked well. For instance,

if all students receive the grade 0 (zero), it could be an error in the automatic

grader.

Apart from providing an unbiased evaluation, the purpose of automatic

grading it to also reduce the amount of work to evaluate the exams. However,

21

this has not happened in the last exams we applied. This is because we had

to manually check the exams one by one. This is due to several reasons, such

as students that have not followed the expect input/output format or some

answers that were partially correct, but the grader returned zero.

To manually change the evaluation, the instructor has to go to the Sub-

mission list and click on each student to view his/her exam. After manually

calculating the new grade, the instructor then fills in the grade and click on

Grade (Figure 9). The instructor can also include a comment before clicking

on grade.

Figure 9: Manual grading.

Figure 10: Checking similarities among the student submissions.

It is very uncommon, but a student can submit everything correctly using

the Edit tab and, then, submit a null activity using the Submission/Enviar
tab. If the student realizes that did this mistake after the submission period

finishes, he/she cannot re-submit the activity. In this case, the instructor

can access the previous complete submission and then evaluate this student

22

manually. There is a tab for the submission history of the students when the

exam of the student is opened.

Although we make every effort to avoid that a student copy the answers

from another student, it can still happen unnoticed during the exam. There

is a feature in the VPL system to check similarities among the answers of the

students. In the main exam page, go to the Similarity tab (Figure 10). First

select the files to scan, then click on Search. We suggest to check one file at a

time. The system will output several codes that are similar. It is then possible

to click on each case to manually check it.

This feature must be used with care. Sometimes, a simple question (like

the example we showed here to sum A and B) can be detected as a similarity by

the system, although it is probably not. If the question is simple, it is possible

that several students submit the same or similar answers, even though they

have not copied from each other.

23

	Introduction
	Creating a VPL activity
	Basic setup
	Execution options and requested files
	Automatic grader setup

	Evaluation code: eval.py
	Outputting the grade and comments to the student
	Implementing different exam versions
	Evaluating student questions
	Type 1: Input and Output program
	Type 2: Function
	Type 3: Expression

	Testing the VPL activity
	Applying the exam
	Grading

