
UNIVERSIDADE DE SAO PAULO
Instituto de Ciéncias Mateméticas e de Computagfio

ISSN 0103-2569

Implementing and ApplyingDirectVolume Rendering
with Textures

Igor Prata Soares
RosaneMinghim

Maria Cristina Ferreira de Oliveira
Luis GustavoNonato

N9 128

RELATORIOS TECNICOS

SE10 Carlos — SP
Dez./2000

SYSNOML
DATA

ICMC - SBAB

Implementing and Applying Direct Volume Renderingwith Textures

IGOR PRATA SOARES

ROSANE MINGHIM

MARIA CRISTINA FERREIRA DEOLIVEIRA

LUIS GusrAvoNONATO
Departamento de Ciéncias de Computacaoe Estati’stica

ICMC/USP — 8510 Carlos
Caixa Postal 668

13560-970, 8510 Carlos - SP, Brazil
{ igor, rrninghim, cristina, nonato @icmc.sc.us .br

Abstract This paper reports on the implementation of a Direct Volumetric Rendering (DVR) and
Visualization technique in the context of a general-purpose, low cost visualization software with available
source code. The technique employs a texture mapping strategy to combine scalar values of volumetric
data into three-dimensional images. Relevant implementation issues of this technique are presented, and
the results are discussed in the light of a target application, namely visualization in dentistry. The
technique presented here, DVRT, has demonstrated to behave better than the ray casting DVR technique
for the data sets of interest, and also to produce very good results under shading.

1 Introduction
The construction of three-dimensional (3D) models
from two-dimensional (2D) information collected from
a number of acquisition devices is a major step in
many visualization applications.The field of Medicine
has been particularly successful in pursuing such a
visualization approach to obtain 3D models depicting
internal body structures. Resulting models can play a
major role in a number of tasks, from educational and
training systems to diagnosis and technologically
advanced cooperative surgery.

For a number of reasons, the use of graphical and
visualization algorithms has been much less noticeable
in Dentistry than in the related field of Medicine.
However, reconstruction is also potentially useful for a
number of tasks in Dentistry. For example, training of
dentistry professionals could certainly benefit from the
visualization of realistic 3D models of teeth that could
support, for example, the simulation of dental
procedures. Some activities in this field are being
reported in the literature, as in mandible reconstruction
[1] and chewing simulation [2]. A project on Virtual
Dentistry is being conducted at the Computer Science
Department of ICMC/USP, in collaboration with the
School of Information Systems of the University of
East Anglia, and with the Dentistry School of UNESP
at Araraquara. A major goal of this project is the
building of a system to support education, training and
assistance for dentistry professionals and students. A

virtual environment shall provide a set of 3D models
of teeth for user interaction.

Initial reconstruction tasks that generated realistic
3D teeth models have been performed using general-
purpose packages [3] and building extensions to
others, such as the work of Shimabukuro et al. [4,5].
The work of Nonato [6], which is an improvement of
classical volume reconstruction methods based on
DelaunayTriangulations (DT), has proven to be more
adequate to our reconstruction needs [5]. In these
works, surface or volume reconstruction is performed
from 2D contours extracted from images. In such
approaches the resulting model can be rendered using
conventionalsurface rendering algorithms.

As opposed to the surface fitting approach above,
DVR generates images straight from scalar data sets,
without creating intermediate geometrical structures
[7,8]. Popular approaches to DVR are the well-known
ray casting algorithm and the splatting algorithm. We
are interested in investigating DVR in the scope the
Virtual Dentistry project, because it presents some
advantages when compared to a surface fitting
approach. One of them is that it preserves more
information from the data set, rather than displaying
only user selected values. This should enable, for
example, easier observation of tissue. A major
problem, however, is that it is difficult to achieve real
time user interaction in DVR, as most algorithms are
computationallyexpensive.

Dedicated texture mapping hardware, usually
targeted at adding realism to scenes created with
conventional surface graphics techniques, is being
investigated as a feasible alternative for implementing
fast DVR of scalar data. Several strategies that carry
out such an idea are reported in the literature [9-12].
These solutions may ensure considerable speedups in
the costly volume rendering processes by means of
graphical hardware [12,10]. The same literature
describes the advantages and disadvantages of using a
texture mapping approach with graphics hardware for
speeding up the rendering process. Instead of handling
this issue, here we discuss the visual differences of a
3D texturing DVR approach against another, classical,
DVRmethod.

We present a particular implementationof a DVR
algorithm with texturing (DVRT) to generate images
from volumetric scalar data sets. We show and
compare visual results obtained from applying this
solution, illustrating its use to generate images in our
target application domain (dentistry). In the following
section we present the DVRT technique and describe
its implementation within the VTK environment. In
Section 3 we discuss some results from the use of this
approach in the dentistry case, analyzing its potential
for further visualization, exploration and virtual
manipulationof teeth and related structures.

2 DVR with texture (DVRT)
In this section we describe a VTK implementationof a
DVRT 3D algorithm— Direct Volume Rendering with
3D Textures. In Section 2.1 we present an overview of
the DVRT algorithm introduced by Gelder et al. [12],
and in Section 2.2 we describe our VTK
implementation of a particular version of that
approach.

2.1 The DVRT Approach
In short, the DVRT approach constructs a

volumetric texture map (vtex) from a data volume that
is then sampled through parallel planes. The final
image is obtained by blending the planes together in
back-to-frontorder. The procedure for implementing a
DVRT may, therefore, be split into two stages. The
first one builds the vtex, whereas the second one
samples the vtex in parallel planed and displays the
blended planes, generating a 3D image of the data. We
shall describe both stages in the sequence.

The data volume consists of volume units called
voxels, and the texture map consists of 3D units of
texture named texels. The texture map is a volumetric

mesh whose data attributes are given by four values
defining a color (R,G,B,A). The alpha-values A
encode the opacity of a particular pixel or texel.
Dimensions are the same for volume and texture,
ensuring a one~to-one correspondencebetween the sets
of voxels and texels. Building the texturemap involves
collecting the scalar values from the data volume and
associating a color to their corresponding positions in
the texture map. To build this mapping the user must
define a set of transfer functions that associate scalar
ranges to colors and opacities, an activity known as
data classification.

Once the 3D texture map is available, the second
stage of DVRT is ready to start, that is, the sampling
and blendingof the volume. The steps involved in this
stage may be considerably complex if shading is
required. For shaded rendering, data classification
requires, in addition to the transfer functions, the
definition of the materials contained in the volume. A
material is defined by a scalar range plus a set of
parameters that control its appearance under direct
light. These are the reflection coefficients kd for
diffuse light, ks for specular light, sp for specular
power, and ka for ambient light.

The shading equation is used to compute the
interaction between the directional lights in the scene
and the volume data, normally employing the normal
vectors at points of the surface being shaded. In this
case, normal vectors are approximated by gradients
computed from the scalar values placed at all volume
voxels [13]. This may be done using central
differences [7,14]. Gradient values are also used to
classify voxels as ambient or reflectin. Reflectin
voxels are those in the boundary of a particular
material, and ambient voxels are considered to be
inside the object defined by a given material.
Classification is obtained by considering the voxel’s
scalar value (d), its gradient (7), and the lower end of
the scalar range of the voxel’s value (m). If A is the
spacing between voxels, one of the 26 neighboring
voxels contains a scalar smaller than b if and only if
(m — b) < s, where:

s = Ax lyxl + A, lyyl + Az lyzl

s is called the cell-diagonal data shift. When s is close
to the value (d — m) one can find the probability of its
host voxel being at the boundary of the material, rather
than taking a binary decision.When s _< 0.5(d — m) this
probability is zero, and it increases linearly to 1 when s
2 1.5(a’ — m). It is possible to fme-tune the voxel
classification by adjusting the classification scale
factors (constants 0.5 and 1.5 above) to increase or

decrease the ‘thickness’ (in number of voxels) of the
object boundary.

Only ambient voxels receive the ambient light
component of the illumination equation, and the
reflection components are added to the reflecting
voxels. Such components can be tabled to speed up the
process of building the texture map. A Gradient Index
can be used to access unit gradients, generated by a
process of quantization over a sphere, that
approximates a set of voxel gradients. A Reflection
Table stores the reflection factors for each
combination of material and gradient present in the
volume. The size of this table is, therefore, given by
the number of quantized gradients multiplied by the
number of different user defined materials. Each voxel
in the data volume has an index in the Reflection
Table. As the Reflection Table depends on the
direction of the lights relative to the volume, it must be
updated after any movement in the scene. For further
details the reader is referred to [15] and [16].

The voxel classification stage depends on the
transfer functions and the scale factors mentioned
previously. Classification must take place after any
change on any of these. The updating of the Reflection
Table occurs after every change in the volumeposition
or in the illumination parameters (including scene
position).All such changes cause the texturemap to be
fully rebuilt.

Figure 1 provides an overview of the DVRT
process, with and without shading. Rendering of the
texture map is carried out in the second stage by
sampling and blending, as discussed in the following.

Volume Dataset 30 Texture Map(v!ex)

Image Sampling
Figure 1 DVRTwith shading (broken lines)
and without shading (full lines).

Rendering in DVRT is performed by applying
texture on consecutive sampling planes, all parallel to
the viewing vector and placed at equally spaced
intervals according to a user defined distance. To

allow volume visualization from any viewpoint, a
bounding cube is defined for the volume whose edges
have the same size as the diagonal of the volumetric
texture. When the volume is rotated, the bounding
cube is positioned so that one of its faces is parallel to
the projection plane. The direction of that face drives
the planar samplings of the volume within the
bounding cube.

The samplingprocess requires the texturing of the
sampling planes. Since these are parallel to the
viewing plane, they cover a rectangular region of the
screen. Sampling points are defined at the planes that
correspond to pixels in this region. For each pixel, a
sample collects an RGBA color in the texture map.
The intersection between a sampling plane and the
texture map is named a texture polygon. Such a
polygon bounds the region of the sampling plane
where color samplings must occur, avoiding
unnecessary calculations over the whole plane. A
blending operator that processes all sampling planes in
back-to—front order is used to combine all samples
relative to a single pixel.

Shading in DVRT is very time consuming, since
every user interaction causes the texture map to be
rebuilt, which in turn affects the whole process. Its use
with DVRT is justified in some situations because it
improves 3D perception and helps to resolve
ambiguity. The DVRT algorithm has been
implemented within the VTK visualization library [7],
thus making its code available to the whole
community of VTK users. Details of the
implementationare given in the next section.

2.2 VTK implementation of the DVRT algorithm
with shading
VTK is an object-oriented visualization library

with available source code. To implement the DVRT
approach, VTK classes were analysed, particularly
those responsible for Ray Casting. Two new classes
were added, named vtholumeTexture and
vtholumeTextureMapper, which implement each of
the two stages of DVRT. VTK implementation
standards were followed to maintain consistency for
potential users of the new classes.

The vikVolumeTexture class creates the texture
map. Both the data volume and the texture map are
regular grids, represented as instances of the VTK
class vtkStructuredPoints.The data volume is loaded
using VTK‘s reader objects and is connected to
vtholumeTexture, in a pipeline fashion, through its
SetDataset method. VTK supplies two classes that
implement transfer functions for defining RGB color

3

and opacity mappings, vtkColorTransferFunction and
vtkPiecewiseFunction, respectively. Two methods of
vtholumeTexture are used to set these parameters:
SetColor and SetOpacity, respectively.

Definition of materials is done using the method
AddMaterial, which takes two scalars that delimit an
interval, plus the four illumination coefficients kd, ka,
ks, sp. Two classes were coded for handlingmaterials:
vtkMaterialCollectionand vtkMaterial. The first class
manages a list of the latter, which actually contains the
material information. In fact, class vtholumeTexture
contains an object of the vtkMaterialCollection class.
A reference to that instance can be obtained, if
necessary, by use of the method GetMaterials.

Classes vthectorlndex and vtheflectionTable
realize the Gradient Index and the Reflection Table,
respectively. vtholumeTexture handles those in a way
that is transparent to the user. However, methods for
their manipulation by the user are also supplied. The
vthectorlndex class generates a table of vectors that
recursively refines a unit sphere. The starting point of
the refinement is a regular icosahedron that has its
triangles further subdivided at each step, with the new
points being displaced by a one unit distance of the
center. The user sets the refinement level through the
method SetLevelOfRefinement. A larger refinement
level improves image quality at an extra computational
cost. To speed up calculations, class vthectorlndex
handles the first octant of the sphere and gets the
others from signal permutation. Taking a generalized
vector as input, method GetVector returns an index to
the closest approximation to it in the vector table.

Class vtheflectionTable stores the reflective light
component for each combination of gradient and user
defined material. Table building is managed by the
method BuildReflectionTable. The method
GetReflecrionComponent returns a reflection
component tuple from the table, taking as input a
gradient vector index. The methods SetShadingOnand
SetShadingOflcan be used to control shading, and the
methods SetUseOfReflectionTableOn and
SetUseOfReflectionTableOfito choose from using the
reflection table (faster) or calculating all the
illumination values on the fly (storage saving).

Gradient sense (inward or outward to the object
being rendering) bears importance in the illumination
effects, and as a consequence sometimes the “shaded
surface" turns out to be inside the object, rather than
outside. A method lnvertShadingI-Iemisphere can be
used to toggle illumination sides. Scale factors are set
by two methods: SetLowScale (more voxels in the

boundary of the material) and SetHighScale (less
voxels in the boundary).

The main method of vtholumeTexture is
MakeVolumeTexture,which creates the texture map. It
generates the map according to user settings, and
whenever necessary triggers gradient calculations,
voxel classification and Reflection Table upgrades.
The texture map created can be read using the method
GetVolumeTexture.

The vtholumeTextureMapper class samples the
texture map and renders its image. This class is
directly related to VTK’s standard DVR visualization
pipeline. To render an image, the user calls the method
Render of class vthenderWindow, which chains a
series of calls. In DVRT, vrkVolumeTextureMapper
has its own method Render, where everything is set,
including the decision of actually building the texture
map. In this method, two floating-point arrays are
filled up (RGBAImage and Zimage), which store the
image produced by DVRT with the information on
color and depth, respectively. From those arrays, VTK
itself takes charge of presenting the image on a
rendering window, togetherwith other possible objects
in the scene. Such image arrays can be read from the
class vtholumeTextureMapper using methods
GetRGBAPixelData and GetZBuflerData. Only
parallel projection is available for DVRT at this point.

In a user program for viewing a data set using
DVRT, an instance of the vtholumeTexture class
must be connected to an instance of
vtholumeTextureMapper using the method
SetVolumeTexture. The Render method calls
MakeVolumeTexture to create or update the texture
map. Such a design choice was made to allow
checking of the scene configuration to decide whether
an interaction has occurred and, therefore, there are
things to be changed. That information belongs to
vtholumeTextureMapper.

The sampling process is controlled by the user
with methods SetSampleDistance,
SetSampleInterpolationOn and
SetSampleInteIpolationOfi‘. The first one sets the
distance between consecutive sampling planes.
SetSampleInterpolationOn allows for interpolation in
the sampling process, so that each texel is influenced
by the several color in its vertices.
SetSamplelnterpolationOff causes the texel to be
viewed with uniform color in the whole of its interior,
thus avoiding interpolation. Because DVRT is not yet
implemented using texture hardware, sampling with
interpolation is 8 times slower than the voxel type of

\lmU'liwal-J

sampling. Use of proper 3D texture hardware will
improve this discrepancy.

Arrays RGBAImage and Zimage are initialized
with transparent black and maximum depth,
respectively, and updated by the sampling procedure.
The screen region covered by the sampling planes is
delimited, and the numbers of pixels in the horizontal
and vertical directions are computed. These are
required to map points in the sampling plane to screen
pixels. Textures are mapped to the sampling planes in
a back-to-front order, and only points within the
texture polygon are sampled. For each sample, a color
is collected from the texture map, with or without
interpolation. Nothing is done if the opacity is 0.0;
otherwise, the associated pixel position in the
RGBAImage is updated with blending. The
corresponding position in the Zimage array is also
updated to the depth of the plane. When the sampling
ends, the arrays contain the resulting DVRT image.

Figure 2 shows the outline of a C++ program that
uses the VTK DVRT. The code uses DVRT with
shading (line 5), using Reflection Table (line 6) and an
interpolated sampling process (line 10). Variables
VolTexMapper and VolTex are instances of
vtholumeTextureMapper and vtholumeTexture,
respectively.

In line 1 we observe the connection between
vtholumeTexture and the data volume (Dataset is any
vtkStructuredPoints). Lines 2 and 3 show the
assignment of color and opacity transfer functions. In
line 4, a material is defined (Min and Max define its
scalar range, and the illumination constants are given
by ka, kd, ks and sp). The refinement level for gradient
quantization is set in line 7. Line 8 shows the
connection between vtholumeTexture and
vtholumeTextureMapper. Configuration of sampling
plane distance is given by the command on line 9. Line
11 configures VTK for parallel projection. Lines 12
and 13 set the VTK objects required for the rendering
process.

VolTex—>SetDataset (Dataset) ;

VolTex—>SetColor (ColorTrans ferFunction) ;

VolTex—>Set0pacity(OpacityTransferFunction);
VolTex—>AddMaterial (Min,Max, ka, kd, ks , sp) ;
VolTex->SetShadingOn () ,-

VolTex—>SetUseOfReflectionTableOn() ;
VolTex—

>SetLevelOfRefinamentToGradient Index (Level) ;

8
9

VolTexMapper->SetVo lumeTexture (VolTex) ;

VolTexMapper-
>SetSampleDistance (SampleDistance) ,-

10 VolTexMapper—>SetTexe1AsCell () ;

11 Renderer—>GetActiveCamera()
—>ParallelProjectionOn();
12 Volume->SetVolumeMapper (VolTexMapper) ;
l3 Renderer—>AddVolume(Volume) ;
l4 RenderWindow—>AddRenderer (Renderer) ;
15 Renderwindow— >Render () ;

Figure 2 Part of code for a DVRT program.

Every parameter that can be set in a DVRT
program has a default value. If nothing is set by the
user, shading and interpolation are off, for instance.
Tables 1 and 2 show some of the default parameters of
DVRT. In the following section we present various
results obtained from use of DVRT.

vtholumeTexture class Default Value
SetDataset None
SetColor None
SetOpaciry None
AddMaterial None
SetLevelOfRefinament l
SetShadingOn/ Ofl" Off
SetLowScale 0.5
SetHighScale 1.5

Table 1 Default values for vtholumeTexture class
VtholumeTextureMapperclass Default value

SetVolumeTexture None
SetSampleDistance 1.0

SetSampleInterpolationOn/0fl Off
Table 2 Default values for vtholumeTextureMapper class

3 Results and application
The implementationofDVRT was tested in three

different ways. First, observation of the behavior of
the resulting images against changes in the various
parameters of the methods was carried out. This we
call ’fine tuning’ of the technique, that is, balancing the
compromise between image quality and computing
time for a particular application. The method behaved
very well as far as image quality is concerned, and was
very stable, in that noise generation and errors were
very rare. Specifically, we tested:

I spacing between sampling planes: in this case
image quality varies and, for larger distances,
image continuity can be broken;

I resolution of gradient quantization: patterns
appear on the picture for smaller amounts of
gradients. Smoothness of visualization is

obtained by increasing the number of gradients,
or by calculating them on the fly (without using
reflection tables).

I use of interpolation between neighboring voxels.
For coarser grids, jagged surfaces occur.
Darkening of the surface may also appear,
considering that empty spaces outside the data
volume are filled up with black.

. illumination parameters: (diffuse and specular
coefficients, as well as specular power) they
control shading quite well, with similar behavior
to that of surface rendering. Even when internal
surfaces are shown through external, transparent
surfaces, the effect can be clearly noted.

' light colors, hemisphere choice, and effect of
interpolation on execution time were tested and
confirmed to follow the statements previously
presented in this text.

Figure 3 shows the effect of interpolation in the
samplingprocess, for a data set with three color levels,
and no shading. Figure 4 shows the effects of
increasing the number of sampling planes. Figure 5
shows a shaded example of DVRT, with two different
materials defined.

The other two classes of tests realized with
DVRT were concernedwith verifying its effectiveness
for visualization of dentistry data, which is a problem
our team has been working with; and comparing the
final imageswith the most commonDVR method,Ray
Casting, also for dentistry data. The Ray Casting
implementation used is the one provided by VTK
itself.

A major argument for using DVRT instead of ray
casting has been the possibility of obtaining images of
similar quality with the speed up conferred by graphics
hardware. That given, although we have not tried
DVRT with any particular graphics hardware up to
this point, we also identified some visual differences
between both methods that tend to point towards
DVRT, at least for some of the applications we have
been handling.

In figure 6 there is a set of direct volume
rendering of pictures of the same data set, using
similar color definitions, without shading. This
particular data set was generated by distance sampling
of a set of tooth planar contours on a regular 3D grid.
It can be seen from these pictures that the images from
both methods are very similar (see, for example, fig 6

(a) to (d)). The main differences lye on treatment of
transparency for some of the views. See, for example,
the bottom (fig. 6(e) and 6(0) and top views (fig. 6(g)
and 6(h)). In that case, the appearance the DVRT
results are more convincing. The external object
actually covers the whole of the internal portion of the
volume, and that situation is clearly identified for
DVRT, while in Ray Casting, the internal portion
misleadingly shows up in front. Also, some of the
depth is lost.

Figure 7 shows similar views of the same data set
as figure 6, but in this case, shading was added, both in
Ray Casting and DVRT. Side views, although slightly
different, give out similar effects as far as
interpretation is concerned (fig. 7(a) to (d)). However,
they present an interesting aspect. For the same visual
attributes specified for both techniques, Ray Casting
presents brighter images, as if reflection were stronger
than in DVRT (although DVRT reflection also looks
good). In that case the interpretation is subjective as to
how two transparent reflecting surfaces should look
like when subject to light. DVRT images, though, look
smoother in that particular case. The same problem of
transparency mentioned above can be once again
noticed in figures 7(f) and 7(g).

An additional point is that, in some cases, as the
case where the gradient changes are sharper in a
particular view direction, the Ray Casting method
tends to generate line patterns, similar to contours,
while in DVRT this effect is not noticeable (see
Figures 7(e) to 7(h)). Although this is a feature typical
of the data set at hand (and similar ones), it is
important to our application that the DVR methods can
act in standardways, as it happens with DVRT. DVRT
can, though, produce spurious ’light points’ when,
together with this gradient problem, the resolution of
the data set is lower, as in figure 8.

Smoothness of object surface is very nicely
obtained using DVRT, particularly when less
transparency is used. For similar visual attributes,
figure 9 shows this aspect of the technique. In the
following section we present some of the conclusions
and further developmentsof the project.

4 Conclusions
The importance of having volumetric rendering in

a visualization system has been put forward by almost
the whole of the visualization community. In the
virtual Dentistry project where the work reported here

takes part, an integrated system for visualization and
interaction for training is sought. In this case,
volumetric information is of utmost importance, and
one of our goals is to discuss strategies for combining
surface and DVR displays in a virtual environment.

Much of the information presented by DVR is
missed in surface displays, so that multiple
visualization techniques play an important role in data
analysis. In the case of DVRT, the possibility of
speeding up the process by means of graphics
hardware (a follow up of this project), opens the
possibility of doingjoint visualization in real time with
less expensiveequipment.

The comparisonbetween Ray Casting and DVRT
shows that the latter by no means looses in quality, and
in some cases, produces more stable and manageable
behavior, for the particular application under study.

Acknowledgements
We wish to acknowledge Mike Goetz and Andy

Day, from the School of Information Systems, UEA,
UK, for the data used to generate most of the images
presented here. We also wish to acknowledge the
funding of FAPESP and CNPq, Brazil, and the good
work of our undergraduate student Carlos Frederico
Rocha, of ICMC-USP.

References
[1] S. Seipel, I. Wagner, S. Koch, W. Scheneider,
‘Three-dimensional visualization of the mandible: A
new method for presenting the periodontal status and
diseases”, Comput. Meth. Programs Biomed. (46), 51-
57 (1995).
[2] K. Myszkowski, G. Okuneva, J. Herder, T.L.
Kunii, TL, M. Ibusuki, “Visual simulation of the
chewing process for dentistry”, Visualization and
Modelling, AcademicPress, 419-438 (1997).
[3] MR. Goetz, AM. Day, “Surface reconstruction for
teeth”, Proc.]6'" EUROGRAPHICSUK, 25-27 March,
Leeds,UK, (1998).
[4] M.H. Shimabukuro, R. Minghim; P. Licciardi,
“Visualisation and reconstruction in dentistry”, in
Proc. Int. Conf. on Information Visualisation IV’98,
London, UK, IEEE CS Press, 25-31 (1998).
[5] LG. Nonato, R. Minghim, M.H. Shimabukuro,
“Qualitative Analysis of Reconstruction Techniques
for Dentistry”, accepted for publication in the J. of
Electronic Imaging (2000).

[6] LG. Nonato, Volumetric Manifold Reconstruction
from Planar Sections, Ph.D. Thesis (in Portuguese),
Mathematics Dep., Pontifical Catholic University, Rio
de Janeiro, Brazil, (1998).
[7] WJ. Schroeder, K. Martin, W. Lorensen, The
Visualization Toolkit, an object—oriented approach to
3D graphics, 2“‘1 ed., Prentice-Hall, (1998).
[8] A. Kaufman, “Advances in volume visualization”,
SIGGRAPH’98Course Notes no. 24, Orlando, USA,
1998.

[9] B. Cabral, N. Cam, J. Foran, “Accelerated volume
rendering and tomographic reconstruction using
texture mapping hardware", Proc. 1994 Symp. on
Volume Visualization;91—98.

[10] R. Grzeszczuk, C. Henn, R. Yagel, “Advanced
geometric techniques for ray casting volumes”, ACM
SIGGRAPH ’98; CourseNotes 04; 1998.

[11] M. Teschner; C. Henn, “Texture mapping in
technical, scientific and engineering visualization”;
SGI, Aug. 4, 1995; also in ACM SIGGRAPH’98
CourseNotes I 7; Apr. 20, 1998.
[12] A.V. Gelder, K. Kim, “Direct volume rendering
with shading via three-dimensional textures”,
University of California, Santa Cruz, CA 95064 USA;
TechnicalReport UCSC—CRL-96-16(1996).
[13] D. Heam, M. P. Baker, Computer Graphics — C
Version; Prentice Hall, 1997.
[14] M. Levoy, “Display of surfaces from volumetric
data”, IEEE Computer Graphics & Applications, 8(3),
29-37,May 1988.

[15] J. Wilhelms and A. Van Gelder, “A coherent
projecion approach for direct volume rendering”,
ComputerGraphics 25(4); Aug. 1991; 275-284
[16] A.V. Gelder and K. Kim, “Direct volume
rendering with shading via three—dimensional
textures”, University of California, Santa Cruz, CA
95064 USA; Technical Report UCSC-CRLv96-16; Jul.
19, 1996.

Figure 3 Effect of using interpolation between
voxels during the sampling process. (a) without
interpolation. (h) with interpolation (smoother). No
shading is usetl.

Figure 4 DVRT without shading for the dentistry data.
(a) side view of a tooth with definition of two different
scalar ranges (one internal, another external).
(b) top view, with 40 sampling planes.
to) top view. with 60 sampling planes.
(d) top View. with 80 sampling planes.

Figure 5 DVRT with shading, two materials defined.

I:

1%.

In"

