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Abstract
The polyhazard models are a flexible family for fitting lifetime data.

Their main advantage over the single hazard models, such as the Weibull
and the log-logistic models, is to acommodate a large amount of non-
monotone hazard shapes, including bathtub and multimodal curves. The
main goal of this paper is to present a Bayesian inference procedure for the
polyhazard models in the presence of covariates, generalizingthe Bayesian
analysis presented in Berger and Sun (1993), Basu, et, al. (1999) and
Kuo and Yang (2000). The two most important particular polyhazard
models, namely poly—Weibull, poly-log—logistc and a combination of both
are studied in detail. The methodology is illustrated in two real medical
datasets.
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1 Introduction
Let us assume the situation where a unit can have k 2 2 possible causes of failure,
such that the exact cause is fully or partial unknow (see for example Basu, at.
(11., 1999; Kuo and Yang, 2000). If Xj, j = 1,... ,1: denote the time to failure
due to the j"l cause, then the observed random variable is T = min (X1, . . . ,Xk)
which is said to have a polyhazard distribution (see Louzada—Neto, 1999) with
hazard function given by

Mt) = 2% (t). (1)

A special case of (1) is given by the poly—Weibull with hazard function, (Davi-
son and Louzada-Neto, 1999)

151-1=Z—@—
, (2)

j=1 #:i

where M > 0 and flj > 0 are respectively the scale and shape parameters asso—
ciated to each component. These k-Weibull hazard functions can have different
scale parameters, allowing Wide flexibility into the model.

The polyhazard distributions are commonly used for competing risks pro-
blems considering either, machine or biological systems, Where a cause of failure
may be a machine—componentor a certain disease, and a failure may be a non
functional state or death. The polyhazard distributions give greater flexibility
to fit lifetime data since the hazard function supports a rich class of hazard
shapes. For instance, for k = 2 in (2), the hazard is increasing if min (flhflz) > 1,
decreasingformax (fll, fig) < 1 and bathtub shaped for ,31 < 1 and fig > 1 (Berger
and Sun, 1993).

Inferences for the poly-Weibull distributions are introduced by many authors.
For example, Davison and Louzada—Neto (1999), Berger and Sun (1993, 1996),
Basu 8t. (11. (1999).

Other choices for the hazard components in (1) could be considered in appli—
cations. A special case is given by the poly-log—logistic distribution with hazard
function

h(t)= 1-2
fljtfij-l (3)

=1 #j + tfi’
or by a combinationof (2) and (3), called poly—Weibull—log—logistic hazard model,
given by

thfij,3-_1 flthj—lht) —. 4‘E—.- EM 0



Usually there are situations where the failure time may depend on a vector z
of explanatory variables. It therefore becomes of interest consider generalizations
of (1) including special functions of z affecting each hazard component. The
polyhazard models can be extended to include regressor variables in different
ways. However, the most commonly used are given by,

h (t) = i fljf_16"°’v (5)

for the poly-Weibull, corresponding to assume proportionality between the ha-
zards (Cox, 1972), and

tfij—lez a]-fl—jh (t):—j=Zl—W + tfiiez"1‘ (6)

for the poly—log-logistic, Where aj is the vector of regression parameters. Exten-
sions could also be considered allowing the shape parameters to be depend on
covariates but it will not be considered here.

The main goal of this paper is to present a Bayesian analysis of polyhazard
models in the presence of covariates and show that these models can provide
better fit than single models such as the single Weibull and the single log-logistic.
In this way, our study generalizes the Bayesian analysis considered in Berger
and Sun (1993), Basu, et. al. 1999 or yet Kuo and Yang (2000) assuming
that the failure dependents on covariates. Sections 2 and 3 describe a Bayesian
formulation for the poly models. Numerical examples considering two real data
sets are presented in Section 4. Some concluding remarks in Section 5 finalize
the paper.

2 The Poly-Weibull Distribution
Consider a sample of independent random variables T1, . . . ,Tn such that T,- =
min(X;1,. . . ,Xik) and T,- has an associated covariate vector 23 = (211, . . . ,zip)
and an indicator variable defined by 6,- = 1 if ti is an observed failure time and
6i = 0 if ti is a right-censored observation, In this way, the likelihood function
for the parameters of any set of survival data subject to uninfonnative censoring
can be written as,

'n

L (0,13) = H h 005‘ S (72‘)- (7)
i=1

Assuming the poly-Weibull (5) and the reparametrization aoj = — log (pg),
the survival function for t,- is given by,

3 (ti) = exp [— 2k: tfjeziaj] , (s)
i=1
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where zfiaj = aoj + 041sz + + apjzip, at = (a,,...,a,,), aj = (aoj,..i,apj)
and ,Bt=()61,-~y,5k)‘

Let us assume a prior with independent components for a and fl, 7r (0;, B) =
7r (0:) 7r (,3). From (7) , (5) and (8) , the joint posterior distribution for a and ,3
is given by,

(Minimum)mfi(zfiit?1-le=ai)'exp(zzifae:”)4(9)
i=1 i=1 j=1

In (9) the term In; (:5_1 fljtfl’1655006, prevents us to get the conditional
densities as a product of independent components. To simplify the joint pos-
terior and the full conditional distributions for the Gibbs Sampling algorithm
we introduce artificial variables (see for example Tanner and Wong, 1987), v,- =
(11,1, . . . ,vik) , for each uncensored observation and assume that the conditional
distribution for v, given a,fi, t and z has a multinomial distribution,
Mult(1; u“, . . . ,uik), with cell probabilities,

h: (ti)
u.~ =—, (10)1 i=1 hi (ti)

that is, for each uncensored observation,

Hi; i=1 hi" (til‘s‘v‘j
6.4

H321 ( Li h,- (m)

Where hj (ti) = fljtfrle‘iui, for j = 1,. . . ,k, i = 1, . . . ,n and 2;, 12,3, = 1.
Combining equation (11) with (9) we have the joint posterior distribution,

given t, z and v = (V1, . . . ,V”) as a. product of independent components,

”(v11"‘1vnla)fi7t7z) 0‘:

n k 5““ n k
.

7r (am, 2, v) o< 7r (a) 7r (a) H H (at???) ’exp (—2 2,5,6, “
i=1 j=1 i=1 j=1

(12)
To generate samples of the joint posterior distribution (12) we follow the steps:

i) Start with initial values aw) and a”);

ii) generate v0) = (v9),...,v,(,1)) from a multinomial distribution with cell

probabilities (10);

iii) generate a sample of a and fl from the conditional distributions,
7r (alfiw): v(1)i t! Z) and 7" (filau),V0), t, Z).



Assuming prior independence among the parameters we consider the following
prior densities for log (fij) and a”, j =1,...,k, I: 0, . . . ,p,

51' N N (aj,bj) iau N N (Clyde), (13)

where 11,-, bj,c;j,d1j are known.
We note however that usual non informative prior can lead to improper pos-

terior (Davison and Louzada-Neto, 1999).
Thus, the conditional posterior distributions for the sampling schemes are

given by,

7! 7|
‘ _ _

2

7r (flj|fi(j),a,t, z,v) or fig.” exp (a. 26%]- In (t,) — :tfienéafl _% (%) > ,

i=1 {:1 .‘i

(14)
where ”j = 23:1 6izij1fi(j)=(fl17“'1fij'l1flj+l7'“}flk) and

7| 7| 2

p (ajlla(a-')1fi7tiz)v) (X EXP Zéivijziafl _ thjeléafl — 1 (fl) 1J i=1 i=1 2 d]:
(15)

where l = 0,1,...,p7 j = l,...,k, Zio = 1 and
(1(011‘1) = ((101, . . . ,aj_171,1,aj+lyl+1, . . . ,apk) .

From the conditional posterior densities for poly-Weibull distribution we can
see that standard sampling schemes are not feasible since the conditional dis-
tributions are not of a commom form. Bayesian inference for the parameters
a and flcan be however performed by Metropolis-Hastings algorithms (see for
example Chib and Greenberger, 1995) considering the conditionals as the target
densities. In our applications we have used the Adaptive Rejection Metropolis
Sampling algorithm (arms) introduced by Gilks, et. at. (1995) and also discussed
in Gilks (1996), Gilks, et. ul. (1997). The arms algorithm is a generalization of
the method of adaptive rejection samplingof Gilks (1992), Gilks and Wild (1992)
which includes a Metropolis step to accomodate non—log—concavityin the density
that will be sampled. The C code written by Gilks and linked to the matrix
language Ox (see Doornik, 1999) was used to get the posterior summaries of in-
terest. In our examples, arms works better than Metropolis-Hastingsalgorithms
since the suitable candidate-generating density are not obvious to be specified.
However, others schemes as accept-reject for the log-concave densities or by using
auxiliary variables (Damien, ct. at. 1999) could be considered in principle. Al-
ternatives to Bayesian estimation such as maximum likelihood estimates (MLES)
can be obtained straightforward by direct maximization of the likelihood (7) or
using EM algorithm (Dempster et. al. 1977).



3 The Poly-Log-Logistic-Distribution
Assuming the poly-log—logistic model (6) with the reparametrization
aoj = — log (pi) , the survival function for t,- is given by 3(15) = (1 + tfje‘iai)_l,
where zfaj = aoj + alJ-zfl + . . . + apjzip.

It follows that the likelihood function for a and fl assuming right-censored
observations is given by,

._ ,——1 1 +t"" 1‘L(a,fl)ocfi(z Immat) 11(1+zfief”")l. (16)

Let us assume the same prior distributions (13) and also consider the intro—
duction of the latent variable v,- = (1151,. .. ,vik), where v,- has a multinomial
distribution with uij defined in (10), such as,

fl_—jtfi5_1eziuj
1 +Tiea, (17)hi:

Thus, the joint posterior distribution for a and fl, given 12,2 and
v = (vl,...,v,.), is given by,

fljtfijez‘a
6"”‘1' k

5 IMO: I7r(a,fi|t,,zv)o<7r ((1)71’ (fl)Hfi — 110+th 1—) ati=1j=11+tfijeznj j=1

and the conditional distributions are given by,

.
"

, . , —1
7r (fljlflm,a,t, z,v) o: flf’exp

—[126,-::1ntfi:’
(1 + tf’e'iafi) ] (19)

n aflp(aj‘|a(j')lfiltlz’v) (X exp|:26,z,~1l.n
(1 +tf”e’§a1‘)=1

2
1 011—61 7‘

5, €- ‘1
exp ['5 (T’) l 11 (1 +W)5:1

(20)

Bayesian inference for a and 3 can be obtained similarly to the scheme
adopted for the poly-Weibull in Section 2.



4 Some Examples
4.1 Laryngeal Cancer Data
Consider the data from Table D4 of Klein and Moeschberger (1997, p. 475)
on the times (in years) between the first treatment and either death or the end
of the study of 90 males diagnosed with cancer of the larynx during the period
1970—1978 at a Dutch Hospital.

Interest is centred here in discovering if prognostic effect of the stage of the
patient’s cancer affects significantly the patient’s survival.

After preliminary investigations, it was discovered that a strong prognostic
effect of the stage of the patient’s cancer is indicated. The stages are based on the
type of tumor, nodal involvement and distant metastasis grading, which are used
by the American Joint Committee for Cancer Staging. The models presented in
this paper are being illustrated on the times to death of 90 males related to the
cancer stages; 18 deaths and 15 censoring in stage I, 7 death and 10 censoring in
stage II, 17 death and 10 censoring in stage III and 11 death and 3 censoring for
stage IV.

In Figure 1 we have the Kaplan—Meier estimates of the survival at each stages
and the fits of survival curves considering the single Weibull, single log—logistic
and poly models (poly-Weibull, poly—log—logistic and poly—Weibull-log—logistic)
with a covariate for eadi stage. These results suggest that the poly models with
a covariate are better than the single ones with a covariate.

The parameters for all models were estimated using the adaptive rejection
Metropolis sampling algorithm where we simulated two separate Gibbs chains,
each rans for 105000 iterations. In order to diminish the effect of the starting
parameter values we discarded the first 5000 elements of each chain. Convergence
of the Gibbs algorithm was observed using diagnostics procedures available in
CODA package (Best, et. al. 1995). For each parameter we considered every
10:); draw and so we finally got a sample of size 20000.

The Monte Carlo estimates, in log-scale, for the posterior means of the pa-
rameters obtained from the combined chains are given in Table 1 for the single
Weibull and single log-logistic and in Table 2 for the poly models. The hyperpa—
rameters, in all fitting, are setting such that we have proper but very weak prior.

Table 1: Posterior Mean and 95% Credible Interval.
Model

Parameter Single Weibull Single log-logistic
0.0790 0.3108

fl‘ (-0.1641;0.3056) (o.1075;a5021)
2.1856 2.1949

“”1 (1.6985;2.7174) (1.7354;2.6892)
0.5232 0.7537

0‘“ (0.2469;0.7981) (0.4430;1.0734)
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Table 2: Posterior Mean and 95% Credible Interval.
Model

Parameter Poly-Weibull Poly-log—logistic Poly—Weibull-log-logistic
0.3248 0.4853 0.36555‘ (0.0198;0.6051) (0.1676;0.7771) (0.0757;0.6371)
3.3883 3.5231 3.4915

0““ (2.6953;4.1927) (2.7009;4.466) (2.7151;4.3645)
—0.0899 —0.0472 —0.0981

0“ (0740205047) (-0.9008;0_6858) (—0.7583;0.5046)
—0.1418 0.0127 0.0176

[32
(-0.6596;0.2166) (-0.5601;0.3902) (—0.5021;0.3689)

a 1.4150 1.6866 1.703
1” (0.6777;2.0581) (0.7637;2.5808) (0.786;2.5548)

3 g

0 2 4 6
1

57 g g d

0 2 4 S B
i)

1 2 3

Figure 1: Fit of a single-models and a poly-models for each stage. (_) Kaplan-Meier
survival curve, (...) single-Weibull, (._,) single-log—logistic, (.. ..) poly-weibull,
(....) poly-log-logistic and (- __ _) poly-weibull-log-logistic fits.

The Bayes factor could also be used to decide for the best model to be fitted.
The Bayes factor (see for exampleGelfand, 1996) is the relativeweight of evidence

8 .



for model M] compared to model M2 given by 312 = f(to¢,,[Ml)/f (150.41%),
where tabs denotes the actual observations and f (toosIMk) denotes the marginal
density under model Mk, k = 1, 2. In general, it can be useful to consider twice
the logarithm of the Bayes Factor, which is on the same scale as the deviance and
the likelihood ratio test statistics. Interpretation for this quantity was introduced
by Jeffreys (1961).

Consideringthe Monte Carlo estimates for the marginal densities based on the
generated Gibbs samples for the joint posterior distribution for the parameters,
we have in Table 3 the values for 210g(Bik);l,k = 1,...,5, l aé k, where M]
denotes de single Weibull model; M2 denotes the single log-logistic model; M3
denotes de poly—Weibull model; M4 denotes de poly-log-logistic model and M5
denotes the poly-Weibull-log—logistic model. We observe that models Mg,M4
and M5 give better fit for the laryngeal cancer data. In particular, model M5
(poly-Weibull-log-logistic) is the best for the data.

Table 3: Bayes Factors Bu;-

321 = 1.6044 B42 = 1.7408
B31 = 3.6198 B52 = 2.3310
B41 = 3.3452 B43 = —0.2746
B51 = 3.9354 353 = 0.3156
332 = 2.0154 B54 = 0.5902

4.2 Interstitial Cell Tummours Data
In a carcinogenesis experiment (National Tom'cology Program, 1986), 100 male
F344 rats were exposed by gavage to two dose levels of Commercial Grad toluene
diisocyanate (Lagakos and Louis, 1988). Half of then where in the control group
and half received 60 mg/kg of the component.

Figure 2 shows the Kaplan-Meier survival curves with fits for the single
Weibull, single log-logistic and poly models. We observe close agreement be-
tween the Kaplan—Meier survival curves with the polyhazardsmodels. The use of
single Weibull or log-logistic models give poor fit for the data. The Monte Carlo
estimates are showed in Tables 4 and 5 and obtained in a similar way as to the
laryngeal cancer data.

The graphical results are corroborated by the Bayes Factor results in Table
6.
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Figure 2: Fit of a single-models and a poly-models for each stage.(_) Kaplan-Meier
survival curve, (...) single-Weibull, (.-.) single-log—logistic, (. .) poly—Weibull,
(...) poly-log—logistic and (_ _. _) poly-Weibull-log—logisticfits.

Table 4: Posterior Mean and 95% Credible Interval.
Model

Parameter Single Weibull Single log—logistic
0.3772 0.5327A (0.1397;0.6108) (0.2923;0.7551)
7.278 8.0770

0““ (5790490089) (6.3967;9.9184)
1.6847 2.2496

0‘“ (110923109) (1.474;:30705)

Table 5: Posterior Mean and 95% Credible Interval.
Model

Parameter Poly-Weibull Poly-log—logistic Poly—Weibull-log—Iogistic
2.0137 2.1386 1.9901

[3‘
(1.894;2.1178) (2.0409;2.2291) (1.8671;2.0991)

35.7973 40.2038 34.9343
““1 (31.828;39.522) (36.529;43.839) (30.9276;38.8261)

1.1591 1.2795 1.261
0‘” (0195720586) (0.0636;2.3639) (0.393s;2.1195)

—0.1911 0.0152 —0.0706
32

(-0.596;0.1749) (-0.344;0.3395) (—0.4739;0.2840)
5.9897 6.6010 6.2707

0“” (4.4525;7.8504) (4.955;8.5088) (4.6507;8.198)
3.7613 4.2323 4.0365

0‘” (1.9208;6.4235) » (2.3361;6.7781) (2.1769;6.6339)
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Table 6: Bayes Factors B”.

Bu = —8.064 B42 = 40.478
831 = 31.6502 352 = 40.4632
B.“ = 32.414 B43 = 0.7638
35, 2 32.3992 B53 = 0.7490
332 = 39.7142 354 = —0.0148

5 Concluding Remarks
The polyhazards models can be effectivelly used for fitting lifetime data in the
presence of a vector of covariates. The use of Markov Chain Monte Carlo me-
thods for a Bayesian analysis of this model is a suitable way to get the posterior
summaries of interest.

It is important to point out that we consider I: = 2 hazard components to be
fitted by the censored data sets in Section 4. The value k = 2 was used after
preliminary analysis of Kaplan—Meier nonparametric estimators for the survival
function.

Alternatively, we could assume .1: unknown and to choose k that maximizes
the posterior distributions

me”I:
Z‘m‘v‘, (21)

.7 J J
7r(k[t) =

where

mk = /f(t]\llk)7rk(\11k)d\llk, (22)

‘10c represent all parameters in the polyhazard models, 717: is the prior for \Ilk and
vj is the prior probability that the number of components is j.

A simplification in the evaluation of m,- is given by the BIC (Bayesian Infor-
mation Criterion) approximation, rhy- = ndi/ZL (‘17,) , where dj is the dimension
of \Ilj and L (‘11,) is the likelihood function evaluated at its maximum (Kass and
Wasserman, 1995).
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