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ON THE CONTINUATION OF SOLUTIONS OF NONAUTONOMOUS
SEMILINEAR PARABOLIC PROBLEMS

A. N. CARVALHO†, J. W. CHOLEWA∗, AND M. J. D. NASCIMENTO‡

Abstract. In this paper we study evolutionary problems which fall into a class of nonau-
tonomous parabolic equations with critical exponents in a scale of Banach spaces Eσ,
σ ∈ [0, 1 + µ). We consider a suitable notion of E1+ε-solution and describe continua-
tion properties of the solution. This concerns both a situation when the solution can be
continued as E1+ε-solution and a situation when E1+ε-norm of the solution ‘blows-up’, in
which case a piecewise-E1+ε-solution is constructed. This extends the existing results to
essentially larger class of parabolic problems.

1. Introduction

In this paper, given a family of unbounded linear operators in the Banach space E0,
A(t) : DE0 ⊂ E0 −→ E0, t ∈ R, we focus on well posedness of a Cauchy problem of the form

(1.1) u̇(t) + A(t)u(t) = F (t, u(t)), t > τ, u(τ) = uτ ,

where the linear operator appearing on the left hand side in (1.1) essentially depends on the
time variable.

Following the pioneering work [26] such problem has been considered by many authors
in wide generality and many related results have been obtained (see e.g. the monographs
[3, 20, 22, 23, 27, 30] and references therein). Here our main concern will be critically growing
nonlinearities, that is roughly speaking we will allow F (t, u(t)) to exhibit the same order of
magnitude as the linear main part operator A(t) (see [9, 13, 15, 29]).

For nonlinearities that behave in a subcritical manner continuation of solutions is satis-
factorily described both for autonomous and nonautonomous problems (see e.g. [6]). As
observed in [29] this is no longer the case for nonlinearities satisfying a critical growth
condition (see also [13, (1.5)-(1.6)]). On the other hand, some previous results concerning
continuation properties of solutions of autonomous problems, see [13], cannot be directly ap-
plied to (1.1) and require essential modifications. This will be our main goal in the present
paper.

To describe our results we start from the following two general assumptions. Conditions
sufficient for them in terms of the operators A(t) will be discussed in detail in Section 3.
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FAPESP 2008/53094-4, Brazil.
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Assumption 1.1. Given a family of Banach spaces {Eα, α ∈ [0, 1 + µ)} there exists a
continuous process {U(t, τ) : t > τ ∈ R} ⊂ L(E0) in E0 such that given τ ∈ R and uτ ∈ E0,
the map [τ,∞) 3 t→ u(t) = U(t, τ)uτ ∈ E0 is a classical solution of the linear problem

u̇(t) + A(t)u(t) = 0, t > τ, u(τ) = uτ .

Furthermore, given any point t0 ∈ R there is a time interval I ⊂ R centered at t0 such that
for any 1 + µ > σ > ζ > 0 a constant M > 0 exists for which

(1.2) ‖U(t, τ)‖L(Eζ ,Eσ) 6M(t− τ)ζ−σ, t, τ ∈ I, t > τ.

Assumption 1.2. Given t0 ∈ R there is also a time interval I ⊂ R centered at t0 such that
whenever 1 + µ > ζ > σ > 0, 1 > ζ − σ > 0 a constant M > 0 exists for which

(1.3) ‖U(t, τ)− Id‖L(Eζ ,Eσ) 6M(t− τ)ζ−σ, t, τ ∈ I, t > τ.

Concerning the right hand side in (1.1), we will assume that F belongs to a class of maps
L(ε, ρ, γ(ε), η, Cη) satisfying a suitable Lipschitz condition relative to {Eα, α ∈ [0, 1 + µ)}.
Note that any such F falls in particular into the class of ε-regular maps considered in [9].

Definition 1.3. We say that a continuous function F : R × E1+ε → Eγ(ε) is of the class
L(ε, ρ, γ(ε), η, Cη) of Lipschitz maps relative to {Eα, α ∈ [0, 1 + µ)} with constants ρ > 1,
0 < ε < min{1

ρ
, µ}, γ(ε) ∈ [ρε, 1), η > 0 and Cη > 0 if and only if for any bounded time

interval I ⊂ R there exists c > 0 such that for each v, w ∈ E1+ε, t ∈ I we have

‖F (t, v)− F (t, w)‖Eγ(ε)
6 c‖v − w‖E1+ε(η‖v‖

ρ−1
E1+ε

+ η‖w‖ρ−1
E1+ε

+ Cη)(1.4)

and

(1.5) ‖F (t, v)‖Eγ(ε)
6 c(η‖v‖ρE1+ε

+ Cη).

We single out for special attention the case when in (1.4)-(1.5) one has γ(ε) = ρε and not
γ(ε) ∈ (ρε, 1) as it exhibits criticality of F relative to (E1, E0) (see [9]).

Definition 1.4. In the case when for a certain η > 0 (1.4)-(1.5) hold with γ(ε) ∈ (ρε, 1) we
say that F is subcritical. When for a certain η > 0 (1.4)-(1.5) hold with γ(ε) = ρε but not
with γ(ε) ∈ (ρε, 1), F is called critical and ρ is called a critical exponent. In the case when
F is critical and (1.4)-(1.5) hold with any η > 0 we say that F is an almost critical map.

We will consider the following notion of solution (see [15]; also [9, 13]).

Definition 1.5. Given F of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + µ)},
τ > 0 and uτ ∈ E0 we say that u : [τ, T ]→ E0 ∪E1+ε is a mild E1+ε-solution (E1+ε-solution
for short) of (1.1) on the interval [τ, T ] if and only if u ∈ L∞loc((τ, T ], E1+ε), there exists the
limit limt→τ+(t− τ)ε‖u(t)‖E1+ε = 0, u(τ) = uτ and for t ∈ (τ, T ] we have

(1.6) u(t) = U(t, τ)uτ +

∫ t

τ

U(t, s)F (s, u(s))ds.

If, given a ∈ (τ,∞], u is an E1+ε-solution of (1.1) on [τ, T ] for any T ∈ (τ, a), then we
say that u is an E1+ε-solution on the interval [τ, a).

With these assumptions E1+ε-solution will be unique and Hölder continuous away from τ .
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Theorem 1.6. Suppose that Assumptions 1.1, 1.2 hold, F is of the class L(ε, ρ, γ(ε), η, Cη)
relative to {Eα, α ∈ [0, 1 + µ)}, τ ∈ R and uτ ∈ E0.

Then there exists at most one E1+ε-solution u = u(·, τ, uτ ) of (1.1) on [τ, T ] and u ∈
Cν
loc((τ, T ], E1+θ) for any 0 < θ < min{γ(ε), µ}, 0 < ν < ν∗ = min{γ(ε), µ} − θ.

To describe a set of initial data for which (1.1) has the unique E1+ε-solution we will
consider a linear subspace Eτε of E0

(1.7) Eτε = {ϕ ∈ E0 : there exists lim
t→τ+

(t− τ)ε‖U(t, τ)ϕ‖E1+ε = 0}.

We also define, for some δ > 0,

(1.8) ‖ϕ‖E
τ
ε
δ = sup

t∈(τ,τ+δ]

(t− τ)ε‖U(t, τ)ϕ‖E1+ε , ϕ ∈ Eτε

and

(1.9) Bδ
Eτε

(w0, r) = {ϕ ∈ Eτε : ‖ϕ− w0‖E
τ
ε
δ < r}, w0 ∈ Eτε .

With the above set-up we first state the local well posedness result, which complements
earlier consideration of [9, Theorem 1], [13, Theorem 2.1] and [15, Theorem 3.1]. In what

follows B(a, b) =
∫ 1

0
sa−1(1− s)b−1ds, a, b > 0, denotes Euler’s Beta function and

(1.10) Bε,ρ := max{B(1− ρε, γ(ε)− ε), B(γ(ε)− ε, 1− ε)}.

Theorem 1.7. Suppose that Assumptions 1.1, 1.2 are satisfied and that F is of the class
L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + µ)}.

Then,
i) given t0 ∈ R, w0 ∈ Eτε and given τ in a certain interval J ⊂ R centered at t0 there exist
δ̄0 ∈ (0, 1] and r̄0 = 1

4(8cηMBε,ρ)
1
ρ−1

, where M = M(1+ε, γ(ε),J ), Bε,ρ are as in (1.2), (1.10),

such that for any initial condition uτ satisfying

uτ ∈ Bδ0
Eτε

(w0, r)(1.11)

with

(1.12) δ0 ∈ (0, δ̄0] and r ∈ (0, r̄0]

there exists the unique E1+ε-solution u = u(·, τ, uτ ) of (1.1) on [τ, τ + δ0].
Furthermore,

ii) when F is subcritical or F is almost critical, the time of existence δ0 can be chosen
uniformly with respect to initial condition uτ ∈ BEτε (w0, r) for arbitrarily large r,
iii) for any 0 6 θ < min{γ(ε), µ} we have

(1.13) lim
t→τ+

(t− τ)θ‖u(t, τ, uτ )‖E1+θ
= 0, uτ ∈ Bδ0

Eτε
(w0, r) ∩ Eτθ ,

and

sup
t∈[τ,τ+δ0]

(t− τ)θ‖u(t, τ, u1
τ )− u(t, τ, u2

τ )‖E1+θ

6 C(θ)
(
‖u1

τ − u2
τ‖

Eτθ
δ0

+ ‖u1
τ − u2

τ‖
Eτε
δ0

)
, u1

τ , u
2
τ ∈ B

δ0
Eτε

(w0, r) ∩ Eτθ ,
(1.14)

iv) also, whenever 0 6 θ < min{γ(ε), µ} and uτ ∈ Bδ0
Eτε

(w0, r), we have

(1.15) lim
t→τ+

(t− τ)θ‖U(t, τ)uτ − uτ‖E1+θ
= 0 implies lim

t→τ+
(t− τ)θ‖u(t, τ, uτ )− uτ‖E1+θ

= 0.
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Although we have not used so far embedding properties it is typical for applications that

(1.16) Eβ is densely embedded in Eα whenever 0 6 α 6 β < 1 + µ.

Remark 1.8. i) Under Assumption 1.1 and (1.16), E1 ⊂ Eτε , ‖ · ‖E
τ
ε
δ is the norm in Eτε and

Bδ
Eτε

(w0, r) contains a ball in E1 centered at w0 of radius r
M

.

ii) If (1.16) holds, then Theorem 1.7 can be applied with w0 ∈ E1 and the time of existence
δ0 can be then chosen uniformly with respect to τ ∈ J .

Remark 1.9. With (1.16) and assumptions of Theorem 1.6, if u = u(·, τ, uτ ) is E1+ε-solution
of (1.1) as in this theorem then
i) u ∈ C([τ, τ + δ0], Eα) ∩ Cν

loc((τ, τ + δ0], E1+θ) whenever uτ ∈ Eα, α ∈ [0, 1], 0 < θ <
min{γ(ε), µ}, 0 < ν < min{γ(ε), µ} − θ,
ii) u ∈ C([τ, τ + δ0], E1+ε) ∩ Cν

loc((τ, τ + δ0], E1+θ) whenever uτ ∈ E1+ε,
iii) u(t, τ, uτ ) is continuous in E1 with respect to (t, uτ ) ∈ [τ, τ + δ0]× E1.

Given τ ∈ R and uτ ∈ Eτε we next define

I(uτ ) := {T ∈ (τ,∞) : there exists the unique E1+ε-solution of (1.1) on [τ, T ]}.

Under the assumptions of Theorem 1.7 I(uτ ) is nonempty, in which case we denote

(1.17) Tuτ := sup I(uτ )

and call [τ, Tuτ ) the maximal interval of existence of E1+ε-solution.
Since in applications E1 often plays a role of a space in which (1.1) is expected to define a

continuous process we now state the theorem which involves characterization of the maximal
time of existence of E1+ε-solution in terms of E1-norm even in a certain critical case. This
is significant for applications as any ‘better’ estimate may be often impossible to find.

Theorem 1.10. Suppose that Assumption 1.1, 1.2 hold, F is of the class L(ε, ρ, γ(ε), η, Cη)
relative to {Eα, α ∈ [0, 1 + µ)}, τ ∈ R, uτ ∈ Eτε and u = u(·, τ, uτ ) is E1+ε-solution of (1.1)
on a maximal interval of existence [τ, Tuτ ). Assume also (1.16).
i) If F is subcritical or F is almost critical, then

(1.18) Tuτ <∞ implies lim sup
t→T−uτ

‖u(t, τ, uτ )‖E1 =∞.

ii) In either case when F is subcritical, almost critical, or F is critical, Tuτ < ∞ implies
that there does not exist even one sequence tn → T−uτ , for which {u(tn, τ, uτ )} converges in
E1; in particular the map [τ, Tuτ ) 3 t→ u(t) ∈ E1 cannot be uniformly continuous.

Note that in Theorem 1.10 for F subcritical, almost critical, or critical, we have that

(1.19) Tuτ <∞ implies lim sup
t→T−uτ

‖u(t)‖E1+ε =∞.

However, the E1+ε-estimate may not be easy to find in applications.
It is next reasonable to generalize the notion of E1+ε-solution and investigate a possibility

of continuing E1+ε-solution even though its E1+ε-norm may blow up.

Definition 1.11. Suppose that F is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈
[0, 1 + µ)}, τ > 0, v0 ∈ Eτε and Iτ ⊂ R is an interval of the form [τ, a) or [τ,∞).
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We say that U : Iτ → E0 ∪ E1+ε is a piecewise-E1+ε-solution of (1.1) on Iτ if and only
if U(τ) = uτ and, for each T ∈ Iτ \ {τ}, there exist a number NT ∈ N and a partition
τ = τ0 < τ1 < ... < τNT < T = τNT+1 of [τ, T ] such that

(1.20) ‖U(t)− U(τi−1)‖E0

t→τ−i−1−→ 0, i = 2, ..., NT + 1,

(1.21) lim sup
t→τ−i−1

‖U(t)‖E1+ε =∞ , i = 2, ..., NT + 1,

(1.22) U ∈ L∞loc((τi−1, τi), E1+ε), i = 1, ..., NT + 1,

(1.23) (t− τi−1)ε‖U(t)‖E1+ε

t→τ+
i−1−→ 0, i = 1, ..., NT + 1,

(1.24) U(τi−1) = uτi−1
, i = 1, ..., NT + 1,

(1.25) U(t) = U(t, τi−1)uτi−1
+

∫ t

τi−1

U(t, s)F (s,U(s))ds, t ∈ (τi−1, τi), i = 1, ..., NT + 1.

If the interval Iτ = [τ, a) is finite, U : [τ, a) → E0 ∪ E1+ε is a piecewise-E1+ε-solution of
(1.1) on Iτ = [τ, a) and a is a limit of a strictly increasing sequence {τi, i ∈ N} of times such
that lim supt→τ−i ‖U(t)‖E1+ε =∞, then a is called an accumulation time of singular times.

Below we describe when E1+ε-solution can be continued as a piecewise-E1+ε-solution.

Theorem 1.12. Suppose that Assumptions 1.1, 1.2 are satisfied and F is of the class
L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 +µ)}. Suppose additionally that (1.16) holds, E1

is reflexive and, given any τ ∈ R, uτ ∈ Eτε ,

(1.26) sup
t∈[τ,T )

‖u(t)‖E1 <∞

whenever T ∈ (τ,∞) and E1+ε-solution u = u(·, τ, uτ ) of (4.19) exists for all t ∈ [τ, T ).
Finally suppose that

when τ ∈ R, uτ ∈ E1 and Tuτ <∞, the map [τ, Tuτ ) 3 t −→ u(t) ∈ E0,

where u = u(·, τ, uτ ) is E1+ε-solution of (1.1), is uniformly continuous.
(1.27)

Under these assumptions, given τ ∈ R, uτ ∈ E1 and having the unique E1+ε-solution
u = u(·, τ, Tuτ ) of (1.1) for which Tuτ <∞, there exist a ∈ (Tuτ ,∞] and the unique extension
U : [τ, a) → E1 of u such that U is a piecewise-E1+ε-solution of (1.1) on [τ, a) and either
a =∞ or a is an accumulation time of singular times.

The proofs of the above results will be given in Section 2. In Section 3 we discuss sufficient
conditions for Assumptions 1.1, 1.2 in terms of A(t). In Section 4 we show how the abstract
results work in applications.

Acknowledgement. This work has been carried out while the second author visited Depar-
tamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo-Campus de São Carlos, Brazil. He would like to acknowledge the great hospi-
tality of the people from this Institute.
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2. Proofs of abstract results

2.1. Uniqueness and Hölder continuity of E1+ε-solution: proof of Theorem 1.6.
Given −∞ < τ < T <∞ we define

(2.1) MT
τ := {ψ ∈ L∞loc((τ, T ], E1+ε) : lim

t→τ+
(t− τ)ε‖ψ(t)‖E1+ε = 0}.

Theorem 1.6 will be a consequence of the following two lemmas.

Lemma 2.1. Suppose that Assumptions 1.1, 1.2 hold, F is of the class L(ε, ρ, γ(ε), η, Cη)
relative to {Eα, α ∈ [0, 1 +µ)}, u ∈MT

τ and (1.6) is valid for t ∈ (τ, T ] with some uτ ∈ E0 .
Then u ∈ Cν([δ, T ], E1+θ) for any δ ∈ (τ, T ), ν ∈ (0, ν∗) and ν∗ = min{γ(ε), µ} − θ > 0.

Proof: Due to Assumptions 1.1, 1.2, given a bounded time interval [−T, T ] ⊂ R and any
0 6 ζ 6 σ < 1 + µ, one can choose a positive constant M for which we have

(2.2) ‖U(t, τ)‖L(Eζ ,Eσ) 6M(t− τ)−(σ−ζ), T > t > τ > −T,

and, if 1 > σ − ζ > 0,

(2.3) ‖U(t, τ)− Id‖L(Eσ ,Eζ) 6M(t− τ)σ−ζ , T > t > τ > −T.

On the other hand, since u ∈MT
τ , for any δ > τ close enough to τ we have

(2.4) ‖u(t)‖E1+ε 6 (t− τ)−ε, t ∈ (τ, δ),

in which case letting c̃ = c(η + Cη) we deduce from (1.5) that

(2.5) ‖F (s, u(s)‖Eγ(ε)
6 c̃((s− τ)−ερ + 1), t ∈ (τ, δ).

Not loosing generality we will assume that δ > τ is close enough to τ and (2.5) holds.
Since u ∈MT

τ and δ > τ then ‖u‖L∞((δ,T ),E1+ε) 6 cδ and by (1.5) we conclude that

(2.6) mδ := ‖F (t, u(t))‖L∞((δ,T ),Eγ(ε)) <∞.

For τ < δ 6 t 6 t+ h 6 T from the variation of constants formula we infer that

‖u(t+ h)− u(t)‖E1+θ
6 ‖(U(t+ h, τ)− U(t, τ))uτ‖E1+θ

+

∫ t+h

t

‖U(t+ h, s)F (s, u(s))‖E1+θ
ds+

∫ t

δ

‖(U(t+ h, s)− U(t, s))F (s, u(s))‖E1+θ
ds

+

∫ δ

τ

‖(U(t+ h, s)− U(t, s))F (s, u(s))‖E1+θ
ds =: J1 + J2 + J3 + J4.

Choosing arbitrary

(2.7) ε̂ ∈ (θ, µ) ∩ (θ, γ(ε))

and applying (2.2)-(2.3) we get for J1 = ‖(U(t+ h, t)− Id)U(t, τ)uτ‖E1+θ

J1 6 ‖U(t+ h, t)− Id‖L(E1+ε̂,E1+θ)‖U(t, τ)‖L(E0,E1+ε̂)‖uτ‖E0

6M2hε̂−θ(t− τ)−1−ε̂‖uτ‖E0 6M2hε̂−θ(δ − τ)−1−ε̂‖uτ‖E0 .
(2.8)
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Using (2.2), (2.6), (2.7) we also obtain

J2 =

∫ t+h

t

‖U(t+ h, s)‖L(Eγ(ε),E1+θ)‖F (s, u(s))‖Eγ(ε)
ds

6Mmδ

∫ t+h

t

(t+ h− s)γ(ε)−θ−1ds 6Mmδ(γ(ε)− θ)−1(T − τ)γ(ε)−ε̂hε̂−θ.

(2.9)

On the other hand, by (2.3), (2.6) and (2.7) we have

J3 6
∫ t

δ

‖U(t+ h, t)− Id‖L(E1+ε̂,E1+θ)‖U(t, s)‖L(Eγ(ε),E1+ε̂)‖F (s, u(s))‖Eγ(ε)
ds

6M2mδ

∫ t

δ

hε̂−θ(t− s)γ(ε)−1−ε̂ds 6M2(γ(ε)− ε̂)−1mδh
ε̂−θ(t− δ)γ(ε)−ε̂

6M2(γ(ε)− ε̂)−1mδh
ε̂−θ(T − τ)γ(ε)−ε̂,

(2.10)

whereas due to (2.5) we get

J4 6
∫ δ

τ

‖U(t+ h, t)− Id‖L(E1+ε̂,E1+θ)‖U(t, s)‖L(Eγ(ε),E1+ε̂)‖F (s, u(s))‖Eγ(ε)
ds

6 c̃M2

∫ δ

τ

hε̂−θ(t− s)γ(ε)−1−ε̂((s− τ)−ερ + 1)ds

6 c̃M2hε̂−θ
(∫ t

τ

(t− s)γ(ε)−1−ε̂(s− τ)−ερds+

∫ t

τ

(t− s)γ(ε)−1−ε̂ds

)
6 c̃M2hε̂−θ

(
B(γ(ε)− ε̂, 1− ερ)

(Tuτ − τ)γ(ε)−ε̂

(δ − τ)ερ
+ (γ(ε)− ε̂)−1(Tuτ − τ)γ(ε)−ε̂

)
.

(2.11)

As a consequence of the above estimates for any δ > τ close enough to τ there exists c̄ > 0
such that for each τ < δ 6 t 6 t + h 6 T we have ‖u(t + h)− u(t)‖E1+θ

6 c̄hε̂−θ. Recalling
that ε̂ could be any number satisfying (2.7) we get the result. �

Lemma 2.2. If ϕ, ϕ̃ ∈MT
τ , uτ ∈ E0 and (1.6) is valid in (τ, T ] both for u = ϕ and u = ϕ̃,

then ϕ, ϕ̃ are identical on (τ, T ].

Proof: By assumption we have

‖ϕ(t)− ϕ̃(t)‖E1+ε 6 cCηM

∫ t

τ

(t− s)γ(ε)−1−ε‖ϕ(s)− ϕ̃(s)‖E1+εds

+ cηM

∫ t

τ

(t− s)γ(ε)−1−ε‖ϕ(s)− ϕ̃(s)‖E1+ε(‖ϕ(s)‖ρ−1
E1+ε

+ ‖ϕ̃(s)‖ρ−1
E1+ε

)ds, t ∈ (τ, T ].

Since ϕ, ϕ̃ ∈MT
τ , given ξ ∈ (0, 1), there is a certain h ∈ (0, ξ) such that

(t− τ)ε‖ϕ(t)‖E1+ε + (t− τ)ε‖ϕ̃(t)‖E1+ε 6 ξ, t ∈ (τ, τ + h).

Using this and restricting t to the interval (τ, τ + h) where h ∈ (0, ξ) we obtain

(t− τ)ε‖ϕ(t)− ϕ̃(t)‖E1+ε

6 cCηMB(γ(ε)− ε, 1− ε)ξγ(ε)−ε sup
s∈(τ,τ+h)

(s− τ)ε‖ϕ(s)− ϕ̃(s)‖E1+ε

+ ξρ−1+γ(ε)−ερ2cηMB(1− ερ, γ(ε)− ε) sup
s∈(τ,τ+h)

(s− τ)ε‖ϕ(s)− ϕ̃(s)‖E1+ε .
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We remark that the inequality above will hold true if we replace its left hand side by
sups∈(τ,τ+h)(s − τ)ε‖ϕ(s) − ϕ̃(s)‖E1+ε . On the other hand recalling that ρ > 1, γ(ε) > ρε
and choosing ξ > 0 small enough we can ensure that the right hand side above is less than
1
2

sups∈(τ,τ+h)(s−τ)ε‖ϕ(s)−ϕ̃(s)‖E1+ε . Consequently sups∈(τ,τ+h)(s−τ)ε‖ϕ(s)−ϕ̃(s)‖E1+ε = 0
and thus ϕ = ϕ̃ in [τ, τ + h] for some h > 0.

Now, if τ ∗ ∈ (τ, τ + h] is such that ϕ(τ ∗) = ϕ̃(τ ∗) then applying the variation of constants
formula with the initial time τ ∗ and with the initial value ϕ(τ ∗) = ϕ̃(τ ∗) we get

ϕ(t)− ϕ̃(t) =

∫ t

τ∗
U(t, s)(F (s, ϕ(s)− F (s, ϕ̃(s))ds in [τ ∗, T ].

Hence, letting c∗ = sups∈[τ∗,T ](‖ϕ(s)‖ρ−1
E1+ε

+ ‖ϕ̃(s)‖ρ−1
E1+ε

),

‖ϕ(t)− ϕ̃(t)‖E1+ε 6 cM(Cη + ηc∗)

∫ t

τ∗
(t− s)γ(ε)−1−ε‖ϕ(s)− ϕ̃(s)‖E1+εds in [τ ∗, T ]

and by singular Gronwall’s inequality we conclude that ϕ and ϕ̃ coincide. �

2.2. Proof of Theorem 1.7. Let us fix an interval I = (t0 − ξ, t0 + ξ) around t0 such that
(1.2) holds with ζ = γ(ε) and σ = 1 + ε. Let us also choose an interval J centered at t0
such that I \ J is the union of two intervals of length l > 0.

We first note that if δ∗ ∈ (0, l), τ ∈ J , δ ∈ (0, 1] ∩ (0, δ∗), v ∈ C((τ, τ + δ], E1+ε),
λ(v, t) := sups∈(τ,t]{(s − τ)ε‖v(s)‖E1+ε}, R > 0, t ∈ (τ, τ + δ] and λ(v, t) 6 R then, by
Assumption 1.1 and (1.5), we have

‖U(t, s)F (s, v(s))‖E1+ε 6 ‖U(t, s)‖L(Eγ(ε),E1+ε)‖F (s, v(s))‖Eγ(ε)

6M(t− s)−1+γ(ε)−εc(η‖v(s)‖ρE1+ε
+ Cη)

(2.12)

and consequently

(t− τ)ε‖
∫ t

τ

U(t, s)F (s, v(s))ds‖E1+ε 6 cCηM(t− τ)ε
∫ t

τ

(t− s)−1+γ(ε)−εds

+ cηM(t− τ)ε
∫ t

τ

(t− s)−1+γ(ε)−ε(s− τ)−ρε[(s− τ)ε‖v(s)‖E1+ε ]
ρds

6 cMB(1− ρε, γ(ε)− ε)[Cη(t− τ)γ(ε) + ηλρ(v, t)] 6 cMBε,ρ[Cη(t− τ)γ(ε) + ηRρ].

(2.13)

Also, if v, ṽ ∈ C((τ, τ + δ], E1+ε), t ∈ (τ, τ + δ] and λ(v, t) 6 R, λ(ṽ, t) 6 R then, with a
similar usage of Assumption 1.1 and (1.4), we get

(t− τ)ε‖
∫ t

τ

U(t, s)[F (s, v(s))− F (s, ṽ(s))]ds‖E1+ε

6 cCηM(t− τ)ε
∫ t

τ

(t− s)−1+γ(ε)−ε(s− τ)−ε(s− τ)ε‖v(s)− ṽ(s)‖E1+εds

+ cηM(t− τ)ε
∫ t

τ

(t− s)−1+γ(ε)−ε(s− τ)−ρε
(
((s− τ)ε‖v(s)‖E1+ε)

ρ−1

+((s− τ)ε‖ṽ(s)‖E1+ε)
ρ−1
)

(s− τ)ε‖v(s)− ṽ(s)‖E1+εds.

Hence, letting

(2.14) Γε(t) := cMBε,ρ[Cη(t− τ)γ(ε)−ε + 2ηRρ−1],
8



we conclude that

(t− τ)ε‖
∫ t

τ

U(t, s)[F (s, v(s))− F (s, ṽ(s))]ds‖E1+ε

6 Γε(t) sup
s∈(τ,t]

{(s− τ)ε‖v(s)− ṽ(s)‖E1+ε}.
(2.15)

We now choose R0 > R > 0 and δ ∈ (0, 1] ∩ (0, δ∗) such that

cηMBε,ρR
ρ−1
0 =

1

8
and cCηMBε,ρδ

γ(ε)−ε = min
{R

8
,
1

4

}
.(2.16)

We also set r := R
4
6 R0

4
= 1

4(8cηMBε,ρ)
1
ρ−1

and, since limt→τ+ ‖(t − τ)εU(t, τ)w0‖E1+ε = 0 we

choose δ̄0 ∈ (0, δ] such that

(2.17) ‖(t− τ)εU(t, τ)w0‖E1+ε 6
R

2
, τ < t 6 τ + δ̄0.

For any fixed δ0 ∈ (0, δ̄0], uτ ∈ Bδ0
Eτε

(w0, r) let us consider the set

(2.18) K(R, τ) =
{
v ∈ C((τ, τ + δ0], E1+ε), sup

t∈(τ,τ+δ0]

{(t− τ)ε‖v(t)‖E1+ε} 6 R
}

and define d(v, ṽ) = supt∈(τ,τ+δ0]{(t − τ)ε‖v(t) − ṽ(t)‖E1+ε} for v, ṽ ∈ K(R, τ). Note that d
is a metric in K(R, τ) and that (K(R, τ), d) is a complete metric space.

We will next consider the map

(T v)(t) = U(t, τ)uτ +

∫ t

τ

U(t, s)F (s, v(s))ds, v ∈ K(R, τ), t ∈ (τ, τ + δ0].

Adapting Lemma 2.1 one can see that T v ∈ C((τ, τ + δ0], E1+ε) for v ∈ K(R, τ).
It then follows from (1.11), (2.13) and (2.16)-(2.17) that

‖(t− τ)ε(T v)(t)‖E1+ε 6 (t− τ)ε‖U(t, τ)uτ +

∫ t

τ

U(t, s)F (s, v(s))ds‖E1+ε

6‖(t− τ)εU(t, τ)uτ‖E1+ε + cM(t− τ)ε
∫ t

τ

(t− s)−1+γ(ε)−ε(η‖v(s)‖ρE1+ε
+ Cη)ds

6‖(t− τ)εU(t, τ)(uτ − ω0)‖E1+ε+‖(t− τ)εU(t, τ)ω0‖E1+ε

+cMηBε,ρR
ρ+cMCηBε,ρδ

γ(ε)
0

6r + ‖(t− τ)εU(t, τ)ω0‖E1+ε + cMηBε,ρR
ρ + cMCηBε,ρδ

γ(ε)−ε
0 δε0 6 R,

which yields that T takes K(R, τ) into K(R, τ). On the other hand, applying (2.14)-(2.16),
we get d(T v1, T v2) 6 1

2
d(v1, v2).

Consequently, due to the Banach fixed point theorem, we infer that T has the unique fixed
point u = u(·, τ, uτ ) in K(R, τ) and we now show that limt→τ+ ‖(t− τ)εu(t)‖E1+ε = 0.

Adapting (2.13), we have for each t ∈ (τ, τ + δ0] and the above fixed point u

(t− τ)ε‖u(t)‖E1+ε 6 (t− τ)ε‖U(t, τ)uτ‖E1+ε + cMBε,ρ[Cη(t− τ)γ(ε) + ηRρ−1λ(u, t)],

where by assumption, given any ξ > 0, we can choose h ∈ (0, ξ) such that for t ∈ (τ, τ + h)
we have (t− τ)ε‖U(t, τ)uτ‖E1+ε < ξ. Hence, we get

(t− τ)ε‖u(t)‖E1+ε 6 ξ + cMBε,ρ[Cηξ
γ(ε) + ηRρ−1λ(u, t)], t ∈ (τ, τ + h).
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Since the right hand side above is a nondecreasing function of t, we obtain

λ(u, t) 6 ξ + cMBε,ρ[Cηξ
γ(ε) + ηRρ−1λ(u, t)], t ∈ (τ, τ + h),

and, via (2.16), 7
8
λ(u, t) 6 ξ + cMBε,ρCηξ

γ(ε), t ∈ (τ, τ + h). This yields

(2.19) λ(u, t) = sup
s∈(τ,t]

{(s− τ)ε‖u(s)‖E1+ε} → 0 as t→ τ+,

which ensures that (t− τ)εu(t)→ 0 in E1+ε as t→ τ+.
Finally, letting u(τ) = uτ , we extend the fixed point u = u(·, τ, uτ ) constructed above to

the interval [τ, τ + δ0] and obtain E1+ε solution of (1.1). Since the uniqueness follows from
Theorem 2.2, part i) of Theorem 1.7 is proved.

Part ii) now follows from Corollary 2.3 below (see also Remark 2.4).

Corollary 2.3. Suppose that Assumptions 1.1, 1.2 hold, F : R×E1+ε → Eγ(ε) is continuous
and there exist constants ρ > 1, 0 < ε < min{1

ρ
, µ}, γ(ε) ∈ [ρε, 1) such that for each η > 0

there is a certain Cη > 0 and, moreover, for any bounded time interval I ⊂ R there exists
some c > 0 for which we have

‖F (t, v)− F (t, w)‖Eγ(ε)
6 c‖v − w‖E1+ε(η‖v‖

ρ−1
E1+ε

+ η‖w‖ρ−1
E1+ε

+ Cη), v, w ∈ E1+ε, t ∈ I,

and
‖F (t, v)‖Eγ(ε)

6 c(η‖v‖ρE1+ε
+ Cη), v, w ∈ E1+ε, t ∈ I.

Then, given any t0 ∈ R, τ in a certain interval J ⊂ R centered at t0 and given any r0 > 0,
there exists δ0 > 0 such that for any initial condition uτ ∈ Bδ0

Eτε
(0, r0) there exists the unique

E1+ε-solution u = u(·, τ, uτ ) of (1.1) on [τ, τ + δ0].

Proof: Letting w0 = 0 and coming back to the proof of Theorem 1.7 observe that given any
r0 > 0 one can now choose η > 0 such that r in (1.12) satisfies r > r0. Proceeding as in
the proof of Theorem 1.7 we obtain for any uτ ∈ Bδ0

Eτε
(0, r) the existence of E1+ε-solution

u = u(·, τ, uτ ) of (1.1) on [τ, τ + δ0]. �

Remark 2.4. If F is subcritical then not loosing generality one can assume that η > 0
in (1.4)-(1.5) can be chosen arbitrarily small. Indeed, given ρ > 1, ε ∈ (0, 1

ρ
), ε < µ,

γ(ε) ∈ (ρε, 1) we can choose ρ̃ > ρ close enough to ρ and we will have ε ∈ (0, 1
ρ̃
) and

γ(ε) ∈ (ρ̃ε, 1). Then η‖w‖ρ−1
E1+ε

can be estimated by η̃‖w‖ρ̃−1
E1+ε

+ cη̃,η, which yields (1.4)-(1.5)

with parameters ε, γ(ε) as before, ρ replaced by ρ̃ > ρ suitably close to ρ and η replaced by η̃,
which we can fix as small as we wish. Parameters ε, γ(ε) and c in (1.4)-(1.5) will remain
the same and the only difference will come from the replacement of Cη by Cη + cη̃,η, which
will not influence the heart of our consideration.

We now prove conditions (1.13)-(1.15). Using a similar argument as in (2.13), for θ ∈
(0, γ(ε)) ∩ (0, µ) and for the unique E1+ε-solution u = u(·, τ, uτ ) of (1.1) we get

(t− τ)θ‖u(t)‖E1+θ
6 (t− τ)θ‖U(t, τ)uτ‖E1+θ

+ (t− τ)θ
∫ t

τ

‖U(t, s)F (s, u(s))‖E1+θ
ds

6 (t− τ)θ‖U(t, τ)uτ‖E1+θ
+ cMCη(γ(ε)− θ)−1(t− τ)γ(ε)

+ ηcMB(1− ερ, γ(ε)− θ)( sup
τ<s6t

{(s− τ)ε‖u(s)‖E1+ε})ρ.
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Recalling that uτ ∈ Bδ0
Eτε

(w0, r)∩Eτθ and using (2.19) we conclude that (t−τ)θ‖u(t)‖E1+θ
→ 0

as t→ τ+, which proves (1.13).
For θ ∈ (0, γ(ε)) ∩ (0, µ) analogously as in (2.15) we next have

(t− τ)θ‖u(t, τ, u1
τ )− u(t, τ, u2

τ )‖E1+θ
6 (t− τ)θ‖U(t, τ)(u1

τ − u2
τ )‖E1+θ

+ (t− τ)θ
∫ t

τ

‖U(t, s)[F (s, u(s, τ, u1
τ ))− F (s, u(s, τ, u2

τ ))]‖E1+θ
ds

6 (t− τ)θ‖U(t, τ)(u1
τ − u2

τ )‖E1+θ

+ Γθ(t) sup
τ<s6τ+δ0

{(s− τ)ε‖u(s, τ, u1
τ )− u(s, τ, u2

τ )‖E1+ε},

(2.20)

where

Γθ(t) = cM(1+θ, γ(ε), T ) max{B(γ(ε)−θ, 1−ε), B(1−ρε, γ(ε)−θ)}[Cη(t−τ)γ(ε)−θ+2ηRρ−1].

Taking θ = ε we get

(t− τ)ε‖u(t, τ, u1
τ )− u(t, τ, u2

τ )‖E1+ε 6 (t− τ)ε‖U(t, τ)(u1
τ − u2

τ )‖E1+ε

+ Γε(t) sup
τ<s6τ+δ0

{(s− τ)ε‖u(s, τ, u1
τ )− u(s, τ, u2

τ )‖E1+ε}.

Since, by (2.16), Γε(τ + δ0) 6 1
2

and Γε(t) is increasing with respect to t we conclude that

sup
τ<s6τ+δ0

{(s− τ)ε‖u(s, τ, u1
τ )− u(s, τ, u2

τ )‖E1+ε} 6 2 sup
τ<s6τ+δ0

(s− τ)ε‖U(s, τ)(u1
τ − u2

τ )‖E1+ε .

Consequently, using the above inequality and (2.20) we get (1.14).
Assuming that 0 6 θ < min{γ(ε), µ} and limt→τ+(t− τ)θ‖U(t, τ)uτ − uτ‖E1+θ

= 0 we now
show that limt→τ+(t − τ)θ‖u(t, τ, uτ ) − uτ‖E1+θ

= 0, for which we first use the variation of
constants formula and (1.2), (1.5) to get for each t ∈ (τ, τ + δ0]

(t− τ)θ‖u(t)− uτ‖E1+θ

6 (t− τ)θ‖U(t, τ)uτ − uτ‖E1+θ
+ (t− τ)θ

∫ t

τ

‖U(t, s)F (s, u(s))‖E1+θ
ds

6 (t− τ)θ‖U(t, τ)uτ − uτ‖E1+θ

+ cM(t− τ)θ
∫ t

τ

(t− s)γ(ε)−1−θ(Cη + η(s− τ)−ερ‖(s− τ)εu(s)‖ρE1+ε
)ds

6 (t− τ)θ‖U(t, τ)uτ − uτ‖E1+θ
+ cCηMB(1− ρε, γ(ε)− θ)(t− τ)γ(ε)

+ cMηB(1− ρε, γ(ε)− θ)λρ(u, t).

(2.21)

Thus (1.15) is a consequence of (2.21) and (2.19). The proof of Theorem 1.7 is complete. �

2.3. Proof of Remark 1.8. Note first that E1+ε ⊂ Eτε as, whenever ϕ ∈ E1+ε by Assump-
tion 1.1 we have (t− τ)ε‖U(t, τ)ϕ‖E1+ε 6M(t− τ)ε‖ϕ‖E1+ε → 0 as t→ τ+. Now, if ψ ∈ E1

and E1+ε 3 ϕn
E1→ ψ then using again Assumption 1.1 we obtain

(t− τ)ε‖U(t, τ)ψ‖E1+ε 6M‖ψ − ϕn‖E1 + (t− τ)ε‖U(t, τ)ϕn‖E1+ε

and for each ζ > 0 we can choose n ∈ N and hζ > 0 such that the right hand side of the
above inequality becomes less than ζ uniformly for t ∈ (τ, τ+hζ). This proves that E1 ⊂ Eτε .
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By assumption ‖ϕ‖E
τ
ε
δ = 0 implies 0 = ‖U(t, τ)ϕ‖E0 → ‖ϕ‖E0 as t→ τ+ and we get ϕ = 0.

It then follows easily ‖ · ‖E
τ
ε
δ is the norm in Eτε .

Finally, if ψ ∈ {φ ∈ E1 : ‖φ−w0‖E1 6
r
M
} then sups∈(τ,τ+δ](s−τ)ε‖U(s, τ)(ψ−w0)‖E1+ε 6

M‖ψ − w0‖E1 6 r and, evidently, ψ ∈ Bδ
Eτε

(w0, r), which completes the proof of part i).
We can now apply Theorem 1.7 with w0 ∈ E1 and ensure that the time of existence δ0

can be then chosen uniformly in a certain neighborhood of a given point t0 ∈ R. Actually,
following the proof of existential part of Theorem 1.7 it suffices to ensure that the number
δ̄0(R) in (2.17) can be chosen uniformly with respect to τ ∈ J .

Choose w0 ∈ E1 and recall that E1+ε is dense in E1. Using (1.2) for any φ ∈ E1+ε we have

sup
τ<t6τ+δ̄0

‖(t− τ)εU(t, τ)w0‖E1+ε 6 sup
τ<t6τ+δ̄0

‖(t− τ)εU(t, τ)(w0 − φ)‖E1+ε

+ sup
τ<t6τ+δ̄0

‖(t− τ)εU(t, τ)φ‖E1+ε 6M‖w0 − φ‖E1 + δ̄ε0M‖φ‖E1+ε τ ∈ J .
(2.22)

Evidently φ can be chosen such that M‖w0−φ‖E1 6
R
4

and δ̄0 can be chosen (independently

of τ) such that δ̄ε0M‖φ‖E1+ε 6
R
4

in which case supτ<t6τ+δ̄0 ‖(t − τ)εU(t, τ)w0‖E1+ε 6
R
2

for
any τ ∈ J . �
Proof of Remark 1.9. We first prove that

(2.23) lim
t→τ+

‖(U(t, τ)− I)ψ‖Eα = 0 for ψ ∈ Eα, α ∈ [0, 1 + µ).

For this observe that ‖(U(t, τ) − I)φ‖Eα 6 M(t − τ)β−α‖φ‖Eβ → 0 as t → τ+ whenever

φ ∈ Eβ, 0 6 α < β < 1 + µ. On the other hand, if Eβ 3 φn
Eα→ ψ ∈ Eα then

‖(U(t, τ)− I)ψ‖Eα 6 (M + 1)‖ψ − φn‖Eα + ‖(U(t, τ)− I)φn‖Eα .

For ζ > 0 one can thus choose n ∈ N and hζ > 0 such that the right hand side of the above
inequality will be less than ζ uniformly for t ∈ (τ, τ + hζ), which proves (2.23).

We next infer that

(2.24) lim
t→τ+

‖u(t)− U(t, τ)uτ‖Eα = 0 for α ∈ [0, 1), uτ ∈ Eα.

Indeed, since u is E1+ε-solution, for δ > τ close enough to τ and t ∈ (τ, δ) we have
‖u(t)‖E1+ε 6 (t − τ)−ε. Via (1.5) also ‖F (s, u(s)‖Eγ(ε)

6 c̃((s − τ)−ερ + 1) for t ∈ (τ, δ).

Whenever γ(ε) 6 α < 1 and t ∈ (τ, δ) we can thus estimate ‖u(t) − U(t, τ)uτ‖Eα by∫ t
τ
‖U(t, s)‖L(Eγ(ε),Eα)‖F (s, u(s))‖Eγ(ε)

ds and get

‖u(t)− U(t, τ)uτ‖Eα 6
∫ t

τ

M(t− s)γ(ε)−αc̃((s− τ)−ερ + 1)ds

6 c̃M
(
(t− τ)1+γ(ε)−α−ερB(1 + γ(ε)− α, 1− ερ) + (1 + γ(ε)− α)−1(t− τ)1+γ(ε)−α) ,

where the right hand side tends to 0 as t → τ+. Connecting (2.23) and (2.24) we get that
limt→τ+ ‖u(t)− uτ‖Eα = 0 whenever uτ ∈ Eα and α ∈ [0, 1). By (1.15) and (2.23) the latter
is also true for α = 1 and using Theorem 1.6 we obtain i).

For the proof of ii) note that given uτ ∈ E1+ε one can actually find a fixed point of

(T v)(t) = U(t, τ)uτ +
∫ t
τ
U(t, s)F (s, v(s))ds in a complete metric space

Kξ(R, τ) = {v ∈ C([τ, τ + ξ], E1+ε) : ‖|v − uτ‖| 6 R}
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with some R > 0, ξ > 0 and ‖|v‖| = supt∈[τ,τ+ξ] ‖v(t)‖E1+ε . Indeed, given v ∈ Kξ(R, τ), we
have by (2.23), (1.2) and (1.5) that for a suitably small ξ > 0

‖(Tv)(t)− uτ‖E1+ε 6 ‖U(t, τ)uτ − uτ‖E1+ε +

∫ t

τ

‖U(t, s)‖L(Eγ(ε),E1+ε)‖F (s, v(s))‖Eγ(ε)
ds

6 ‖U(t, τ)uτ − uτ‖E1+ε +M

∫ t

τ

(t− s)γ(ε)−1−εc(η‖v(s)‖ρE1+ε
+ Cη)ds

6 ‖U(t, τ)uτ − uτ‖E1+ε + c(ηRρ + Cη)M(γ(ε)− ε)−1ξγ(ε)−ε 6 R, t ∈ [τ, τ + ξ].

Hence T takes Kξ(R, τ) into itself. On the other hand, (1.2), (1.4) imply for v, ṽ ∈ Kξ(R, τ)

‖(Tv)(t)− (T ṽ)(t)‖E1+ε 6
∫ t

τ

‖U(t, s)‖L(Eγ(ε),E1+ε)‖F (s, v(s))− F (s, ṽ(s))‖Eγ(ε)
ds

6 c(2ηRρ−1 + Cη) sup
t∈[τ,τ+ξ]

‖v(t)− ṽ(t)‖E1+εM(γ(ε)− ε)−1ξγ(ε)−ε, t ∈ [τ, τ + ξ],

so that for ξ > 0 small enough T : Kξ(R, τ) → Kξ(R, τ) is a contraction. By uniqueness
this ensures that E1+ε-solution of (1.1) can be viewed as a fixed point of T in Kξ(R, τ) and
hence it is right-continuous in E1+ε at τ . Combining this with Theorem 1.6 we get ii).

Finally, applying ii) and (1.14) with θ = 0 we obtain iii). �

2.4. Proofs of continuation results. In what follows we prove Theorems 1.10, 1.12.
Proof of part i) in Theorem 1.10 Recalling Remark 1.8 we assume that Tuτ < ∞,
lim supt→T−uτ ‖u(t, τ, uτ )‖E1 < r∗ for some r∗ > 0 and for any n ∈ N large enough we define

τn := Tuτ − 1
n
, uτn := u(Tuτ − 1

n
, τ, uτ ). We then consider the Cauchy problem

(2.25) u̇(t) + A(t)u(t) = F (t, u(t)), t > τn, u(τn) = uτn ,

where initial conditions uτn belong both to E1+ε and to a ball BE1(0, r∗) in E1 of radius r∗.
Also, the initial times τn converge to Tuτ .

We then have sups∈(τn,τn+δ](s − τn)ε‖U(s, τn)uτn‖E1+ε 6 M‖uτn‖E1 6 Mr∗ and hence

uτn ∈ Bδ
Eτnε

(0,Mr∗).

Due to Theorem 1.7 i)-ii) there is the unique E1+ε-solution of (2.25) on [τn, τn+δ0], where δ0

does not depend on n (see Remark 1.8 ii)). By uniqueness, the latter solution coincides with
u(·, τ, uτ ) on [τn, Tuτ ] for each n sufficiently large. From this we infer that, by concatenation,
u = u(·, τ, uτ ) can be continued as an E1+ε-solution of (1.1) onto the interval [τ, Tuτ + δ0),
which contradicts the definition of Tuτ . �
Proof of part ii) in Theorem 1.10 Assume that Tuτ <∞ and let τn → T−uτ be such that
u(τn, τ, uτ ) → w0 in E1 as n → ∞. Then sups∈(τn,τn+δ](s − τn)ε‖U(s, τn)(uτn − w0)‖E1+ε 6
M‖uτn − w0‖E1 . Hence, if r is chosen as in Theorem 1.7 relative to w0 and N ∈ N is such
that ‖uτn −w0‖E1 6

r
M

for n > N then uτn ∈ Bδ
Eτnε

(ω0, r) for n > N and δ > 0 close to zero.

Due to Theorem 1.7 (see Remark 1.8 ii)) there is the unique E1+ε-solution of (2.25) on
[τn, τn+δ0], where δ0 does not depend on n. Again, by uniqueness, this solution coincides with
u(·, τ, uτ ) on [τn, Tuτ ] for each n sufficiently large and thus u = u(·, τ, uτ ) can be continued
as an E1+ε-solution of (1.1) onto [τ, Tuτ + δ0), which contradicts definition of Tuτ . �
Proof of (1.19) Assume that Tuτ < ∞ and let lim supt→T+

uτ
‖u(t, τ, uτ )‖E1+ε < r∗ for some

r∗ > 0. For any n ∈ N large enough define τn := Tuτ − 1
n
, uτn := u(Tuτ − 1

n
, τ, uτ ) and

consider the Cauchy problem (2.25).
13



Since uτn belongs to a ball BE1+ε(0, r
∗) in E1+ε of radius r∗ > 0 around zero, then for

any δ > 0 small enough we have sups∈(τn,τn+δ](s − τn)ε‖U(s, τn)uτn‖E1+ε 6 δεM‖uτn‖E1+ε 6
δεMr∗. Hence, if r > 0 is chosen relatively to w0 = 0 as in Theorem 1.7 and δε ∈ (0, r

r∗M
),

we observe that uτn belongs to Bδ
Eτnε

(0, r).

As a consequence of Theorem 1.7 (see Remark 1.8 ii)) the problem (2.25) has the unique
E1+ε-solution on [τn, τn + δ0], where δ0 does not depend on n. By uniqueness the latter
solution coincides with u(·, τ, uτ ) on [τn, Tuτ ] for each n large enough and u = u(·, τ, uτ ) can
be continued as an E1+ε-solution of (1.1) onto [τ, Tuτ + δ0), which leads to contradiction. �
Proof of Theorem 1.12 By assumption, given τ ∈ R and uτ ∈ Eτε , we obtain from
Theorem 1.7 that there exists the unique E1+ε-solution u of (1.1) on the maximal interval
of existence [τ, Tuτ ) and we denote u0 := uτ , Tu0 := Tuτ .

If Tu0 < ∞ then, using (1.26)-(1.27) and reflexivity of E1, we conclude that there exists

a certain u1 ∈ E1 such that limt→T−u0
‖u(t, τ, uτ ) − u1‖E0 = 0 and u(t, τ, uτ )

t→T−u0⇀ u1 weakly

in E1. Thus u(t, τ, uτ ) can be extended to a function U0 defined on [τ, Tu0 ] and satisfying

U0 ∈ L∞loc((τ, Tu0), E1+ε), U0(τ) = uτ = u0, U0(t)
E0→ U0(Tu0) = u1 ∈ E

Tu0
ε as t→ T−u0

and

U0(t) = U(t, τ)u0 +

∫ t

τ

U(t, s)F (s,U0(s))ds for t ∈ (τ, Tu0).

By Theorem 1.7 there exists the unique E1+ε-solution u(·, Tu0 , u1) of the Cauchy problem

u̇(t) + A(t)u(t) = F (t, u(t)), t > Tu0 , u(Tu0) = u1,

which can be continued on the maximal interval of existence [Tu0 , Tu1). Now, if Tu1 < ∞,
repeating the above argument we find u2 ∈ E1 such that limt→T−u1

‖u(t, Tu0 , u1)− u2‖E0 = 0

and u(t, Tu0 , u1)
t→T−u1⇀ u2 weakly in E1. Thus u(t, Tu0 , u1) can be extended to a function

U1 defined on [Tu0 , Tu1 ] and satisfying U1 ∈ L∞loc((Tu0 , Tu1), E1+ε), U1(Tu0) = u1, U1(t)
E0→

U1(Tu1) = u2 ∈ E
Tu1
ε as t→ T−u1

and

U1(t) = U(t, Tu0)u1 +

∫ t

Tu0

U(t, s)F (s,U1(s))ds for t ∈ (Tu0 , Tu1).

If there is k ∈ N such that, proceeding as above, we obtain in a (k + 1)-th step that
Tuk = ∞, then function U defined on [τ,∞) by concatenations of Uj, j = 0, . . . , k + 1 is an
extension of u to a piecewise-E1+ε-solution on [τ,∞).

Otherwise, proceeding inductively we will obtain a sequence of maps Uj on [τ, Tuj ], j =
0, 1, . . ., and by concatenations we again define a piecewise-E1+ε-solution on [τ, a), with
a :=

∑∞
j=0 Tuj . In this latter case it is evident that either a = ∞ or, if a < ∞, a is

accumulation time of singular times Tj :=
∑j

l=0 Tul , j ∈ N.
The above construction ensures that the extension of E1+ε-solution to a piecewise-E1+ε-

solution is uniquely defined and hence the proof is complete. �

3. Linear nonautonomous parabolic problems

In what follows X denotes a Banach space. We will discuss sufficient conditions for
Assumptions 1.1, 1.2 in terms of A(t).
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Definition 3.1. The family {A(t) : t ∈ R} of closed operators A(t) : DX ⊂ X −→ X,
which are defined on the same dense subset DX of the Banach space X, is locally uniformly
sectorial (of the class LUS(DX , X) for short) if and only if for each t ∈ R the complex
half plane {λ ∈ C : Reλ 6 0} is contained in the resolvent set ρ(A(t)) of A(t) and for any
bounded time interval I ⊂ R there exists a certain M > 0 such that

(3.1) ‖(λI − A(t))−1‖L(X) 6
M

1 + |λ|
, Reλ 6 0, t ∈ I.

If {A(t) : t ∈ R} is of the class LUS(DX , X) then, for each s ∈ R, −A(s) generates
asymptotically decaying C0 analytic semigroup {e−A(s)t : t > 0} in X. Actually, for a family
{A(t) : t ∈ R} of the class LUS(DX , X) we have that Reσ(A(s)) > a > 0 and

‖e−A(t)s‖L(X) 6 Ce−as, s > 0, ‖A(t)e−A(t)s‖L(X) 6
C1

s
e−as, s > 0,

where a, C, C1 > 0 are independent of s > 0 and t in bounded time intervals (see [26, §1.1].
Consequently, fractional powers Aα(t) can be defined as the inverse of A−α(t) : X → R(X),

(3.2) A−α(t) =
1

Γ(α)

∫ ∞
0

sα−1e−A(t)sds, α > 0.

Also, one can consider the associated fractional power spaces Xα(t), α > 0,

(3.3) Xα(t) := D(Aα(t)) with the norm ‖φ‖Xα(t) = ‖Aα(t)φ‖X for φ ∈ Xα, α > 0,

where for α = 0 we set A0(t) := Id, X0(t) := X. As in [26, §1.9, (1.56)] we then have

(3.4) ‖Aα(t)e−A(t)s‖L(X) 6 cαe
−ass−α, s > 0,

where cα neither depends on s > 0 nor on t varying on bounded time intervals.
Since A(t) coincides with the inverse of A−1(t), then X1(t) coincides as a set with DX for

every t ∈ R. Concerning topologies we have the following result.

Proposition 3.2. If {A(t) : t ∈ R} is of the class LUS(DX , X) and I ⊂ R is such that

(3.5) sup
t,s∈I
‖A(t)A−1(s)‖L(X) <∞,

then X1(t) are independent of t, except for norms, which are uniformly equivalent on I.

Proof: Evidently, for the graph norms we have

‖φ‖X1(t) = ‖A(t)φ‖X = ‖A(t)A−1(s)A(s)φ‖X 6 c‖A(s)φ‖X = c‖φ‖X1(s), t, s ∈ I. �
If A(t) belongs to a class of operators having locally uniformly bounded purely imaginary

powers, that is if A(t) is a positive operator satisfying

(3.6) ∃ε>0 sup
s∈[−ε,ε]

‖Ais(t)‖L(X) <∞,

then fractional power spaces can be characterized as (see [28], also [5])

(3.7) X(1−θ)α+θβ = [Xα(t), Xβ(t)]θ, 0 < θ < 1, 0 6 α < β <∞.

Remark 3.3. It is known that (3.6) holds in many applications (see [8, 11, 19, 24, 25, 28]).

Definition 3.4. We will say that the family of positive operators {A(t) : t ∈ R} is of the
class BIP(X) if and only if, given any t ∈ R, A(t) has the property (3.6).
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Corollary 3.5. If {A(t) : t ∈ R} is of the class LUS(DX , X)∩BIP(X) and I ⊂ R is such
that (3.5) holds then Xθ(t), θ ∈ [0, 1], are independent of t ∈ I, except for norms, which are
uniformly equivalent on I.

Following [3], given {A(t) : t ∈ R} of the class LUS(DX , X), we consider the extrapolated
space X−1(t) generated by (X,A(t)), where

X−1(t) is the completion of (X, ‖A−1(t) · ‖X).

We then extend A(t) to a closed operator in X−1(t) (with the same notation).
Whenever t, s ∈ R are such that A−1(s)A(t), A−1(t)A(s) : DX ⊂ X → X are bounded

operators, which happens in particular when the domains of the adjoint operators A′(t) and
A′(s) are the same, then X−1(t) coincides with X−1(s) as for some c1, c2 > 0 we have

c1‖A−1(s)x‖X 6 ‖A−1(t)x‖X 6 c2‖A−1(s)x‖X , x ∈ X,
(see [4]). This leads to the following counterpart of Proposition 3.2 for extrapolated spaces.

Proposition 3.6. If {A(t) : t ∈ R} is of the class LUS(DX , X) and A−1(t)A(s) : DX ⊂
X → X are uniformly bounded for t, s ∈ I; i.e. for the closure A−1(t)A(s) we have

(3.8) sup
t,s∈I
‖A−1(t)A(s)‖L(X) <∞,

then X−1(t) are independent of t ∈ I except for norms which are uniformly equivalent on I.

Due to [3, Proposition V.1.31], if {A(t) : t ∈ R} is of the class LUS(DX , X) then (closed
extension of) A(t) belongs to a class Lis(X,X−1(t)) of linear isomorphisms from X into
X−1(t). Furthermore, {λ ∈ C : Reλ 6 0} ⊂ ρ(A(t)) and given any bounded time interval I

(3.9) ‖(λI − A(t))−1‖L(X−1(t)) 6
M

1 + |λ|
, Reλ 6 0, t ∈ I.

for some M > 0. Letting Y (t) = X−1(t) and applying (3.2) one can associate with
(Y (t), A(t)) the fractional power scale {Y α(t) : α > 0} and consider, as in [3, p. 266],

(3.10) Xα(t) := Y α+1(t), α ∈ [−1,∞),

which is the extrapolated fractional power scale of order 1 generated by (X,A(t)).

Corollary 3.7. If {A(t) : t ∈ R} is of the class LUS(DX , X)∩ BIP(X) and I ⊂ R is such
that (3.5), (3.8) hold, then for each θ ∈ [−1, 1] spaces Y θ+1(t) = Xθ(t) are independent of
t ∈ I, except for norms, which are uniformly equivalent on I; that is for every θ ∈ [−1, 1]

‖φ‖Xθ(t) 6 c‖φ‖Xθ(s), s, t ∈ I,

for some c > 0 and every φ from the set Xθ(t) = Xθ(s).

Given t0 ∈ R, α0 ∈ [0, 1) and letting µ0 := 1− α0 we next define

(3.11) Eα := Y α+α0(t0), ‖ · ‖Eα = ‖Aα+α0(t0) · ‖Y (t0), α ∈ [0, 1 + µ0].

Lemma 3.8. Suppose that {A(t) : t ∈ R} is of the class LUS(DX , X)∩BIP(X), conditions
(3.5), (3.8) hold on each bounded time interval I ⊂ R and {Eα, α ∈ [0, 1 + µ0]} is defined as
in (3.11), where µ0 is a strictly positive number. Then,
i) {A(t) : t ∈ R} is of the class LUS(DE0 , E0) with DE0 = E1,
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ii) for any bounded time interval I ⊂ R and σ ∈ [0, 1 + µ0] there exist constants c, c′, c′′ > 0
such for each t, s ∈ I we have

(3.12) ‖φ‖Eσ 6 c′′‖Aσ(t)φ‖E0 6 c‖Aσ(s)φ‖E0 6 c′‖φ‖Eσ , φ ∈ Eσ.
Proof: Recall that {Y α(t) : α > 0} is the fractional power scale generated by (Y (t), A(t)).
Hence (realization of) A(t) can be viewed as a closed densely defined operator in Y α0(t) with
the domain Y α0+1(t). The resolvent set of A(t) in this setting will still contain {λ ∈ C :
Reλ 6 0} and for each bounded time interval I there will be a constant M > 0 such that

(3.13) ‖(λI − A(t))−1φ‖Y α0 (t) 6
M

1 + |λ|
‖φ‖Y α0 (t), Reλ 6 0, t ∈ I, φ ∈ Y α0(t).

Part i) is thus a consequence of Corollary 3.7 and (3.9).
Concerning part ii) we first observe that, due to Corollary 3.7, if φ ∈ Eσ then φ belongs

to each of the sets Y σ+α0(t), Y σ+α0(s) as these sets coincide for t, s ∈ R and Aσ(t)φ,Aσ(s)φ
are the elements of E0 = Y α0(t0). Actually Aσ(t), Aσ(s) are one-to-one from Eσ onto E0.

Given a bounded time interval I ⊂ R we can thus use equivalence of norms stated in
Corollary 3.7 to get, for some constants c̄, c̃, ĉ depending on I but not on t, s ∈ I, that

‖Aσ(t)φ‖E0 = ‖Aσ(t)φ‖Y α0 (t0) 6 c̄‖Aσ(t)φ‖Y α0 (t) = c̄‖φ‖Y σ+α0 (t) 6 c̃‖φ‖Y σ+α0 (s)

= c̃‖Aσ(s)φ‖Y α0 (s) 6 ĉ‖Aσ(s)φ‖Y α0 (t0) = ĉ‖Aσ(s)φ‖E0

whenever t, s ∈ I. Similarly, using again the equivalence of norms, we also have

‖φ‖Eσ = ‖φ‖Y σ+α0 (t0) 6 c̃‖φ‖Y σ+α0 (t) = c̃‖Aσ(t)φ‖Y α0 (t) 6 ĉ‖Aσ(t)φ‖Y α0 (t0) = ĉ‖Aσ(t)φ‖E0 ,

‖Aσ(s)φ‖E0 = ‖Aσ(s)φ‖Y α0 (t0) 6 c̃‖Aσ(s)φ‖Y α0 (s) = c̃‖φ‖Y σ+α0 (s) 6 ĉ‖φ‖Y σ+α0 (t0) = ĉ‖φ‖Eσ ,
which proves ii). �

Corollary 3.9. Under the assumptions of Lemma 3.8 we have that for any bounded time
interval I ⊂ R and σ ∈ [0, 1 + µ0] there exists a constant c > 0 such that

(3.14) ‖Aσ(t)A−σ(s)‖L(E0) 6 c for each t, s ∈ I.
Proof: It suffices to note that Aσ(t), Aσ(s) are one-to-one from Eσ onto E0 and use (3.12). �

We will next assume that {A(t) : t ∈ R} is of the class LUS(DX , X) and, in addition,

(3.15) ∃µ∈(0,1] ∀T>0 ∃C>0 ∀t,τ,s∈[−T,T ] ‖(A(t)− A(τ))A−1(s)‖L(X) 6 C|t− τ |µ.
Following [3, 15, 20, 23, 26], we will consider in X a nonautonomous linear problem

(3.16) u̇(t) + A(t)u(t) = 0, t > τ, u(τ) = uτ .

Recall that a continuous function [τ,∞) 3 t→ u(t) ∈ E0 is a classical solution of (3.16) if it
is continuously differentiable in (τ,∞), u(t) ∈ DX for each t > τ and u satisfies (3.16). Recall
also that a two parameter family {U(t, τ) : (t, τ) ∈ R2, t > τ} of maps U(t, τ) : E0 → E0

is a continuous process in E0 provided that U(τ, τ) = Id, U(t, σ)U(σ, τ) = U(t, τ) for
t > σ > τ ∈ R and {(t, s) ∈ R2 : t > s} × V 3 (t, τ, v) 7→ U(t, τ)v ∈ E0 is a continuous map.

The following result is known (see [15, §2] for the proof).

Proposition 3.10. If {A(t) : t ∈ R} is of the class LUS(DX , X) and (3.15) holds then,
there exists a continuous process {U(t, τ) : t > τ ∈ R} ⊂ L(X) in X such that given τ ∈ R
and uτ ∈ X, the map [τ,∞) 3 t→ u(t) = U(t, τ)uτ ∈ X is a classical solution of (3.16).

To describe smoothing properties of the process we state the following result.
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Proposition 3.11. Under the assumptions of Proposition 3.10 for each bounded time inter-
val I = [−T, T ] there is a positive constant N such that with µ as in (3.15) we have

(3.17) ‖Aσ(t)U(t, τ)A−ζ(τ)‖L(X) 6 N(t− τ)ζ−σ, 0 6 ζ 6 σ < 1 + µ, −T 6 τ < t 6 T.

For the proof of (3.17) we refer the reader to [26] (see also [15, Theorem 2.2]). To obtain
another smoothing property we will need the following additional assumption:

(3.18) ∀1+µ>ξ>0 ∀T>0 ∃c>0 ∀t,τ∈[−T,T ] ‖Aξ(t)A−ξ(τ)‖L(X) 6 c.

Proposition 3.12. If {A(t) : t ∈ R} is of the class LUS(DX , X) and (3.15) holds then

(3.19) ∀T>0 ∀ 1>ζ>σ>0
1>ζ−σ>δ>0

∃N>0 ∀−T6τ6t6T ‖Aσ(t)[U(t, τ)− Id]A−ζ(τ)‖L(X) 6 N(t− τ)δ.

Actually, if also (3.18) is satisfied then

(3.20) ∀T>0 ∀1+µ>ζ>σ>0
1>ζ−σ

∃N>0 ∀−T6τ6t6T ‖Aσ(t)[U(t, τ)− Id]A−ζ(τ)‖L(X) 6 N(t− τ)ζ−σ.

Proof: From [26, (1.53)] we infer that

U(t, τ)A−ζ(τ) = e(t−τ)A(t)A−ζ(τ) +

∫ t

τ

e(t−s)A(t)[A(s)− A(t)]U(s, τ)A−ζ(τ)ds.

We next rewrite Aσ(t)[U(t, τ)− Id]A−ζ(τ) as a sum J1 + J2, where

J1 = Aσ(t)[e(t−τ)A(t) − Id]A−ζ(τ) and J2 =

∫ t

τ

Aσ(t)e(t−s)A(t)[A(s)− A(t)]U(s, τ)A−ζ(τ)ds.

From (3.15) we obtain that (3.5) holds on any bounded time interval I ⊂ R. Hence, under
the assumptions that {A(t) : t ∈ R} is of the class LUS(DX , X) and (3.15) holds, one
obtains as in [26, §1.9, (1.59)] that

(3.21) ∀1>ζ>ξ>0 ∀T>0 ∃c>0 ∀t,τ∈[−T,T ] ‖Aξ(t)A−ζ(τ)‖L(X) 6 c.

If 1 > ζ > σ > 0 and 0 < δ < ζ − σ < 1 then applying [21, Theorem 1.4.3] we can
estimate ‖J1v‖X for every v ∈ X by 1

δ
c1−δ(t− τ)δ‖Aδ+σ(t)A−ζ(τ)v‖X , which via (3.21) can

be bounded on [−T, T ] by 1
δ
cc1−δ(t− τ)δ‖v‖X .

If 1 + µ > ζ > σ > 0 and (3.18) holds, then choosing δ̃ = ζ − σ and applying [21,

Theorem 1.4.3] we estimate ‖J1v‖X for each v ∈ X by 1
δ
c1−δ̃(t − τ)δ̃‖Aδ̃+σ(t)A−ζ(τ)v‖X =

1
ζ−σc1−ζ+σ(t− τ)ζ−σ‖Aζ(t)A−ζ(τ)v‖X , which due to (3.18) can be next estimated on [−T, T ]

by 1
ζ−σcc1−ζ+σ(t− τ)ζ−σ‖v‖X .

Consequently, not assuming (3.18) we obtain that ‖J1‖L(X) 6 1
δ
cc1−δ(t−τ)δ, 0 < δ < ζ−σ,

whereas assuming (3.18) ‖J1‖L(X) 6 1
ζ−σcc1−ζ+σ(t− τ)ζ−σ.

The integral J2 is equal to
∫ t
τ
Aσ(t)e(t−s)A(t)[(A(s) − A(t))A−1(s)]A(s)U(s, τ)A−ζ(τ)ds,

where by (3.4), (3.15) we have ‖Aσ(t)e(t−s)A(t)[(A(s)−A(t))A−1(s)]‖L(X) 6 c(t−s)−σ(t−s)µ.
Note that if 0 6 ζ 6 1 we obtain from (3.17) that ‖A(s)U(s, τ)A−ζ(τ)‖L(X) 6 c(s − τ)ζ−1,
whereas if 1 + µ > ζ > 1, then A(s)U(s, τ)A−ζ(τ) = A(s)U(s, τ)A−1(τ)A1−ζ(τ) and

‖A(s)U(s, τ)A−ζ(τ)‖L(X) 6 ‖A(s)U(s, τ)A−1(τ)‖L(X)‖A1−ζ(τ)‖L(X) 6 c,

as in this case A1−ζ(τ) = A−(ζ−1)(τ) = 1
Γ(ζ−1)

∫∞
0
sζ−2e−A(τ)sds is a bounded operator and

‖A1−ζ(τ)‖L(X) 6
C

Γ(ζ − 1)

∫ ∞
0

sζ−2e−asds = Ca1−ζ .
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Since t, τ vary in a bounded interval we thus infer that for 0 6 ζ 6 1

‖J2‖L(X) 6 c̃

∫ t

τ

(t− s)µ−σ(s− τ)ζ−1ds 6 c̃(t− τ)µ−σ+ζB(1 + µ− σ, ζ)

= c̃B(1 + µ− σ, ζ)(t− τ)µ(t− τ)ζ−σ 6 c̄(t− τ)ζ−σ,

whereas for 1 + µ > ζ > 1

‖J2‖L(Xα) 6 c̃

∫ t

τ

(t− s)µ−σds = ĉ(t− τ)1+µ−σ = ĉ(t− τ)1+µ−ζ(t− τ)ζ−σ 6 c̄(t− τ)ζ−σ.

Combining the above estimates we get the result. �

Theorem 3.13. Suppose that {A(t) : t ∈ R} is of the class LUS(DX , X) ∩ BIP(X),
conditions (3.5), (3.8) hold on each bounded time interval I ⊂ R and {Eα, α ∈ [0, 1 + µ0]}
is defined as in (3.11). Suppose furthermore that

(3.22) ∃µ∈(0,µ0] ∀T>0 ∃C>0 ∀t,τ,s∈[−T,T ] ‖(A(t)− A(τ))A−1(s)‖L(E0) 6 C|t− τ |µ.
Under these assumptions:

i) there exists a continuous process {U(t, τ) : t > τ ∈ R} ⊂ L(E0) defined by (3.16) in
E0 such that given τ ∈ R and uτ ∈ E0, the map [τ,∞) 3 t → u(t) = U(t, τ)uτ ∈ E0 is a
classical solution of (3.16); furthermore,
ii) ‖U(t, τ)‖L(Eζ ,Eσ) 6M(t− τ)ζ−σ, 0 6 ζ 6 σ < 1 + µ, −T 6 τ < t 6 T , and

iii) ‖U(t, τ)−Id‖L(Eζ ,Eσ) 6M(t−τ)ζ−σ, 1+µ > ζ > σ > 0, 1 > ζ−σ > 0, −T 6 τ < t 6 T ,
where constant M in ii)-iii) can depend on ζ, σ, T but does not depend on t, τ ∈ [−T, T ].

Proof: Due to Lemma 3.8 we obtain that {A(t) : t ∈ R} is of the class LUS(DE0 , E0) with
DE0 = E1. From this and (3.22) we obtain i) applying Proposition 3.10 with X = E0.

From Proposition 3.11 (applied with X = E0), for each bounded time interval I ⊂ R there
is then a positive constant N such that

(3.23) ‖Aσ(t)U(t, τ)A−ζ(τ)‖L(X) 6 N(t− τ)ζ−σ, 0 6 ζ 6 σ < 1 + µ, t ∈ I.

Since Aζ(τ) is one-to-one from Eσ onto E0, (3.23) can be rewritten equivalently as

(3.24) ‖Aσ(t)U(t, τ)φ‖E0 6 N(t− τ)ζ−σ‖Aζ(τ)φ‖E0 , φ ∈ Eζ ,
and by (3.12) also as ‖[U(t, τ)φ‖Eσ 6M(t− τ)ζ−σ‖φ‖Eζ , φ ∈ Eζ , which gives ii).

Finally, by Corollary 3.9 we can use Proposition 3.12 with X = E0 and obtain from (3.20)

(3.25) ∀T>0 ∀1+µ>ζ>σ>0
1>ζ−σ

∃N>0 ∀−T6τ6t6T ‖Aσ(t)[U(t, τ)− Id]A−ζ(τ)‖L(E0) 6 N(t− τ)ζ−σ.

Inequality in (3.25) can be rewritten equivalently as

‖Aσ(t)[U(t, τ)− Id]φ‖E0 6 N(t− τ)ζ−σ‖Aζ(τ)φ‖E0 , φ ∈ Eζ ,
and by (3.12) also as ‖[U(t, τ)− Id]φ‖Eσ 6M(t− τ)ζ−σ‖φ‖Eζ , φ ∈ Eζ , which gives iii). �

Note that condition (3.22) can be expressed equivalently as in the proposition below.

Proposition 3.14. Suppose {A(t) : t ∈ R} is of the class LUS(DX , X) ∩ BIP(X), (3.5),
(3.8) hold on each bounded time interval I ⊂ R and {Eα, α ∈ [0, 1 + µ0]} is as in (3.11).

Then (3.22) is equivalent to

(3.26) A(·) ∈ Cµ
loc(R, L(E1, E0)).
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Proof: For any bounded time interval I ⊂ R condition (3.22) implies that

‖(A(t)− A(τ))φ‖E0 6 C|t− τ |µ‖A(s)φ‖E0 and ‖A(t)φ‖E0 6 c‖A(s)φ‖E0

whenever t, τ, s ∈ I, φ ∈ DE0 . Due to (3.12) we then have ‖(A(t) − A(τ))φ‖E0 6 C̃|t −
τ |µ‖φ‖E1 for t, τ ∈ I, which proves that A(·) ∈ Cµ(I, L(E1, E0)). On the other hand,
if A(·) ∈ Cµ

loc(I, L(E1, E0)) then, given a bounded time interval I, we have that A(·) ∈
Cµ(I, L(E1, E0)). Combining this with (3.12) we obtain ‖(A(t) − A(τ))ψ‖E0 6 C|t −
τ |µ‖ψ‖E1 6 C̃|t− τ |µ‖A(s)ψ‖E0 , t, τ, s ∈ I, ψ ∈ E1. Letting φ = A−1(s)ψ we get (3.22). �

Under the assumptions of Theorem 3.13 both Theorems 1.6 and 1.7 apply provided that
the required assumption on F holds. In applications we often have some ν0 ∈ (0, 1) such
that for each bounded time interval I ⊂ R and B bounded in E1+ε there is c > 0 such that

‖F (t, v)− F (s, w)‖E0 6 c(|t− s|ν0 + ‖v − w‖E1+ε), t, s ∈ I, v, w ∈ B.(3.27)

Then E1+ε-solution will have the properties of a classical solution; see Proposition 3.15.

Proposition 3.15. Suppose {A(t) : t ∈ R} is of the class LUS(DX , X) ∩ BIP(X), (3.5),
(3.8) hold on each bounded time interval I ⊂ R and {Eα, α ∈ [0, 1 + µ0]} is as in (3.11).
Assume also (3.22), (3.27) and that F is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈
[0, 1 + µ)}.

Then {A(t) : t ∈ R} is of the class LUS(DE0 , E0) with DE0 = E1 and Theorems 1.6, 1.7
apply. The unique E1+ε-solution, u = u(·, τ, uτ ), is of the class C1((τ, τ+δ0], E0), u(t) ∈ DE0

for t ∈ (τ, τ + δ0] and u̇(t) + A(t)u(t) = F (t, u(t)) for each t ∈ (τ, τ + δ0].

Proof: By Theorem 3.13 we know that Theorems 1.7 and 1.6 apply. Hence there is the unique
E1+ε-solution of (1.1), u = u(·, τ, uτ ) and u ∈ Cν

loc((0, Tuτ ), E1+ε) for some ν ∈ (0, 1). The
latter property and (3.27) yield that F (·, u(·)) ∈ Cσ

loc((0, Tuτ ), E0) for σ = min{ν0, ν}. The
result now follows as in [23, §5.7, Theorem 7.1] and [15, §2.3]). �

Remark 3.16. Under assumptions of Proposition 3.15, following [30, Theorem 3.10] and
letting F1,σ(τ, τ + δ0], E0) as in [30, p. 5] we have for E1+ε-solution u = u(·, τ, uτ ) of (1.1)

A(·)u(·) ∈ C((τ, τ + δ0], E0),
d

dt
u(·) ∈ F1,σ(τ, τ + δ0], E0).

4. Applications

In what follows we show how the abstract results apply in sample problems.

4.1. Nonautonomous wave equation with structural damping. In this example, fol-
lowing [16, 11, 13, 12], we consider the initial boundary value problem of the form:

(4.1)

{
utt + η(t)(−∆)

1
2ut + νut + (−∆)u = f(t, u), t > 0, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω ut(0, x) = v0(x), x ∈ Ω, u(t, x) = 0, t > 0, x ∈ ∂Ω,

where (u0, v0) ∈ H1
0 (Ω)× L2(Ω) and −∆ is the negative Dirichlet Laplacian in L2(RN).

Assumption 4.1. Suppose Ω is a bounded smooth domain in RN , N > 3, ν > 0 and

(4.2) η ∈ Cµ
loc(R, (0,∞)) for some µ ∈ (0, 1].
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We remark that due to (4.2), given any bounded time interval I ⊂ R, there are constants
κ1, κ2 > 0, such that η(t) ∈ [κ1, κ2] for each t ∈ I. Letting v = u̇ we rewrite (4.1) in the form

(4.3)
d

dt
[ uv ] + A(t) [ uv ] = F (t, [ uv ]), t > 0, [ uv ]t=τ = [ uτvτ ] ,

where A(t) and F (t, [ uv ]) can be viewed in matrix form as

(4.4) A(t) =
[

0 −I
−∆ η(t)(−∆)

1
2 +νI

]
, F (t, [ uv ]) =

[
0

fe(t,u)

]
and f e denotes a Nemitskĭı operator associated with f .

We set in this example X = H1
0 (Ω)×L2(Ω), DX = (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω) and, referring

to [14, proof of Lemma 1 iii)] and [11, Proposition 1], we conclude that {A(t) : t ∈ R} is of
the class LUS(DX , X) ∩ BIP(X). Furthermore, for any t, s ∈ R we obtain

A(t)A−1(s) =
[

0 −I
−∆ η(t)(−∆)

1
2 +νI

] [
η(s)(−∆)−

1
2 +ν(−∆)−1 (−∆)−1

−I 0

]
=
[

I 0

(η(s)−η(t))(−∆)
1
2 I

]
,

A−1(s)A(t) =
[
η(s)(−∆)−

1
2 +ν(−∆)−1 (−∆)−1

−I 0

] [
0 −I
−∆ η(t)(−∆)

1
2 +νI

]
=
[
I (η(s)−η(t))(−∆)−

1
2

0 I

]
.

Consequently, for any bounded time interval I ⊂ R, we have

(4.5) sup
t,s∈I
‖A(t)A−1(s)‖L(X) = sup

t,s∈I
sup

‖
[
φ
ψ

]
‖X=1

‖
[

φ

(η(s)−η(t))(−∆)
1
2 φ+ψ

]
‖X 6 (1 + 2κ2),

(4.6) sup
t,s∈I
‖A−1(s)A(t)‖L(X) = sup

t,s∈I
sup

‖
[
φ
ψ

]
‖X=1

‖
[
φ+(η(s)−η(t))(−∆)−

1
2 ψ

ψ

]
‖X 6 (1 + 2κ2),

which are counterparts of (3.5) and (3.8).
Let {Zα, α > −1} be the extrapolated fractional power scale generated by (L2(Ω),−∆).

As in (3.11), choosing α0 = 0, we define the spaces Eα, α ∈ [0, 2]. Due to [11, Theorem 2]:

(4.7) Eα := Y α+α0(t0) = Z
α
2 × Z

α−1
2 , α ∈ [0, 2].

By [3], Z−α(t), α ∈ (0, 1), is viewed as completion of (L2(Ω), ‖(−∆)−α · ‖L2(Ω)).
With this set-up we now prove that

(4.8) A(·) ∈ Cµ
loc(R, L(E1, E0)) with E1 = H1

0 (Ω)× L2(Ω) and E0 = L2(Ω)×H−1(Ω),

where µ is as in (4.2). Indeed, given t, s ∈ [−T, T ] we immediately have

sup
‖
[
φ
ψ

]
‖E1

=1

‖[A(t)− A(s)]
[
φ
ψ

]
‖E0 = sup

‖
[
φ
ψ

]
‖E1

=1

∥∥∥[ 0

[η(t)−η(s)](−∆)
1
2 ψ

]∥∥∥
E0

= |η(t)− η(s)| sup
‖
[
φ
ψ

]
‖E1

=1

‖(−∆)
1
2ψ‖

Z−
1
2
6 c|t− s|µ.

Due to Proposition 3.14, (4.8) is equivalent with (3.22) and we can apply Theorem 3.13.

Proposition 4.2. Suppose that Assumption 4.1 holds and let Eα = Z
α
2 × Z

α−1
2 for α ∈

[0, 1 + µ), where µ is as in (4.2).
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Then there exists a continuous process {U(t, τ) : (t, τ) ∈ R2, t > τ ∈ R} ⊂ L(E0) associ-
ated in E0 = L2(Ω)×H−1

0 (Ω) with

(4.9)
d

dt
[ uv ] +

[
0 −I
−∆ η(t)(−∆)

1
2 +νI

]
[ uv ] = 0, t > 0, [ uv ]t=τ = [ uτvτ ] ,

and {U(t, τ) : (t, τ) ∈ R2, t > τ ∈ R} enjoys the smoothing properties (1.2), (1.3).

Remark 4.3. Besides (4.8) we also have that A(·) ∈ Cµ
loc(R, L(E2, E1)) with E2 = H2(Ω)∩

H1
0 (Ω)×H1

0 (Ω), E1 = H1
0 (Ω)× L2(Ω) as whenever t, s ∈ [−T, T ] (4.2) yields

sup
‖
[
φ
ψ

]
‖E2

=1

‖[A(t)− A(s)]
[
φ
ψ

]
‖E1 = sup

‖
[
φ
ψ

]
‖E2

=1

∥∥∥[ 0

[η(t)−η(s)](−∆)
1
2 ψ

]∥∥∥
E1

= |η(t)− η(s)| sup
‖
[
φ
ψ

]
‖E2

=1

‖(−∆)
1
2ψ‖Z0 6 c|t− s|µ.

Assuming N > 3 we now define a number

ρc :=
N + 2

N − 2
,

which in this example plays a role of a critical exponent for initial data in H1
0 (Ω)× L2(Ω).

Remark 4.4. To keep the notation short let us adapt throughout the rest of the paper the
Landau symbols O(ϕ), o(ϕ). Namely we will write that h(t, x, s) = O(ϕ(s)) if, given a
bounded time interval I ⊂ R, |h(t, x, s)| 6 c|ϕ(s)| for some constant c > 0, which does not
depend on s ∈ R, x ∈ Ω and t ∈ I. We will also write that h(t, x, s) = o(ϕ(s)) if, given a

bounded time interval I ⊂ R, lim|s|→∞
|h(t,x,s)|
ϕ(s)

= 0 uniformly with respect to x ∈ Ω and t ∈ I.

Proposition 4.5. Suppose that N > 3, f ∈ C(R2,R) has partial derivative f ′u ∈ C(R×R,R)

and Eα = Z
α
2 × Z α−1

2 for α ∈ [0, 1 + µ), where µ is as in (4.2).
i) If f ′s(t, s) = O(cη +η|s|ρ−1) for some η > 0 and ρ ∈ (1, ρc), then the map F (t, [ uv ]) in (4.4)
is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + µ)} and is subcritical.
ii) If f ′s(t, s) = O(cη + η|s|ρc−1) for some η > 0 and i) does not apply, then the map F (t, [ uv ])
in (4.4) is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + µ)} and is critical.
iii) If f ′s(t, s) = o(|s|ρc−1) and i) does not apply, then F (t, [ uv ]) in (4.4) is of the class
L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + µ)} and is almost critical.

Proof: Parts i)-ii) follow similarly as [11, Lemma 3 and Corollary 2]. Also iii) can be proved
analogously as in [13, Lemma 3.1 and Corollary 3.1]. We thus omit the details. �

Corollary 4.6. Suppose that Assumption 4.1 holds and let Eα = Z
α
2×Z α−1

2 for α ∈ [0, 1+µ),
where µ is as in (4.2). Suppose also that the assumptions of Proposition 4.5 are satisfied; in
particular that f ′s(t, s) = O(cη + η|s|ρc−1) for some η > 0.

Then Theorem 1.7 applies and, given any τ ∈ R, [ uτvτ ] ∈ H1
0 (Ω) × L2(Ω), the abstract

counterpart (4.3)-(4.4) of (4.1) has the unique E1+ε-solution [ uv ] = [ uv ] (·, τ, [ uτvτ ]) defined on
the maximal interval of existence [τ, Tuτ ,vτ ).

With additional assumption on f there will be functional L decreasing along [ uv ] (t, τ, [ uτvτ ])

(4.10) L ([ w1
w2 ]) =

1

2
‖w2‖2

L2(Ω) +
1

2
‖(−∆)

1
2w1‖2

L2(Ω) −
∫

Ω

∫ w1

0

f(s)dsdx, [ w1
w2 ] ∈ E1.
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Lemma 4.7. Suppose that f does not depend on t; that is f = f(u).
Then L in (4.10) takes bounded subsets of E1 into bounded subsets of R and, given E1+ε-

solution [ uv ] of (4.3) on the interval Iτ , L ([ uv ]) is nonincreasing for t ∈ Iτ .
If

(4.11) lim sup
|s|→∞

f(s)

s
< λ1,

where λ1 is the first positive eigenvalue of the negative Dirichlet Laplacian in L2(Ω), then L
is also bounded from below and for some constants d1, d2 > 0,

(4.12) ‖[ uv ] (t, τ, [ uτvτ ])‖E1
6 d1L([ uτvτ ]) + d2.

Proof: Multiplying the first equation in (4.1) by v = ut, we have

d

dt
(L ([ uv ])) = −η(t)‖(−∆)

1
4v‖2

L2(Ω) − ν‖v‖2
L2(Ω) 6 0,(4.13)

which yields that L([ uv ]) 6 L([ uτvτ ]) as long as the solution exists. On the other hand, using
(4.11), we obtain for any δ > 0 small enough that −

∫
Ω

∫ w1

0
f(s)dsdx is bounded from below

by −λ1−δ
2
‖w1‖2

L2(Ω) −Nδ|Ω| for some Nδ > 0. Consequently

L([ w1
w2 ]) >

δ

2λ1

‖(−∆)
1
2w1‖2

L2(Ω) +
1

2
‖w2‖2

L2(Ω) −Nδ|Ω|, [ w1
w2 ] ∈ E1,

and the result follows easily. This proves (4.12) for smooth solutions, e.g. for solutions with
smooth initial data which can be obtained within [26, Theorem 7] due to Remark 4.3. With
(1.14)θ=0 (see Remark 1.9 iii)) it then extends to E1+ε-solutions and the proof is complete. �

Theorem 1.10 now leads to the following conclusion.

Corollary 4.8. Suppose that Assumption 4.1 holds and assume that f ∈ C1(R,R) does not
depend on time variable, (4.11) is satisfied and f ′s(s) = o(|s|ρc−1). Then, given τ ∈ R and
[ uτvτ ] ∈ E1 = H1

0 (Ω)× L2(Ω), there exists the unique global E1+ε-solution of (4.1).

Suppose finally that we have f ′s(s) = O(1 + |s|ρc−1) but not f ′s(s) = o(|s|ρc−1). Note that
(1.19) is rather uneasy to verify as an E1+ε-estimate can hardly be derived. Nonetheless,
since we know (4.12) and, in addition,

(−∆)−
1
2 v̇ + η(t)v + ν(−∆)−

1
2v + (−∆)

1
2u = (−∆)−

1
2f(u),

we infer that u ∈ W 1,1((0, Tuτ ,vτ ), L
2(Ω)), u̇ ∈ W 1,1((0, Tuτ ,vτ ), H

−1(Ω)) whenever Tuτ ,vτ <∞
and the map [0, Tuτ ,vτ ) 3 t −→

[
u(t,uτ ,vτ )
v(t,uτ ,vτ )

]
∈ E0 = L2(Ω)×H−1(Ω) is uniformly continuous

(see [10, Theorem I.2.2]). Thus (1.26)-(1.27) hold and Theorem 1.12 applies.

Corollary 4.9. Suppose that Assumption 4.1 holds, f ∈ C1(R,R) does not depend on time
variable, f ′s(s) = O(1 + |s|ρc−1) and (4.11) is satisfied.

Whenever τ ∈ R, [ uτvτ ] ∈ E1 are such that Tuτ ,vτ is finite, there exist a ∈ (Tuτ ,vτ ,∞] and
an extension U : [τ, a) → E1 of maximally defined E1+ε-solution of (4.1) such that U is a
piecewise-E1+ε-solution on [τ, a) and a =∞ or a is an accumulation time of singular times.
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4.2. Nonautonomous parabolic problems. Given

(4.14) A(t) = (−1)m
∑
|σ|62m

aσ(t, x)Dσ, t ∈ R, x ∈ Ω,

(4.15) Bj =
∑
|σ|6mj

bjσ(x)Dσ, where j = 1, . . . ,m, mj ∈ {0, 1, . . . , 2m− 1}, x ∈ ∂Ω,

and adapting the notion of a regular parabolic initial boundary value problem we say that
{(A(t), {Bj},Ω, ∂Ω), t ∈ R} is of the class RPIBVP of regular parabolic initial boundary
value problems of order 2m if (A(t), {Bj},Ω, ∂Ω, α) is a strongly α-regular elliptic boundary
value problem of class C0 and order 2m for every t ∈ R as in [7, p. 655] and, in addition,

there exists µ ∈ (0, 1] such that for each bounded time interval I ⊂ R
and for any |σ| 6 2m map I 3 t→ aσ(t, ·) ∈ C(Ω,R) is of the class

Cµ(I, C(Ω,R)); in addition, whenever |σ| = 2m, modulus of continuity

of the maps Ω 3 x→ aσ(t, x) ∈ R can be chosen uniformly for t ∈ I.

(4.16)

We will next consider spaces Hs
p(Ω) as in [28]. For p = 2 they are Hilbert spaces and will

be denoted by Hs(Ω). Following [28] we also define

Hs
p,{Bj}(Ω) = {φ ∈ Hs

p(Ω) : ∀i∈{j: mj<s− 1
p} Biφ|∂Ω

= 0}.

Assuming that {(A(t), {Bj},Ω, ∂Ω), t ∈ R} is of the class RPIBVP we have the estimate

(4.17) ‖ϕ‖H2m
p (Ω) 6 c∗(‖A(t)ϕ‖Lp(Ω) + ‖ϕ‖Lp(Ω)), ϕ ∈ H2m

p,{Bj}(Ω), t ∈ I,
where I ⊂ R is arbitrarily chosen bounded time interval. We emphasize that c∗ > 0 actually
depends on Ω, m, N , p, α, moduli of continuity of the top order coefficients of A(t) with
t ∈ I, coefficients of boundary operators Bj and certain constants related to the notion of
α-regular elliptic boundary value problem which are specified in [7, Theorems 12.1] (see also
[1, 2]). Thus the constant c∗ in (4.17) is independent of t in a bounded time interval I ⊂ R.

We remark that, due to (4.14), (4.16) and properties of H2m
p (Ω)-norm we also have

(4.18) ‖A(t)ϕ‖Lp(Ω) 6 c∗‖ϕ‖H2m
p (Ω), ϕ ∈ H2m

p (Ω), t ∈ I,

where c∗ depends on Ω, m and L∞(I, C(Ω,R))-norms of coefficients of A(t).
With the above set-up we consider the 2m-th order problem

(4.19)

{
ut + (−1)m

∑
|ξ|,|ζ|6mD

ζ(aξ,ζ(t, x)Dξu) = f(t, x, u), t > 0, x ∈ Ω ⊂ RN ,

B0u = . . . = Bm−1u = 0, t > 0, x ∈ ∂Ω, u(0, x) = u0(x), x ∈ Ω.

Letting

A(t)u = (−1)m
∑
|ξ|,|ζ|6m

Dζ(aξ,ζ(t, x)Dξu)

we summarize conditions on (4.19).

Assumption 4.10. N > 2m, Ω ⊂ RN is a bounded C2m-domain, the coefficients aξ,ζ(t, ·) ∈
Cm(Ω,R) (|ξ| 6 m, |ζ| 6 m) of A(t) are such that the maps I 3 t → Dβaξ,ζ(t, ·) ∈ C(Ω,R)
(|β| 6 m) belong to the class Cµ(I, C(Ω,R)) and after rewriting A(t) in the form (4.14) we
have that {(A(t), {Bj},Ω, ∂Ω), t ∈ R} is of the class RPIBVP.
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Assumption 4.11. A(t), t ∈ R, are selfadjoint operators in L2(Ω) bounded from below
uniformly for t in bounded time intervals I ⊂ R; that is,

(4.20) 〈A(t)φ, φ〉L2(Ω) > s∗‖φ‖2
L2(Ω),

where s∗ > 0 can depend on I but not on t ∈ I.

Proposition 4.12. Suppose that Assumptions 4.10, 4.11 hold and

Eα = (H2m
{Bj}(Ω))′, α = 0, Eα = ([L2(Ω), H2m

{Bj}(Ω)]1−α)′, α ∈ (0, 1),

Eα = L2(Ω), α = 1, Eα = [L2(Ω), H2m
{Bj}(Ω)]α−1, α ∈ (1, 1 + µ).

(4.21)

Then there exists a continuous process associated in E0 = (H2m
{Bj}(Ω))′ with

(4.22)

{
ut + A(t)u = 0, t > 0, x ∈ Ω ⊂ RN ,

B0u = . . . = Bm−1u = 0, t > 0, x ∈ ∂Ω, u(0, x) = u0 ∈ L2(Ω),

and possessing smoothing properties (1.2), (1.3).

Proof: We will ensure that Theorem 3.13 applies with X = L2(Ω) and E0 = (H2m
{Bj}(Ω))′.

Note that, proceeding as in [17, Proposition 1.3.3], we get ‖(λI −A(t))φ‖X > 2−
1
2 |λ− s∗|

whenever φ ∈ H2
{Bj}(Ω), t ∈ I, Re(λ) 6 s∗. From this we conclude that {A(t) : t ∈ R} is

of the class LUS(DX , X). On the other hand, since purely imaginary powers are unitary
operators, we also have that {A(t) : t ∈ R} is of the class BIP(X).

We now fix a bounded time interval I ⊂ R and concentrate on points t ∈ I. Using (4.20),
Schwartz’s inequality and (4.17) we get with s∗ as in (4.20)

(4.23) ‖ϕ‖H2m(Ω) 6 c∗(1 + s−1
∗ )‖A(t)ϕ‖L2(Ω), ϕ ∈ H2m

{Bj}(Ω), t ∈ I.

Next, to obtain (3.5), we apply (4.18) with p = 2, ϕ = A−1(s)ψ, ψ ∈ L2(Ω), and use
(4.23) with t = s and ϕ = A−1(s)ψ to conclude that

‖A(t)A−1(s)ψ‖L2(Ω) 6 c∗‖A−1(s)ψ‖H2m(Ω) 6 c∗c
∗(1 + s−1

∗ )‖ψ‖L2(Ω), ψ ∈ L2(Ω), t, s ∈ I.

In the proof of (3.8) we adapt the idea of [4, Remark 6.6 (c)]. Since from above we have
supt,s∈I ‖A(s)A−1(t)‖L(L2(Ω)) 6 N , using this and selfadjointness of the operators we get

|〈φ,A−1(t)A(s)ψ〉L2(Ω)| 6 N‖φ‖L2(Ω)‖ψ‖L2(Ω), φ ∈ L2(Ω), ψ ∈ H2m
{Bj}(Ω), t, s ∈ I.

This ensures that the set {A−1(t)A(s)ψ : t, s ∈ I, ψ ∈ H2m
{Bj}(Ω), ‖ψ‖L2(RN ) 6 1} is bounded

in L2(Ω) and hence ‖A−1(t)A(s)‖L(L2(Ω)) 6 c̄, where c̄ > 0 does not depend on t, s ∈ I.
Letting α0 = 0, we define next spaces Eα, α ∈ [0, 1 + µ0] = [0, 2] as in (3.11), which are

characterized here as in (4.21). To ensure that

(4.24) A(·) ∈ Cµ
loc(R, L(E1, E0)) with E1 = L2(Ω) and E0 = (H2m

{Bj}(Ω))′
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we observe ‖(A(t) − A(s))φ‖(H2m
{Bj}

(Ω))′ = sup‖ψ‖
H2m
{Bj}

(Ω)
=1 |
∫

Ω
φ(A(t) − A(s))ψ| for t, s ∈ R,

φ ∈ L2(RN). Hence, for t, s in a bounded time interval I ⊂ R, using (4.14), (4.16) we get

sup
‖φ‖E1

=1

‖[A(t)− A(s)]φ‖E0 = sup
‖φ‖L2(Ω)=1

sup
‖ψ‖

H2m
{Bj}

(Ω)
=1

|
∫

Ω

φ(A(t)− A(s))ψ|

6 sup
‖φ‖L2(Ω)=1

sup
‖ψ‖

H2m
{Bj}

(Ω)
=1

∑
|σ|62m

‖aσ(t, ·)− aσ(s, ·)‖C(Ω,R)‖φ‖L2(Ω)‖Dσψ‖L2(Ω) 6 c|t− s|µ.

We can now apply Theorem 3.13 to get the result. �

Remark 4.13. Besides (4.24) we also have A(·) ∈ Cµ
loc(R, L(E2, E1)) with E2 = H2m

{Bj}(Ω),

E1 = L2(Ω) as by (4.16), whenever φ ∈ E2 and s, t vary in a bounded time interval I ⊂ RN ,

‖(A(t)− A(s))φ‖E1 6 ‖aσ(t, ·)− aσ(s, ·)‖C(Ω)

∑
|σ|62m

‖Dσφ‖E1 6 |t− s|µ‖φ‖E2 .

We now consider a nonlinear term, where we use the Landau symbols O(ϕ), o(ϕ) as in
Remark 4.4. For (4.19) with initial data in L2(Ω) a role of a critical exponent is played by

ρc :=
N + 4m

N
.

Proposition 4.14. Assume f, f ′u ∈ C(RN+2,R), let Eα, α ∈ [0, 1 + µ), be as in (4.21) and

(4.25) N > 4m.

i) If f ′s(t, x, s) = O(cη + η|s|ρ−1) for some η > 0 and ρ ∈ (1, ρc), then the map F (t, u) in
(4.19) is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + µ)} and is subcritical.
ii) If f ′s(t, x, s) = O(cη +η|s|ρc−1) for some η > 0 and i) does not apply, then the map F (t, u)
in (4.19) is of the class L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + µ)} and is critical.
iii) If f ′s(t, x, s) = o(|s|ρc−1) and i) does not apply, then F (t, u) in (4.19) is of the class
L(ε, ρ, γ(ε), η, Cη) relative to {Eα, α ∈ [0, 1 + µ)} and is almost critical.

Furthermore,
iv) parts i), ii) and iii) above hold with ε > 0 as small as we wish. Actually, whenever t
varies in a bounded time interval I ⊂ R, there exists a certain c > 0 such that

(4.26) ‖F (t, φ)‖E0 6 c(1 + ‖φ‖ρcE1
), φ ∈ E1.

Proof: Note that restricting time variable t to a bounded time interval I one needs to show
that there are constants c > 0, Cη > 0 and ε ∈ (0, 1

ρ
), ε < µ, ρε 6 γ(ε) < 1 such that

(4.27) ‖F (t, v)− F (t, w)‖Eγ(ε)
6 c‖v − w‖E1+ε

(
Cη + η‖v‖ρ−1

E1+ε
+ η‖w‖ρ−1

E1+ε

)
, v, w ∈ E1+ε.

We now describe admissible triples (ρ, ε, γ(ε)) for which (4.27) holds and prove that the map
F is indeed critical for ρ = ρc whilst it is subcritical for ρ ∈ (1, ρc).

Observe that due to (4.21) we have

E1+ε ↪→ Ls(Ω), ε ∈ [0, µ), 2mε− N

2
> −N

s
, s > 2,

Eγ(ε) ←↩ Lσ(Ω), γ(ε) ∈ [0, 1),
2N

N + 4m(1− γ(ε))
6 σ 6 2, σ > 1,

(4.28)
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where 2N
N+4m(1−γ(ε))

> 1 provided that γ(ε) > 4m−N
4m

=: γ̃ > 0.

By (4.28) ‖F (t, v) − F (t, w)‖Eγ(ε)
is bounded by ĉ‖F (t, v) − F (t, w)‖

L
2N

N+4m(1−γ(ε)) (Ω)
and,

whenever f ′s(t, x, s) = O(cη + η|s|ρ−1), we have

‖F (t, v)− F (t, w)‖Eγ(ε)
6 c̃‖|v − w|(cη + η|v|ρ−1 + η|w|ρ−1)‖

L
2N

N+4m(1−γ(ε)) (Ω)
.

Applying next Hölder’s inequality with q = N+4m(1−γ(ε))
N−4mε

, q′ = N+4m(1−γ(ε))
4m(1−γ(ε)+ε)

, recalling the

embedding H2mε(Ω) ↪→ L
2N

N−4mε (Ω), and assuming that

(4.29) H2mε(Ω) ↪→ L
N(ρ−1)

2m(1−γ(ε)+ε) (Ω),

we obtain

‖F (t, v)− F (t, w)‖Eγ(ε)
6 c̃‖v − w‖

L
2N

N−4mε (Ω)
‖cη + η|v|ρ−1 + η|w|ρ−1‖

L
N

2m(1−γ(ε)+ε) (Ω)

6 c‖v − w‖E1+ε(Cη + η‖v‖ρ−1
E1+ε

+ η‖w‖ρ−1
E1+ε

), v, w ∈ E1+ε,

where (4.29) requires that

(4.30) γ :=
(4mε−N)(ρ− 1) + 4m(1 + ε)

4m
> γ(ε) >

2m(1 + ε)−N(ρ− 1)

2m
=: γ.

We remark that γ > γ̃ and that for ρ ∈ (1, 1 + 4m
N

] and ε > 0 we have γ > γ and γ > ερ.

We also have 1 > γ if ε ∈ (0, N(ρ−1)
4mρ

).

The above ensures that any triple (ρ, ε, γ(ε)), where ρ ∈ (1, 1+ 4m
N

], ε ∈ (0,min{µ, N(ρ−1)
4mρ
})

and γ(ε) ∈ [ρε, γ] ∩ [max{0, γ}, γ] ∩ (γ̃, γ] =: I(ε) is admissible.

For any admissible triple (ρ, ε, γ(ε)) (4.30) implies ρ 6 N+4m−4mγ(ε)
N−4mε

, and since γ(ε) > ρε

we have ρ 6 N+4m−4mρε
N−4mε

, which holds if and only if ρ 6 N+4m
N

= ρc. Thus ρ = ρc cannot
be attained for any γ(ε) > ρcε and therefore ρ = ρc necessitates γ(ε) = ερc. Note that
γ|ρ=ρc = ερc; that is for ρ = ρc we have I(ε) = {ερc}. This completes the proof of i)-ii).

Note that having |f ′(t, x, s)| 6 O(cη + η|s|ρc−1) for each η > 0 we obtain (4.27) for any
η > 0, which leads to iii).

Describing admissible triples we have already ensured that ε > 0 can be chosen arbitrarily
close to zero. Actually we also have

‖F (t, v)− F (t, 0)‖E0 6 ĉ‖F (t, v)− F (t, 0)‖
L

2N
N+4m (Ω)

6 c̃‖|v|(cη + η|v|ρ−1)‖
L

2N
N+4m (Ω)

which leads to (4.26) as L2(Ω) ↪→ L
2Nρ
N+4m (Ω) for ρ ∈ (1, ρc]. �

Remark 4.15. Note that not assuming (4.25) in Proposition 4.14 we may not have i)-iii)
satisfied for ε > 0 arbitrarily small as stated in iv) (see [18, §3.1] for a similar proof).

Corollary 4.16. Suppose that Assumptions 4.10, 4.11 hold and spaces Eα, α ∈ [0, 1 + µ),
are as in (4.21). Suppose also that the asssumptions of Proposition 4.14 are satisfied; in
particular that f ′s(t, x, s) = O(cη + η|s|ρc−1) for some η > 0. Then Theorem 1.7 applies and,
hence, given any τ ∈ R, uτ ∈ L2(Ω), the initial boundary value problem (4.19) has the unique
E1+ε-solution u = u(·, τ, uτ ) defined on the maximal interval of existence [τ, Tuτ ).

We will now derive an L2(Ω)-estimate of the solutions.
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Lemma 4.17. Suppose that

(4.31) sf(t, x, s) 6 C(t, x)s2 +D(t, x), t ∈ R, x ∈ Ω,

for some C ∈ L∞loc(R× RN ,R) and D ∈ L1
loc(R, L1(Ω)).

If τ ∈ R, uτ ∈ L2(Ω), T ∈ (τ,∞) and E1+ε-solution u of (4.19) exists for t ∈ [τ, T ) then

(4.32) ‖u(t, τ, uτ )‖2
L2(RN ) 6 g(τ, ‖uτ‖L2(Ω), T ), t ∈ [τ, T ),

where g : R× [0,∞)× (0,∞)→ [0,∞) is a certain continuous function.

Proof: We restrict here time variable to [τ, T ), which allows us to choose the constant s∗ such
that (4.20) holds uniformly for t ∈ [τ, T ). We also define C∗ := sup(t,x)∈[τ,T )×Ω 2|C(t, x)|.

From (4.19), (4.20) and (4.31) we obtain for any λ ∈ (0, s∗) the estimate of the form

1

2

d

dt
‖u(t)‖2

L2(Ω) + (s∗ − C∗)‖u(t)‖2
L2(Ω) 6 ‖D(t, ·)‖L1(Ω), t ∈ [τ, T ).

Solving the above inequality we get

‖u(t)‖2
L2(Ω) 6 ‖uτ‖2

L2(Ω)e
−2t(s∗−C∗) + 2

∫ t

τ

‖D(s, ·)‖L1(Ω)e
−2(t−s)(s∗−C∗)ds, t ∈ [τ, T ).

This proves (4.32) for smooth solutions, e.g. for solutions with smooth initial data which can
be obtained within [26, Theorem 7] due to Remark 4.13. With (1.14)θ=0 (see Remark 1.9
iii)) it then extends to E1+ε-solutions, which completes the proof. �

Theorem 1.10 now implies the following result.

Corollary 4.18. Suppose that the assumptions of Corollary 4.16 and Lemma 4.17 hold.
If f ′s(t, x, s) = o(|s|ρc−1) then, given any τ ∈ R and uτ ∈ L2(Ω), the unique E1+ε-solution

of (4.19) exists globally in time.

Proof: With maximal time of existence Tuτ <∞ we would have sup[τ,Tuτ ) ‖u(t, τ, uτ )‖L2(RN ) <

∞ (see Lemma 4.17) and Theorem 1.10 i) with E1 = L2(Ω) would lead to contradiction. �
In the critical case ρ = ρc some better estimate of the solutions can be sometimes obtained

if additional conditions are imposed on (4.19). For example, in the autonomous case, H1(Ω)-
estimate can be found as in [29]. Also, if m = 1 and maximum principle applies then L∞(Ω)-
estimate may be known. However, without any such specific assumption, one can hardly find
for (4.19) the estimate of the solutions in E1+ε-norm needed to apply (1.19). On the other
hand, Theorem 1.12 will yield the existence of a piecewise-E1+ε-solution on some larger time
interval than the maximal interval of existence of E1+ε-solution.

Lemma 4.19. Suppose that the assumptions of Corollary 4.16 and Lemma 4.17 are satisfied.
If τ ∈ R, uτ ∈ E1 = L2(Ω) and Tuτ <∞, the map [τ, Tuτ ) 3 t→ u(t) ∈ E0 = (H2m

{Bj}(Ω))′,

where u is E1+ε-solution of (4.19), is uniformly continuous.

Proof: From (4.19) we infer that

‖ut(t)‖(H2m
{Bj}

(Ω))′ 6 ‖A(t)u(t)‖(H2m
{Bj}

(Ω))′ + ‖f(t, ·, u)‖(H2m
{Bj}

(Ω))′ , t ∈ (τ, Tuτ ).

Since

‖A(t)u‖(H2m
{Bj}

(Ω)′) = sup
‖ψ‖

H2m
{Bj}

(Ω)
=1

|
∫

Ω

uA(t)ψ| 6 ‖u(t)‖L2(Ω) max
|σ|62m

‖aσ(t, ·)‖C(Ω,R),
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by (4.16), (4.32) we get ‖A(t)u‖L∞((τ,Tuτ ),(H2m
{Bj}

(Ω))′) 6 cg(τ, ‖uτ‖L2(Ω), Tuτ ). From (4.26)

‖f(t, ·, u)‖(H2m
{Bj}

(Ω))′ is bounded by a multiple of (1 + ‖u(t)‖ρcL2(Ω)) and hence, by (4.32),

‖f(t, ·, u)‖L∞((τ,Tuτ ),(H2m
{Bj}

(Ω))′) 6 c(1 + [g(τ, ‖uτ‖L2(Ω), Tuτ )]
ρc).

Since the above estimates ensure that u(·, τ, uτ ) ∈ W 1,1((τ, T ), (H2m
{Bj}(Ω))′), then (1.27) is

satisfied (see [10, Theorem I.2.2]) and the proof is complete. �
Theorem 1.12 and Lemmas 4.17, 4.19 now lead to the following conclusion.

Corollary 4.20. Suppose that the assumptions of Corollary 4.16 and Lemma 4.17 hold.
Whenever τ ∈ R, uτ ∈ L2(Ω) are such that Tuτ < ∞, there exist a ∈ (Tuτ ,∞] and an

extension U of the maximally defined E1+ε-solution of (4.19) such that U is a piecewise-
E1+ε-solution on [τ, a) and either a =∞ or a is an accumulation time of singular times.

References

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differ-
ential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math. 12 (1959), 623-727.

[2] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differ-
ential equations satisfying general boundary conditions, II, Comm. Pure Appl. Math. 7 (1964), 35-92.

[3] H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Birkhäuser Verlag, Basel, 1995.
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