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Abstract

Consider the class QS of all non-degenerate quadratic systems. Note that each quadratic poly-

nomial differential system can be identified with a point of R12 through its coefficients. In this

paper we provide necessary and sufficient conditions for a system in QS, in term of its coeffi-

cients, to have at least one invariant ellipse. Let QSE be the whole class of non-degenerate planar

quadratic differential systems possessing at least one invariant ellipse. For the class QSE, we

give the global “bifurcation” diagram which indicates where an ellipse is present or absent and

in case it is present, the diagram indicates if the ellipse is or not a limit cycle. The diagram is

expressed in terms of affine invariant polynomials and it is done in the 12-dimensional space of

parameters. This diagram is also an algorithm for determining for each quadratic system if it

possesses an invariant ellipse and whether or not this ellipse is a limit cycle.

Key-words: Quadratic vector fields, affine invariant polynomials, invariant algebraic curve,

invariant ellipse, limit cycle.
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1 Introduction and statement of main results

Consider the differential systems of the form

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)
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where P, Q ∈ R[x, y], i.e. P and Q are polynomials in x and y over R, and their associated vector

field

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

We define the degree of the differential system (1) as the integer m = max(degP, degQ). A quadratic

differential system is a system of the (1) where m = 2.

From now on we assume that the polynomials P and Q are coprime, otherwise, up to a rescaling

of the time, systems (1) can be reduced to linear or constant systems. We call the quadratic systems

under this assumption non-degenerate quadratic systems. Let QS be the whole class of real non-

degenerate quadratic differential systems.

The motivation for studying the class of quadratic systems came from their usefulness in many

applications, as well as for theoretical reasons, as discussed by Schlomiuk and Vulpe in the introduc-

tion of [21]. They appear when modeling natural phenomena, for instance in mathematical biology,

in chemistry or in physics.

We say that a non-constant differentiable function H : V → R is a first integral of system (1)

on V (an open and dense subset of R2), if H(x(t), y(t)) is constant for all the values of t for which

(x(t), y(t)) is a solution of this system contained in V . In other words, H is a first integral of systems

(1) if and only if

X(H) = P
∂H

∂x
+Q

∂H

∂y
= 0,

for all (x, y) ∈ V . We say that system (1) is integrable on V if it has a first integral on V .

If we know a first integral of a given planar differential system, we can draw its phase portrait.

Therefore, it is of particular interest in planar differential systems to investigate about its existence.

We say that the curve f(x, y) = 0 (f ∈ C[x, y]) is an invariant algebraic curve of system (1) if

there exists K ∈ C[x, y] such that

P
∂f

∂x
+Q

∂f

∂y
= Kf.

The polynomial K is called cofactor of the invariant algebraic curve f = 0. We see that, when

K = 0, f is a polynomial first integral.

Quadratic systems with an invariant algebraic curve have been studied by several authors, for

instance Schlomiuk and Vulpe in [20,21] have investigated quadratic systems with invariant straight

lines, quadratic systems having an ellipse as a limit cycle was investigated by Qin Yuan-xum [14];

the necessary and sufficient conditions for existence and uniqueness of an invariant algebraic curve

of second degree in terms of the coefficients of quadratic systems was presented by Druzhkova [10];

Cairó and Llibre in [4] have investigated the Darboux integrability of the quadratic systems having

invariant algebraic conics, and Oliveira, Rezende and Vulpe [15] provided necessary and sufficient

conditions for a system in QS to have at least one invariant hyperbola in terms of its coefficients.

In this paper we investigate non-degenerate quadratic systems having invariant ellipses applying

the invariant theory. On the class QS acts the group of real affine transformations and time rescal-

ing and then, modulo this group action, quadratic systems ultimately depend on five parameters.

This group also acts on QSE and, modulo this action, the systems in this class depend on three

parameters.

2



As we want this study to be intrinsic, independent of the normal form given to the systems, we

use here invariant polynomials and geometric invariants for the classification.

If a polynomial differential system has an invariant algebraic curve f(x, y) = 0, where f(x, y) ∈
C[x, y] is of degree n,

f(x, y) = a0 + a10x+ a01y + ...+ an0x
n + an−1,1x

n−1y + ...+ a0ny
n,

with â = (a0, ..., a0n) ∈ CN , where N = (n + 1)(n + 2)/2, then the equation λf(x, y) = 0, where

λ ∈ C∗, and C∗ = C\{0}, yields the same locus of complex points in the plane as the locus induced

by f(x, y) = 0. Therefore, each curve of degree n defined by â can be identified with a point

[â] = [a0 : a10 : . . . : a0n] in PN−1(C).

Our interest here is in real polynomial differential equations. But, to each such a system of

equations there corresponds the complex system with the same coefficients to which we can apply

the theory of Darboux using complex invariant algebraic curves. Some of these curves may be with

real coefficients. In this case we also have invariant algebraic curves in R2 of the real differential

system.

In this work we are interested in systems possessing an invariant ellipse. The conics f(x, y) = 0

with f(x, y) ∈ R[x, y] are classified via the group action of real affine transformation. The conics

for which f(x, y) is an irreducible polynomial over C can be brought by a real affine transformation

to one the following four forms: 1) x2 + y2 − 1 = 0 (ellipses); 2) x2 − y2 − 1 = 0 (hyperbolas); 3)

y − x2 = 0 (parabolas); 4) x2 + y2 + 1 = 0, these are empty in R2 with points only in C2. Some

authors call these conics complex ellipses (see [4]). These complex ellipses will play a helpful role in

our classification problem. So by an ellipse we will mean a conic f(x, y) = 0 with real coefficients

which can be brought by an affine transformation to an equation x2 + y2 + a = 0 with a = −1 (an

ordinary ellipse) or a = 1 (a complex ellipse).

Our main results are stated in the following theorem.

Main Theorem. Consider a non-degenerate quadratic system.

(A) The conditions γ̂1 = γ̂2 = 0 and either η < 0 or C2 = 0 are necessary for this system to

possess at least one invariant ellipse. Assume that the condition γ̂1 = γ̂2 = 0 is satisfied for

this system.

(A1) If η < 0 and Ñ 6= 0, then the system could possess at most one invariant ellipse. Moreover,

the necessary and sufficient conditions for the existence of such an ellipse are given in

Diagram 1, where we can also find the conditions for the ellipse to be real or complex.

(A2) If η < 0 and Ñ = 0, then the system either has no invariant ellipse or it has an infinite

family of invariant ellipses. Moreover, the necessary and sufficient conditions for the

existence of a family of invariant ellipses are given in Diagram 1, where we can also

find the conditions for the ellipses to be real or/and complex. In addition, this system

possesses a real invariant line and the positions of the invariant ellipses with respect to

this line are presented in Figure 1.

(A3) If C2 = 0, then the system either has no invariant ellipse or it has an infinite family

of invariant ellipses. Moreover, the necessary and sufficient conditions for the existence
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of a family of invariant ellipses are given in Diagram 2, where we can also find the

conditions for the ellipses to be real or/and complex. In addition, this system possesses a

real invariant line and the positions of the invariant ellipses with respect to this line are

presented in Figure 2.

(B) A non-degenerate quadratic system possesses an algebraic limit cycle, which is an ellipse, if

and only if γ̂1 = γ̂2 = 0, η < 0, T3F < 0, β̂1β̂2 6= 0, and one of the following sets of conditions

is satisfied:

(B1) θ 6= 0, β̂3 6= 0, R̂1 < 0;

(B2) θ 6= 0, β̂3 = 0, γ̂3 = 0, R̂1 < 0;

(B3) θ = 0, γ̂6 = 0, R̂5 < 0.

Moreover, we see in Diagram 1 how these limit cycles are displayed in the 12-parameter space.

(C) The Diagrams 1 and 2 actually contain the global “bifurcation” diagram in the 12-dimensional

space of parameters of non-degenerate systems which possess at least one invariant ellipse. The

corresponding conditions are given in terms of 36 invariant polynomials with respect to the

group of affine transformations and time rescaling.

Remark 1. We place the word bifurcation in quotation marks because the diagram does not split

the space according to distinct topological properties but according to algebraic properties such as

presence or absence of an ellipse. The Diagram also shows some topological features whenever the

ellipse turns out to be a limit cycle

The invariants and comitants of differential equations used for proving our main result are obtained

following the theory of algebraic invariants of polynomial differential systems, developed by Sibirsky

and his disciples (see for instance [2, 6, 17,23,25]).

2 Preliminaries

Consider real quadratic systems of the form

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y)

(2)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

It is known that on the set quadratic systems acts the group Aff (2,R) of affine transformations on the

plane (cf. [18]). For every subgroup G ⊆ Aff (2,R) we have an induced action of G on QS . We can

identify the set QS of systems (2) with a subset of R12 via the map QS −→ R12 which associates to
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Diagram 1: The existence of invariant ellipse: the case η < 0
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Diagram 1 (cont.): The existence of invariant ellipse: the case η < 0.

Diagram 2: The existence of invariant ellipse: the case C2 = 0

each system (2) the 12–tuple ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) of its coefficients.

We associate to this group action polynomials in x, y and parameters which behave well with respect

to this action, the GL–comitants (GL–invariants), the T–comitants (affine invariants) and the CT–

comitants. For their definitions as well as their detailed constructions we refer the reader to the

paper [18] (see also [1]).

2.1 Main invariant polynomials associated with invariant ellipses

We single out the following five polynomials, basic ingredients in constructing invariant polynomials

for systems (2):

Ci(ã, x, y) = ypi(x, y)− xqi(x, y), (i = 0, 1, 2)

Di(ã, x, y) =
∂pi
∂x

+
∂qi
∂y

, (i = 1, 2).
(3)

As it was shown in [23] these polynomials of degree one in the coefficients of systems (2) are GL-

comitants of these systems. Let f , g ∈ R[ã, x, y] and

(f, g)(k) =
k∑

h=0

(−1)h

(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

The polynomial (f, g)(k) ∈ R[ã, x, y] is called the transvectant of index k of (f, g) (cf. [11, 16]).
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Lemma 1 ( [25]). Any GL-comitant of systems (2) can be constructed from the elements (3) by

using the operations: +, −, ×, and by applying the differential operation (∗, ∗)(k).

Remark 2. We point out that the elements (3) generate the whole set of GL-comitants and hence

also the set of affine comitants as well as the set of T -comitants.

We construct the following GL-comitants of the second degree with respect to the coefficients of

the initial systems

T1 = (C0, C1)
(1), T2 = (C0, C2)

(1), T3 = (C0, D2)
(1),

T4 = (C1, C1)
(2), T5 = (C1, C2)

(1), T6 = (C1, C2)
(2),

T7 = (C1, D2)
(1), T8 = (C2, C2)

(2), T9 = (C2, D2)
(1).

(4)

Using these GL-comitants as well as the polynomials (3) we construct the additional invariant

polynomials. In order to be able to calculate the values of the needed invariant polynomials directly

for every canonical system we shall define here a family of T -comitants expressed through Ci (i =

0, 1, 2) and Dj (j = 1, 2):

Â = (C1, T8 − 2T9 +D2
2)(2)/144,

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1)

+ 6D1C1D2 − T5)− 9D2
1C2

]
/36,

Ê = [D1(2T9 − T8)− 3(C1, T9)
(1) −D2(3T7 +D1D2)]/72,

F̂ = [6D2
1(D2

2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0(D2, T9)
(1)

− 9D2
2T4 + 288D1Ê − 24(C2, D̂)(2) + 120(D2, D̂)(1)

− 36C1(D2, T7)
(1) + 8D1(D2, T5)

(1)]/144,

B̂ =
{

16D1(D2, T8)
(1)(3C1D1 − 2C0D2 + 4T2) + 32C0(D2, T9)

(1)(3D1D2 − 5T6 + 9T7)

+ 2(D2, T9)
(1)(27C1T4 − 18C1D

2
1 − 32D1T2 + 32(C0, T5)

(1)
)

+ 6(D2, T7)
(1)
[
8C0(T8 − 12T9)− 12C1(D1D2 + T7) +D1(26C2D1 + 32T5)

+ C2(9T4 + 96T3)
]

+ 6(D2, T6)
(1)
[
32C0T9 − C1(12T7 + 52D1D2)− 32C2D

2
1

]
+ 48D2(D2, T1)

(1)(2D2
2 − T8)− 32D1T8(D2, T2)

(1) + 9D2
2T4(T6 − 2T7)

− 16D1(C2, T8)
(1)(D2

1 + 4T3) + 12D1(C1, T8)
(2)(C1D2 − 2C2D1)

+ 6D1D2T4(T8 − 7D2
2 − 42T9) + 12D1(C1, T8)

(1)(T7 + 2D1D2) + 96D2
2[D1(C1, T6)

(1)

+D2(C0, T6)
(1)]− 16D1D2T3(2D

2
2 + 3T8)− 4D3

1D2(D
2
2 + 3T8 + 6T9)

+ 6D2
1D

2
2(7T6 + 2T7)252D1D2T4T9

}
/(2833),

K̂ = (T8 + 4T9 + 4D2
2)/72, Ĥ = (8T9 − T8 + 2D2

2)/72.

These polynomials in addition to (3) and (4) will serve as bricks in constructing affine invariant

polynomials for systems (2).
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In paper [3] it was proved that the minimal polynomial basis of affine invariants up to degree 12

contain 42 elements, denoted by A1, . . . , A42. Here, using the above bricks, we present some of these

basic elements which are necessary for the construction of needed invariant polynomials.

A1 = Â, A2 = (C2, D̂)(3)/12, A3 =
[[
C2, D2)

(1), D2

)(1)
, D2

)(1)
/48,

A4 = (Ĥ, Ĥ)(2), A5 = (Ĥ, K̂)(2)/2, A6 = (Ê, Ĥ)(2)/2,

A7 =
[[
C2, Ê)(2), D2

)(1)
/8, A8 =

[[
D̂, Ĥ)(2), D2

)(1)
/48, A9 =

[[
D̂,D2)

(1), D2

)(1)
,

A10 =
[[
D̂, K̂)(2), D2

)(1)
/8, A11 = (F̂ , K̂)(2)/4, A12 = (F̂ , Ĥ)(2)/4,

A13 =
[[
C2, Ĥ)(1), Ĥ

)(2)
, D2

)(1)
/24, A14 = (B̂, C2)

(3)/36, A15 = (Ê, F̂ )(2)/4,

A17 =
[[
D̂, D̂)(2), D2

)(1)
, D2

)(1)
/64, A18 =

[[
D̂, F̂ )(2), D2

)(1)
/16,

A19 =
[[
D̂, D̂)(2), Ĥ

)(2)
/16, A20 =

[[
C2, D̂)(2), F̂

)(2)
/16, A21 =

[[
D̂, D̂)(2), K̂

)(2)
/16,

A22 =
1

1152

[[
C2, D̂)(1), D2

)(1)
, D2

)(1)
, D2

)(1)
D2

)(1)
, A23 =

[[
F̂ , Ĥ)(1), K̂

)(2)
/8,

A24 =
[[
C2, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/32, A31 =
[[
D̂, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/64,

A32 =
[[
D̂, D̂)(2), D2

)(1)
, Ĥ
)(1)

, D2

)(1)
/64, A33 =

[[
D̂,D2)

(1), F̂
)(1)

, D2

)(1)
, D2

)(1)
/128,

A34 =
[[
D̂, D̂)(2), D2

)(1)
, K̂
)(1)

, D2

)(1)
/64, A38 =

[[
C2, D̂)(2), D̂

)(2)
, D̂
)(1)

, Ĥ
)(2)

/64,

A39 =
[[
D̂, D̂)(2), F̂

)(1)
, Ĥ
)(2)

/64, A41 =
[[
C2, D̂)(2), D̂

)(2)
, F̂
)(1)

, D2

)(1)
/64,

A42 =
[[
D̂, F̂ )(2), F̂

)(1)
, D2

)(1)
/16.

In the above list, the double bracket “
[[

” is used in order to avoid placing the otherwise necessary

up to five parentheses “(”.

Using the elements of the minimal polynomial basis given above we construct the affine invariant

polynomials

γ̂1(ã) = A2
1(3A6 + 2A7)− 2A6(A8 +A12),

γ̂2(ã) = 9A2
1A2(23252A3 + 23689A4)− 1440A2A5(3A10 + 13A11)

− 1280A13(2A17 +A18 + 23A19 − 4A20)− 320A24(50A8 + 3A10

+ 45A11 − 18A12) + 120A1A6(6718A8 + 4033A9 + 3542A11

+ 2786A12) + 30A1A15(14980A3 − 2029A4 − 48266A5)

− 30A1A7(76626A2
1 − 15173A8 + 11797A10 + 16427A11 − 30153A12)

+ 8A2A7(75515A6 − 32954A7) + 2A2A3(33057A8 − 98759A12)

− 60480A2
1A24 +A2A4(68605A8 − 131816A9 + 131073A10 + 129953A11)

− 2A2(141267A2
6 − 208741A5A12 + 3200A2A13),

γ̂3(ã) = 843696A5A6A10 +A1(−27(689078A8 + 419172A9 − 2907149A10

− 2621619A11)A13 − 26(21057A3A23 + 49005A4A23 − 166774A3A24

+ 115641A4A24)),
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γ̂4(ã) = −488A3
2A4 +A2(12(4468A2

8 + 32A2
9 − 915A2

10 + 320A9A11 − 3898A10A11

− 3331A2
11 + 2A8(78A9 + 199A10 + 2433A11)) + 2A5(25488A18

− 60259A19 − 16824A21) + 779A4A21) + 4(7380A10A31

− 24(A10 + 41A11)A33 +A8(33453A31 + 19588A32 − 468A33 − 19120A34)

+ 96A9(−A33 +A34) + 556A4A41 −A5(27773A38 + 41538A39

− 2304A41 + 5544A42)),

γ̂5(ã) = A22,

γ̂6(ã) = A1(64A3 − 541A4)A7 + 86A8A13 + 128A9A13 − 54A10A13

− 128A3A22 + 256A5A22 + 101A3A24 − 27A4A24,

γ̂7(ã) = A2

[
2A3(A8 − 11A10)− 18A2

7 − 9A4(2A9 +A10) + 22A8A22 + 26A10A22,

γ̂8(ã) = A6,

γ̂9(ã) = 12A2
1 + 12A8 + 5A10 + 17A11,

β̂1(ã) = 3A2
1 − 2A8 − 2A12,

β̂2(ã) = 2A13,

β̂3(ã) = 8A3 + 27A4 − 54A5,

β̂4(ã) = A4,

β̂5(ã) = 8A5 − 5A4,

β̂6(ã) = A3,

β̂7(ã) = 24A3 + 11A4 + 20A5,

β̂8(ã) = 41A8 + 44A9 + 32A10,

R̂1(ã) = θA6

[
5A6(A10 +A11)− 2A7(12A2

1 +A8 +A12)− 2A1(A23 −A24)

+ 2A5(A14 +A15) +A6(9A8 + 7A12)
]
,

R̂2(ã) = β̂4β̂6(2A10 −A8 −A9),

R̂3(ã) = β̂2
[
A2(80A3 − 3A4 − 54A5)− 80A22 + 708A23 − 324A24

]
,

R̂4(ã) = T11,

R̂5(ã) = 12A2
1 + 12A8 + 5A10 + 17A11,

R̂6(ã) = 2A10 −A8 −A9,

R̂7(ã) = 4A8 − 3A9,

Ñ(ã, x, y) = (D2
2 + T8 − 2T9)/9,

θ(ã) = 2A5 −A4 ≡ Discrim[Ñ , x]/(16y2),

F(ã) = A7,

T3(ã) = 8A15 − 4A1A2,
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H2(ã, x, y) =
(
C1,−8Ĥ − Ñ

)(1) − 2D1Ñ ,

H9(ã) = −
[[
D̂, D̂)(2), D̂

)(1)
, D̂
)(3)

,

H10(ã) =
[[
D̂, Ñ)(2), D2

)(1)
,

H11(ã, x, y) = −32Ĥ
[(
C2, D̂)(2) + 8

(
D̂,D2

)(1)]
+ 3
[(
C1,−8Ĥ − Ñ

)(1) − 2D1Ñ
]2
,

H12(ã, x, y) =
(
D̂, D̂

)(2)
,

N7(ã) = 12D1

(
C0, D2

)(1)
+ 2D3

1 + 9D1

(
C1, C2

)(2)
+ 36

[[
C0, C1

)(1)
, D2

)(1)
.

We remark that the last six invariant polynomials H2, H9 to H12, and N7 are constructed in [22],

whereas F and T3 are defined in [24].

2.2 Preliminary results involving polynomial invariants

Considering the GL-comitant C2(ã, x, y) = yp2(ã, x, y)−xq2(ã, x, y) as a cubic binary form of x and

y we calculate

η(ã) = Discrim[C2, ξ], M(ã, x, y) = Hessian[C2],

where ξ = y/x or ξ = x/y. According to [19] we have the following lemma.

Lemma 2 ( [19]). The number of infinite singularities (real and imaginary) of a quadratic system

in QS is determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M 6= 0;

(iv) 1 real if η = M = 0 and C2 6= 0;

(v) ∞ if η = M = C2 = 0.

Moreover, for each one of these cases the quadratic systems (2) can be brought via a linear transfor-

mation to one of the following canonical systems:

(SI)

{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;

(SII)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;

(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;

10



(SIV )

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;

(SV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.

Lemma 3. If a quadratic system (6) possessing an invariant irreducible conic which is not a parabola,

then the conditions γ̂1 = γ̂2 = 0 hold.

Proof: According to [8] a system (6) possessing an invariant irreducible conic which is not a parabola

as an algebraic particular integral can be written in the form

ẋ = aΦ(x, y) + Φ′y(gx+ hy + k), ẏ = bΦ(x, y)− Φ′x(gx+ hy + k),

where a, b, g, h, k are real parameters and Φ(x, y) defines a conic

Φ(x, y) ≡ p+ qx+ ry + sx2 + 2txy + uy2 = 0. (5)

Straightforward calculations give γ̂1 = γ̂2 = 0 for the above systems and this completes the proof.

Assume that a conic (5) is an affine algebraic invariant curve for a quadratic system (2), which we

rewrite in the form:
dx

dt
= a+ cx+ dy + gx2 + 2hxy + ky2 ≡ P (x, y),

dy

dt
= b+ ex+ fy + lx2 + 2mxy + ny2 ≡ Q(x, y).

(6)

Remark 3. Following [12] we construct the determinant

∆ =

∣∣∣∣∣∣∣
s t q/2

t u r/2

q/2 r/2 p

∣∣∣∣∣∣∣ ,
associated to the conic (5). By [12] this conic is irreducible (i.e. the polynomial Φ defining the conic

is irreducible over C) if and only if ∆ 6= 0.

According to [9] (see also [5]) we have the next lemma.

Lemma 4. Suppose that a polynomial system (1) of degree n has the invariant algebraic curve

f(x, y) = 0 of degree m. Let Pn, Qn and fm be the homogeneous components of P , Q and f of

degree n and m, respectively. Then the irreducible factors of fm must be factors of yPn − xQn.

According to definition of an invariant curve (see page 2) considering the cofactor K = Ux+V y+

W ∈ C[x, y] the following identity holds:

∂Φ

∂x
P (x, y) +

∂Φ

∂y
Q(x, y) = Φ(x, y)(Ux+ V y +W ).
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This identity yields a system of 10 equations for determining the 9 unknown parameters p, q, r, s,

t, u, U , V , W :

Eq1 ≡ s(2g − U) + 2lt = 0,

Eq2 ≡ 2t(g + 2m− U) + s(4h− V ) + 2lu = 0,

Eq3 ≡ 2t(2h+ n− V ) + u(4m− U) + 2ks = 0,

Eq4 ≡ u(2n− V ) + 2kt = 0,

Eq5 ≡ q(g − U) + s(2c−W ) + 2et+ lr = 0,

Eq6 ≡ r(2m− U) + q(2h− V ) + 2t(c+ f −W ) + 2(ds+ eu) = 0,

Eq7 ≡ r(n− V ) + u(2f −W ) + 2dt+ kq = 0,

Eq8 ≡ q(c−W ) + 2(as+ bt) + er − pU = 0,

Eq9 ≡ r(f −W ) + 2(bu+ at) + dq − pV = 0,

Eq10 ≡ aq + br − pW = 0.

(7)

3 The proof of the Main Theorem: statement (A)

Assuming that a quadratic system (6) in QS has the an invariant conic (5) which is an ellipse. Since

the discriminant of the quadratic homogeneous part of the an ellipse must be negative we conclude

that this system must possess either two complex distinct infinite singularities or the infinite line

filled up with singularities. So according to Lemmas 2 and 3 the conditions γ̂1 = γ̂2 = 0 and either

η < 0 or C2 = 0 have to be fulfilled. In what follows we examine each one of these cases.

3.1 Systems with η < 0

Supposing that the condition γ̂1 = γ̂2 = 0 holds, we shall examine the unique family of quadratic

systems (6), corresponding to the condition η < 0. So, by Lemma 2, we consider the following family

of systems
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2.
(8)

For this systems we calculate

C2(x, y) = yp2(x, y)− xq2(x, y) = x(x2 + y2), θ = (h+ 1)
[
g2 + (h− 1)2

]
/2. (9)

Considering Lemma 4 and the value of C2, we deduce that, in the case of an ellipse, the quadratic

homogeneous part of the conic (5) must be of the form λ(x2 + y2), with λ 6= 0. So, dividing all the

coefficients of the conic by λ we may assume λ = 1 and then we have s = u = 1, t = 0. So we have

to detect the conditions under the coefficients of the above systems in order to possess an invariant

ellipse of the form:

Φ(x, y) = p+ qx+ ry + x2 + y2 = 0. (10)

Considering Remark 3, we have the next lemma (maybe it also follows from other well known results).

Lemma 5. If a conic has the normal form (10), then it is: (i) a real ellipse if ∆ < 0; (ii) a complex

ellipse if ∆ > 0; and (iii) a reducible conic if ∆ = 0.
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Proof: First of all we calculate for the above conic the corresponding determinant (see Remark 3):

∆ = (4p− q2 − r2)/4.

On the other hand, applying the transformation x = x1 − q/2 and y = y1 − r/2, we obtain

Φ(x1, y1) = ∆ + x21 + y21,

and the validity of the lemma is evident.

We observe that systems (8) have generic linear and constant parts. Since for systems (8) we have

θ = (h+ 1)
[
g2 + (h− 1)2

]
/2, Ñ = 9

[
(2 + g2 − 2h)x2 + 2g(h+ 1)xy + (h− 1)(h+ 1)y2

]
,

then in order to simplify these canonical systems via a translation we examine the following three

possibilities

(i) θ 6= 0; (ii) θ = 0 and Ñ 6= 0; (iii) θ = Ñ = 0.

3.1.1 The possibility θ 6= 0

In this subsection we prove the next theorem which corresponds to the part of the Diagram 1 defined

by the condition θ 6= 0.

Theorem 1. Assume that for a quadratic system (6) the conditions η < 0 and θ 6= 0 hold. Then, this

system could possess at most one invariant ellipse. And it possesses exactly one invariant ellipse

(real or complex) if and only if γ̂1 = γ̂2 = 0 and one of the following sets of the conditions are

satisfied:

(i) If β̂1 6= 0, then either

(i.1) β̂2 6= 0, β̂3 6= 0,

{
R̂1 < 0→ real;

R̂1 < 0→ complex,
or

(i.2) β̂2 6= 0, β̂3 = 0, γ̂3 = 0,

{
R̂1 < 0→ real;

R̂1 > 0→ complex,
or

(i.3) β̂2 = 0, β̂4 6= 0, β̂5 6= 0,

{
R̂2 < 0→ real;

R̂2 > 0→ complex,
or

(i.4) β̂2 = 0, β̂4 6= 0, β̂5 = 0, γ̂3 = 0,

{
R̂2 < 0→ real;

R̂2 > 0→ complex;

(ii) If β̂1 = 0, then either

(ii.1) β̂6 6= 0, β̂2 6= 0, β̂27 + β̂28 6= 0, γ̂4 = 0,

{
R̂3 < 0→ real;

R̂3 > 0→ complex,
or

(ii.2) β̂6 6= 0, β̂2 = 0, β̂4 6= 0, γ̂5 = 0,

{
R̂2 < 0→ real;

R̂2 > 0→ complex,
or

13



(ii.3) β̂6 = 0, β̂2 6= 0, γ̂4 = 0, γ̂8 = 0,

{
R̂3 < 0→ real;

R̂3 > 0→ complex,
or

(ii.4) β̂6 = 0, β̂2 = 0, γ̂4 = 0, γ̂9 = 0,

{
R̂4 < 0→ real;

R̂4 > 0→ complex.

Proof: The condition θ 6= 0 implies h + 1 6= 0 and due to a translation we may assume c = d = 0.

So we arrive at the systems

ẋ = a+ gx2 + (h+ 1)xy, ẏ = b+ ex+ fy − x2 + gxy + hy2, (11)

for which we calculate

γ̂1 =
(h+ 1)2

32
Ψ1Ψ2,

where

Ψ1 =
[
eg(1− 3h) + f(1 + 2g2 − h2)

]
, Ψ2 =

[
(e− fg + 3eh)2 + 4f2(h+ 1)2)

]
.

So, since h+ 1 6= 0, we obtain that the condition γ̂1 = 0 is equivalent to Ψ1Ψ2 = 0.

On the other hand for systems (11) we calculate

β̂1 =− (h+ 1)2

16

[
e2(1 + 3h)2 + f2(8 + 9g2 + 8h)− 2efg(9h− 1)

]
,

β̂2 =− g
[
g2 + (3h+ 1)2

]
/2,

β̂3 =(3h− 1)
[
9g2 + (3h+ 5)2

]
/2.

(12)

and we consider two cases: β̂1 6= 0 and β̂1 = 0.

3.1.1.1 The case β̂1 6= 0. We claim that in this case the condition γ̂1 = 0 implies Ψ1 = 0.

Indeed, assuming Ψ2 = 0 due to h+ 1 6= 0 we necessarily get f = 0. Then we obtain

Ψ2 = e2(1 + 3h)2, β̂1 = −e2(1 + h)2(1 + 3h)2/16,

and clearly the condition β̂1 6= 0 implies Ψ2 6= 0. So the contradiction we obtained proves our claim.

Thus the condition γ̂1 = 0 implies Ψ1 = 0, i.e. we have the condition

eg(1− 3h) + f(1 + 2g2 − h2) = 0.

This equation is linear with respect to the parameter e with the coefficient g(1 − 3h). We observe

that the condition g = 0 is equivalent to β̂2 = 0, and hence we consider two subcases: β̂2 6= 0 and

β̂2 = 0.

3.1.1.1.1 The subcase β̂2 6= 0. Then g 6= 0 and we have that the second factor 1− 3h could

vanish if and only if β̂3 = 0.

1) The possibility β̂3 6= 0. Then the condition Ψ1 = 0 gives e =
f(1 + 2g2 − h2)

g(3h− 1)
, and then we

calculate:

γ̂2 = −1575f2(1 + h)5

g2(3h− 1)3
[
g2 + (1− h)2

]2[
9g2 + (1 + 3h)2

]
B1,
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where

B1 = (bg − ah)(3h− 1)2 − 2f2g(h− 1),

and clearly in the considered case the condition γ̂2 = 0 is equivalent to B1 = 0. This last condition

yields

b =
2f2g(h− 1) + ah(3h− 1)2

g(3h− 1)2

and we arrive at the family of systems

ẋ = a+ gx2 + (h+ 1)xy,

ẏ =
ah

g
+

2f2(h− 1)

(3h− 1)2
+
f(1 + 2g2 − h2)

g(3h− 1)
x+ fy − x2 + gxy + hy2,

which possess the invariant conic

Φ(x, y) =
a

g
+

4f2

(3h− 1)2
− 2f(1 + h)

g(3h− 1)
x+

4f

3h− 1
y + x2 + y2 = 0.

Since g(1− 3h) 6= 0 we may apply to the above systems the following translation

x1 = x− f(1 + h)

g(3h− 1)
, y1 = y +

2f

3h− 1

and, after additional change of the parameters f and a by the new ones (d1 and a1) using the

formulae

a = a1 +
d21g

(1 + h)2
, f =

d1g(3h− 1)

(1 + h)2
,

we arrive at the simpler canonical systems (we pass to the old notation: x1 → x, y1 → y, a1 → a

and d1 → d)

ẋ = a+ dy + gx2 + (h+ 1)xy,

ẏ =
ah

g
− dx− x2 + gxy + hy2.

(13)

These systems possess the invariant conic

Φ(x, y) =
a

g
+ x2 + y2 = 0, (14)

which clearly is a real ellipse for ag < 0, it is a complex ellipse for ag > 0 and it is reducible conic

for a = 0.

On the other hand for systems (13) we calculate

R̂1 = 3agd2(1 + h)2
[
g2 + (h− 1)2

]4[
9g2 + (3h+ 1)2

]
/128,

β̂1 = −d2
[
g2 + (h− 1)2

][
9g2 + (3h+ 1)2

]
/16, β̂2 = −g

[
g2 + (3h+ 1)2

]
/2

(15)

and due to β̂1β̂2 6= 0 we deduce that the condition a = 0 is equivalent to R̂1 = 0. Therefore, the

conic (14) is irreducible if and only if R̂1 6= 0. Moreover, we have sign (ag) = sign (R̂1), and hence

systems (13) possess a real (respectively, complex) ellipse (14) if and only if R̂1 < 0 (respectively

R̂1 > 0).
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2) The possibility β̂3 = 0. Then 3h− 1 = 0 (i.e. h = 1/3) and we obtain Ψ1 = 2f(4 + 9g2)/9 = 0,

which implies f = 0. We observe that in this case we get γ̂1 = γ̂2 = 0.

Thus, we arrive at the family of systems

ẋ = a+ gx2 + 4xy/3, ẏ = b+ ex− x2 + gxy + y2/3, g 6= 0, (16)

for which, considering (7), we obtain

s = u = 1, t = 0, U = 2g, V = 2/3, W = −gq − r,
Eq6 = (6e+ 2q − 3gr)/3, Eq7 = (3gq + 2r)/3, Eq8 = 2a− 2gp+ gq2 + er + qr,

Eq9 = (6b− 2p+ 3gqr + 3r2)/3, Eq10 = aq + gpq + br + pr,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = 0.

So the conditions Eq6 = 0 and Eq7 = 0 give us

r = 18eg/(4 + 9g2), q = −12e/(4 + 9g2),

and then we get

Eq8 = 2(a− gp) +
162e2g3

(4 + 9g2)2
, Eq9 = 2(3b− p)/3 +

108e2g2

(4 + 9g2)2
, Eq10 = −6e(2a− 3bg − gp)

4 + 9g2
,

Resp (Eq8, Eq9) =
4
[
(a− 3bg)(4 + 9g2)2 − 81e2g3

]
3(4 + 9g2)2

≡ 4

3(4 + 9g2)2
B2.

Evidently, for the existence of an invariant conic the condition B2 = 0 is necessary and this condition

gives b =
a

3g
− 27e2g2

(4 + 9g2)2
, and then we have

Eq8 = 2a− 2gp+
162e2g3

(4 + 9g2)2
, Eq9 =

1

3g
Eq8, Eq10 =

−3e

4 + 9g2
Eq8.

Clearly we obtain the unique condition Eq8 = 0 which gives p =
a

g
+

81e2g2

(4 + 9g2)2
and all the equations

are satisfied. So we arrive at the canonical systems

ẋ = a+ gx2 + 4xy/3,

ẏ =
a

3g
− 27e2g2

(4 + 9g2)2
+ ex− x2 + gxy + y2/3,

which possess the invariant conic

Φ(x, y) =
a

g
+

81e2g2

(4 + 9g2)2
− 12e

4 + 9g2
x+

18eg

4 + 9g2
y + x2 + y2 = 0.

It remains to observe that the condition B2 = 0 is governed by the invariant polynomial γ̂3 as for

systems (16) calculations yield:

γ̂3 = −122512e

27
B2, β̂1 = −4e2/9,

16



and due to β̂1 6= 0 the condition B2 = 0 is equivalent to γ̂3 = 0.

Next, we may apply to the above systems the following translation

x1 = x− 6e

4 + 9g2
, y1 = y +

9eg

4 + 9g2
,

and, after additional change of the parameters a and e by the new ones (a1 and d1) using the formulae

a = a1 +
9d21g

16
, e =

d1(4 + 9g2)

8
,

we arrive at a simpler canonical form (we pass here to the old notation: x1 → x, y1 → y, a1 → a

and d1 → d)

ẋ = a+ dy + gx2 + 4xy/3, ẏ =
a

3g
− dx− x2 + gxy + y2/3.

We observe that we get a subfamily of the family of systems (13) defined by h = 1/3. Therefore, the

above systems possess the same invariant ellipse (14), because this ellipse does not depend on the

parameter h. Considering (15) it is clear that in this particular case the invariant polynomial R̂1 is

responsible for the type of the ellipse (14).

3.1.1.1.2 The subcase β̂2 = 0. In this case, according to (12), we have g = 0 and then for

systems (11) we have

γ̂1 = f(h+ 1)3(1− h)
[
4f2(h+ 1)2 + e2(1 + 3h)2

]
/32, θ = (h− 1)2(h+ 1)/2.

Therefore, due to θ 6= 0, the condition γ̂1 = 0 gives f = 0. So we get the following systems

ẋ = a+ (h+ 1)xy, ẏ = b+ ex− x2 + hy2, (17)

for which, solving the equations (7), we obtain

s = u = 1, t = 0, U = 0, V = 2h, W = −r,
Eq6 = 2e+ q(1− h), Eq7 = r(1− h), Eq8 = 2a+ er + qr,

Eq9 = 2b− 2hp+ r2, Eq10 = aq + br + pr,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = 0.

Therefore, due to h − 1 6= 0, equations Eq6 = 0 and Eq7 = 0 imply r = 0 and q = 2e/(h − 1), and

then we get

Eq8 = 2a, Eq9 = 2(b− hp), Eq10 = 2ae/(h− 1).

So equation Eq8 = 0 gives the condition a = 0 (this implies Eq10 = 0). In this case we could not

have h = 0, otherwise equation Eq9 = 0 yields b = 0, and we get the degenerate system ẋ = xy,

ẏ = (e− x)x. In the case h 6= 0 the condition Eq9 = 0 gives p = b/h and all the above equations are

satisfied.

Thus, we conclude that for the existence of an invariant conic for systems (17) the conditions a = 0

and h 6= 0 must be satisfied. On the other hand for these systems we calculate

γ̂2 = −1575ae2h(h− 1)2(h+ 1)3(3h− 1)(3h+ 1)2, θ = (h− 1)2(h+ 1)/2,

β̂1 = −e2(h+ 1)2(3h+ 1)2/16, β̂4 = 2h(1 + h)2, β̂5 = −2(h+ 1)(3h− 1),
(18)
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and it is clear that the condition h 6= 0 is equivalent to β̂4 6= 0.

So in what follows we assume β̂4 6= 0 and then, due to θβ̂1 6= 0, the necessary condition γ̂2 = 0

implies a(3h− 1) = 0 and therefore we examine two possibilities: β̂5 6= 0 and β̂5 = 0.

1) The possibility β̂5 6= 0. In this case we obtain a = 0 and we arrive at systems

ẋ = (h+ 1)xy, ẏ = b+ ex− x2 + hy2, (19)

which possess the invariant conic

Φ(x, y) =
b

h
+

2e

h− 1
x+ x2 + y2 = 0, (20)

Since h(h− 1)(h+ 1) 6= 0, we may apply to the above systems the following translation

x1 = x+
e

h− 1
, y1 = y,

and, after an additional change of the parameters e and b by the new ones (d1 and b1) using the

formulae

e =
d1(1− h)

1 + h
, b =

b1(1 + h)2 + d21h

(1 + h)2
,

we arrive at the simpler canonical systems (we pass to the old notation: x1 → x, y1 → y, b1 → b

and d1 → d)

ẋ = dy + (h+ 1)xy, ẏ = b− dx− x2 + hy2. (21)

These systems possess the invariant conic

Φ(x, y) =
b

h
+ x2 + y2 = 0, (22)

which clearly is a real ellipse for bh < 0, it is a complex ellipse for bh > 0, and it is reducible conic

for b = 0.

On the other hand, for systems (21) we calculate

R̂2 = bh(h− 1)2(1 + h)2(1 + 3h)4/8,

β̂1 = −d2(h− 1)2(1 + 3h)2/16, β̂4 = 2h(1 + h)2,
(23)

and due to β̂1β̂4 6= 0 we deduce that the condition b = 0 is equivalent to R̂2 = 0. Therefore, the

conic (22) is irreducible if and only if R̂2 6= 0. Moreover, we have sign (bh) = sign (R̂2) and hence

systems (21) possess a real (respectively, complex) ellipse (22) if and only if R̂2 < 0 (respectively,

R̂2 > 0).

2) The possibility β̂5 = 0. In this case we obtain h = 1/3 and considering (18) this implies γ̂2 = 0.

However, it was proved above that for systems (17) the condition a = 0 is necessary for the existence

of invariant ellipse. So for these systems with h = 1/3 we calculate

γ̂3 = −1960192ae/27, β̂1 = −4e2/9,

and clearly due to the condition β̂1 6= 0 we deduce that the condition a = 0 is equivalent to γ̂3 = 0.
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Thus, a = 0 and we arrive at the systems

ẋ = 4xy/3, ẏ = b+ ex− x2 + y2/3,

which possess the invariant conic

Φ(x, y) = 3b− 3ex+ x2 + y2 = 0.

We observe that the above systems belong to the family (19) with h = 1/3, as well as the above

conic is a particular case of the conic (20) (when h = 1/3). So, following the same steps as before

for the generic case of systems (19) (but considering h = 1/3), we arrive at the canonical systems

(21) possessing the ellipse (22) in the particular case h = 1/3. Therefore, it is clear that the same

invariant polynomial R̂2 6= 0 is responsible for the type of this ellipse.

3.1.1.2 The case β̂1 = 0. We have the following result.

Lemma 6. For systems (11), conditions β̂1 = 0 = γ̂1 and θ 6= 0 imply f = 0.

Proof: Suppose the contrary. If f 6= 0, according to (12), the conditions β̂1 = 0 and θ 6= 0 yield

φ = 9f2g2 + 2efg(1− 9h) + 8f2(1 + h) + (e+ 3eh)2 = 0.

We observe that

Discrim[φ, g] = −32f2
[
e2 + 9f2 + 9(e2 + f2)h

]
,

and in order to factorize the polynomial φ (with respect to the parameter g) into two linear factors,

we set e2 + 9f2 + 9(e2 + f2))h = −2u2. Then, we obtain

h = −e
2 + 9f2 + 2u2

9(e2 + f2)
, φ =

1

9(e2 + f2)2
φ1φ2 = 0,

φ1,2 = 2eu2 ± 4(e2 + f2)u+ 2e(e2 + 5f2) + 9fg(e2 + f2),

and due to the change u→ −u, without loss of generality we can assume φ1 = 0. This equality gives

us

g = −2(e3 + 5ef2 + 2e2u+ 2f2u+ eu2)

9f(e2 + f2)
,

and then we calculate

β̂1 = 0, γ̂1 = −
8(2e− u)6(2e+ u)2

[
f2 + (e+ u)2

]2
312f(e2 + f2)4

,

θ =
4(2e− u)(2e+ u)

[
e4 + 34e2f2 + 81f4 + 4e3u+ 20ef2u+ 6e2u2 + 22f2u2 + 4eu3 + u4

]
729f2(e2 + f2)2

.

Clearly, due to θ 6= 0 and f 6= 0, we get γ̂1 6= 0 and this contradiction completes the proof of the

lemma.

Thus, by Lemma 6, we have f = 0, and for systems (11) we obtain

γ̂1 = −e3g(1 + h)2(3h− 1)(1 + 3h)2/32,

θ = (h+ 1)
[
g2 + (h− 1)2

]
/2, β̂1 = −e2(h+ 1)2(3h+ 1)2/16,

β̂2 = −g
[
g2 + (3h+ 1)2

]
/2, β̂6 = (1 + 3h)

[
9g2 + (3h+ 1)2

]
/8,

(24)

and we observe that due to θ 6= 0 the condition β̂1 = 0 gives e(3h+1) = 0 and this imply γ̂1 = γ̂2 = 0.

So we examine two subcases: β̂6 6= 0 and β̂6 = 0.
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3.1.1.2.1 The subcase β̂6 6= 0. Then 3h+ 1 6= 0 and the condition β̂1 = 0 implies e = 0.

Thus, we arrive at the family of systems

ẋ = a+ gx2 + (1 + h)xy, ẏ = b− x2 + gxy + hy2, 3h+ 1 6= 0, (25)

for which, considering (7), we obtain

s = u = 1, t = 0, U = 2g, V = 2h, W = −gq − r,
Eq6 = q(1− h)− gr, Eq7 = gq + r(1− h), Eq8 = 2a− 2gp+ gq2 + qr,

Eq9 = 2b− 2hp+ gqr + r2, Eq10 = aq + gpq + br + pr,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = 0.

We observe that the linear system of equations Eq6 = 0 and Eq7 = 0 with respect to the parameters

r and q has the determinant g2 + (h− 1)2 6= 0 due to θ 6= 0. So the conditions Eq6 = 0 and Eq7 = 0

gives us q = r = 0 and then we obtain

Eq8 = 2(a− gp), Eq9 = 2(b− hp), Eq10 = 0. (26)

Therefore we have to distinguish the possibilities g 6= 0 and g = 0. According to (24) these conditions

are governed by the invariant polynomial β̂2.

1) The possibility β̂2 6= 0. Then g 6= 0 and the condition Eq8 = 0 yields p = a/g and we get

Eq9 = 2(bg − ah)/g = 0. So we obtain the condition bg − ah = 0.

This condition gives us b = ah/g and we get the family of systems

ẋ = a+ gx2 + (h+ 1)xy, ẏ =
ah

g
− x2 + gxy + hy2, (27)

which is a subfamily of systems (13) defined by the condition d = 0. These systems possess the

invariant ellipse (14), which does not depend on the parameter d. However, considering (15) for the

above systems we have R̂1 = β̂1 = 0, i.e. we need another invariant polynomial for determining the

type of the ellipse (14).

Thus, as it was shown above, systems (25) possess an invariant ellipse if and only if bg − ah = 0

and ag 6= 0. It remains to find out invariant polynomials which give us equivalent affine invariant

conditions. We prove the next lemma.

Lemma 7. Assume that for a system (25) the condition θβ̂2 6= 0 holds. Then, this system possesses

an invariant ellipse if and only if γ̂4 = 0, β̂27 + β̂28 6= 0 and R̂3 6= 0. Moreover, this ellipse is real for

R̂3 < 0 and it is complex if R̂3 > 0.

Proof: Necessity. Assume that a system (25) with β̂2 6= 0 possesses an invariant ellipse, i.e. as it was

mentioned above the conditions bg− ah = 0 and ag 6= 0 are satisfied. Since g 6= 0, we have b = ah/g

and then we calculate

γ̂4 = 0, R̂3 = 160ag(g2 + h2)
[
g2 + (3h+ 1)2

]
, β̂7 = 8(1 + 4h)

[
4g2 + (2h+ 1)2

]
,

β̂8 =
8a

g

[
4g2 + (2h+ 1)2

][
h+ 3h2(5 + 12h) + g2(11 + 36h)

]
.

(28)
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We note that the condition ag 6= 0 implies R̂3 6= 0 and, moreover sign (R̂3) = sign (ag). It remains

to observe that the condition β̂7 = β̂8 = 0 could not be satisfied. Indeed, assuming β̂7 = 0, due to

g 6= 0, we obtain h = −1/4 and then by (28) we obtain β̂8 = a(1 + 16g2)2/(4g) 6= 0 due to a 6= 0.

This completes the proof of the necessity.

Sufficiency. Assume now that for a system (25) the conditions θβ̂2R̂3(β̂
2
7 + β̂28) 6= 0 and γ̂4 = 0

are satisfied. For this system calculations yield

γ̂4 =− 4608(bg − ah)(1 + h)
[
g2 + (h− 1)2

]
Ψ̃,

Ψ̃ =a2(1 + 4h)2 + (b− 2ag + 2bh)2.

We observe that, in the case Ψ̃ 6= 0, due to θβ̂2 6= 0 (i.e. g(h+ 1) 6= 0), the condition γ̂4 = 0 implies

bg−ah = 0 and it was proved above that in this case, due to R̂3 6= 0, the system under examination

possesses an invariant conic. So it remains to prove the following claim: the conditions β̂27 + β̂28 6= 0

and R̂3 6= 0 imply Ψ̃ 6= 0.

Indeed, assuming Ψ̃ = 0, we get a(1 + 4h) = 0 = b − 2ag + 2bh. Therefore, we could have the

following three possibilities:

a = 0, b = 0 ⇒ R̂3 = 0,

a = 0, h = −1/2 ⇒ R̂3 = 0,

h = −1/4, b = 4ag ⇒ β̂7 = 0 = β̂8,

and evidently our claim is proved. This completes the proof of Lemma 7.

2) The possibility β̂2 = 0. In this case we get g = 0 and this leads to the systems

ẋ = a+ (1 + h)xy, ẏ = b− x2 + hy2, 3h+ 1 6= 0. (29)

Considering (26) the condition Eq8 = 0 yields a = 0 for this family. Moreover, the condition h 6= 0

must be fulfilled for the above systems in order to have an invariant conic, otherwise the equation

Eq9 = 0 from (26) implies b = 0, and we arrive degenerate systems (29).

On the other hand, for systems (29) calculations yield:

γ̂5 = −ah(1 + 3h)4/4, θ = (h+ 1)(h− 1)2/2,

β̂4 = 2h(1 + h)2, β̂6 = (3h+ 1)3/8.

Therefore, due to θβ̂6 6= 0, the condition h 6= 0 is equivalent to β̂4 6= 0, whereas the condition a = 0

is equivalent to γ̂5 = 0. So we arrive at the family of systems

ẋ = (1 + h)xy, ẏ = b− x2 + hy2,

which is a subfamily of (21) defined by the condition d = 0. This means that the above systems

possess the invariant ellipse (22), which does not depend on the parameter d. Moreover, the type of

this ellipse is governed by the invariant polynomial R̂2, the value of which is given in (23) and also

does not depend on d.
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3.1.1.2.2 The subcase β̂6 = 0. Then 3h+ 1 = 0 (i.e. h = −1/3) and we obtain the following

family of systems:

ẋ = a+ gx2 + 2xy/3, ẏ = b+ ex− x2 + gxy − y2/3, (30)

for which, considering (7), we obtain

s = u = 1, t = 0, U = 2g, V = −2/3, W = −gq − r,
Eq6 = (6e+ 4q − 3gr)/3, Eq7 = (3gq + 4r)/3, Eq8 = 2a− 2gp+ gq2 + er + qr,

Eq9 = (6b+ 2p+ 3gqr + 3r2)/3, Eq10 = aq + gpq + br + pr,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = 0.

Therefore, conditions Eq6 = Eq7 = 0 give

r = 18eg/(16 + 9g2), q = −24e/(16 + 9g2),

and then we have

Eq8 = 2a− 2gp+
54e2g(8 + 3g2)

(16 + 9g2)2
, Eq9 = 2b+ 2p/3− 108e2g2

(16 + 9g2)2
.

So, the condition Eq9 = 0 gives p = −3b+
162e2g2

(16 + 9g2)2
and then we obtain

Eq8 =
2
[
(a+ 3bg)(16 + 9g2)2 − 27e2g(3g2 − 8)

]
(16 + 9g2)2

≡ 2

(16 + 9g2)2
B3,

Eq10 =
12e
[
− 81e2g3 − (3bg − 2a)(16 + 9g2)2

]
(16 + 9g2)3

≡ 12e

(16 + 9g2)3
B4,

and hence the conditions B3 = 0 and eB4 = 0 are necessary for systems (30) to possess an invariant

ellipse.

We claim that the condition e = 0 must hold in order to get an irreducible invariant conic. Indeed,

assuming e 6= 0 and solving the system of equations B3 = 0 and B4 = 0 (which are linear with

respect to the parameters a and b), we obtain

a = − 72e2g

(16 + 9g2)2
, b =

3e2(9g2 − 16)

(16 + 9g2)2
.

It could be checked directly that systems (30) with these values of the parameters a and b possess

the following invariant conic:

9e2 + 6e(−4x+ 3gy) + (16 + 9g2)(x2 + y2) = 0.

However, this invariant conic is not irreducible, because the corresponding determinant (see Re-

mark 3) vanishes and this completes the proof of our claim. Thus, for systems (30), the conditions

B3 = 0 and e = 0 must hold.

On the other hand, for systems (30) we calculate

γ̂8 = −eg/9, β̂2 = −g3/2,

22



and we consider two possibilities: β̂2 6= 0 and β̂2 = 0.

1) The possibility β̂2 6= 0. Then g 6= 0 and the condition e = 0 is equivalent to γ̂8 = 0. In the

case e = 0 we obtain B3 = (a+ 3bg)(16 + 9g2)2. On the other hand, for systems (30) with e = 0 we

calculate

γ̂4 = −1024(a+ 3bg)(16 + 9g2)
[
a2 + (b− 6ag)2

]
/81,

and clearly the condition γ̂4 = 0 is equivalent to a + 3bg = 0, otherwise supposing a + 3bg 6= 0 we

get a = b = 0 which leads to a contradiction. As g 6= 0 (due to β̂2 6= 0), we get b = −a/(3g) and we

arrive at the family of systems

ẋ = a+ gx2 + 2xy/3, ẏ = − a

3g
− x2 + gxy − y2/3,

which is a subfamily of (27) defined by the condition h = −1/3. Therefore, the above systems

possess the same invariant ellipse (14), because this ellipse does not depend on the parameters h

and d. Moreover, the type of this ellipse is determined by the invariant polynomial R̂3 given in (28),

because in the case h = −1/3 it gives the sign of the product ag.

2) The possibility β̂2 = 0. In this case we have g = 0 (which implies γ̂8 = 0) and therefore we need

another invariant polynomial which governs the condition e = 0. So for systems (30) with g = 0 we

obtain
B3 = 256a = 0 ⇔ γ̂4 = −64a

[
256a2 + (16b+ 3e2)2

]
/81 = 0,

e = 0 ⇔ γ̂9 = −2e2/3 = 0.

Therefore, we arrive at the family of systems

ẋ = 2xy/3, ẏ = b− x2 − y2/3,

which is a subfamily of (21) defined by the condition d = 0 and h = −1/3. So we conclude that the

above system possesses the invariant conic (22), which in this case becomes

Φ(x, y) = −3b+ x2 + y2 = 0.

However, considering (23) we observe that the invariant polynomial R̂2 vanishes, and hence we need

another one which is responsible for the sign of the parameter b. So for the above systems we

calculate

R̂4 = −32b(3x2 + y2)/9 ⇒ sign (R̂4) = −sign (b),

and we conclude that the above ellipse is real if R̂4 < 0 and it is complex if R̂4 > 0.

Since all the cases are examined we conclude that Theorem 1 is proved.

3.1.2 The possibility θ = 0 and Ñ 6= 0

In this subsection we prove the next theorem which corresponds to the part of the Diagram 1 defined

by the conditions θ = 0 and Ñ 6= 0.

Theorem 2. Assume that for a quadratic system (6) the conditions η < 0, θ = 0 and Ñ 6= 0 hold.

Then, this system could possess at most one invariant ellipse. And it possesses exactly one invariant

ellipse (real or complex) if and only if γ̂1 = γ̂2 = 0 and one of the following sets of the conditions

are satisfied:
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(i) β̂1 6= 0, β̂2 6= 0, γ̂6 = 0,

{
R̂5 < 0→ real;

R̂5 > 0→ complex,
or

(ii) β̂1 6= 0, β̂2 = 0, γ̂6 = 0,

{
R̂6 < 0→ real;

R̂6 > 0→ complex,
or

(iii) β̂1 = 0, γ̂6 = 0, γ̂7 = 0,

{
R̂3 < 0→ real;

R̂3 > 0→ complex.

Proof: According to (9), the condition θ = 0 implies

(h+ 1)
[
g2 + (h− 1)2

]
= 0.

On the other hand, for systems (8) we have

Ñ = 9
[
(2 + g2 − 2h)x2 + 2g(h+ 1)xy + (h− 1)(h+ 1)y2

]
, (31)

and, as we can observe, the condition g = 0 = h− 1 is equivalent to Ñ = 0. Since Ñ 6= 0 we deduce

that the condition θ = 0 implies h = −1 and we may assume f = 0 due to a translation in systems

(8). This leads to the family of systems

ẋ = a+ cx+ dy + gx2, ẏ = b+ ex− x2 + gxy − y2, (32)

for which we calculate

γ̂1 =
d2

32
(4 + g2)(4 + 9g2)

[
4(d+ e)g − c(g2 − 4)

]
≡ d2

32
(4 + g2)(4 + 9g2)Ψ̃,

β̂1 = −d
[
d(3g2 − 4)2 + 16g(cg2 − 4c− 4eg)

]
, β̂2 = −g(g2 + 4)/2.

(33)

Therefore, the condition γ̂1 = 0 yields dΨ̃ = 0 (this implies γ̂2 = 0 because it contains the factors

dΨ̃), and we consider two subcases: β̂1 6= 0 and β̂1 = 0.

3.1.2.1 The subcase β̂1 6= 0. Then d 6= 0 and the condition Ψ̃ = 0 is equivalent to γ̂1 = 0. So,

we have 4(d+ e)g − c(g2 − 4) = 0, and we consider two possibilities: β̂2 6= 0 and β̂2 = 0.

3.1.2.1.1 The possibility β̂2 6= 0. According to (33), we have g 6= 0 and we obtain e =

(cg2−4c−4dg)/(4g). Then considering the equations (7), for the systems (32) with this value of the

parameter e we get the following values of the parameters of a conic as well as of its corresponding

cofactor:

s = u = 1, t = 0, U = 2g, V = −2, W = c/2, r = c/2, q = c/g.

For these values of the parameters, we obtain that Eq1 = 0, . . . , Eq7 = 0, and

Eq8 = (16a− 4cd+ c2g − 16gp)/8, Eq9 = (4cd+ 8bg − c2g + 8gp)/(4g),

Eq10 = c(2a+ bg − gp)/(2g).

Since g 6= 0 the equation Eq8 = 0 yields p =
16a− 4cd+ c2g

16g
and we obtain

Eq9 = (16a+ 4cd+ 16bg − c2g)/(8g), Eq10 =
c

4
Eq9.
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Therefore we deduce that for the existence of an invariant conic the condition 16a+4cd+16bg−c2g = 0

is necessary and sufficient. On the other hand for systems (32) with e = (cg2 − 4c − 4dg)/(4g) we

calculate

γ̂6 = 4(16a+ 4cd+ 16bg − c2g)(4 + g2),

and clearly the condition γ̂6 = 0 yields a = (c2g − 4cd− 16bg)/16.

Thus we arrive at the family of systems

ẋ =
c2g − 4cd− 16bg

16
+ cx+ dy + gx2, ẏ = b+

cg2 − 4c− 4dg

4g
x− x2 + gxy − y2,

which possess the invariant conic

Φ(x, y) =
c2g − 4cd− 8bg

8g
+
c

g
x+

c

2
y + x2 + y2 = 0.

Since g 6= 0, we may apply to the above systems the following translation

x1 = x+
c

2g
, y1 = y +

c

4
,

and after additional change of the parameter b by a1 and using the formula

b =
c2(g2 − 4)− 16a1g − 8cdg

16g2
,

we arrive at a simpler canonical form (we pass here to the old notation: x1 → x, y1 → y and a1 → a)

ẋ = a+ dy + gx2, ẏ = −a
g
− dx− x2 + gxy − y2.

We observe that the family of systems we obtained is a subfamily of (13) defined by the condition h =

−1 and clearly possesses the same ellipse (14) which does not depend on the parameter h. However

by (15) the condition h = −1 cancels the invariant polynomial R̂1 and hence, other polynomial is

needed. We calculate

R̂5 = 12ag(4 + g2),

and therefore the ellipse (14) is real for R̂5 < 0 and it is complex for R̂5 > 0.

3.1.2.1.2 The possibility β̂2 = 0. According to (33), we have g = 0 and we calculate

γ̂1 = 2cd2, β̂1 = −d2.

So due to β̂1 6= 0 the condition γ̂1 = 0 gives c = 0 and we arrive at the family of systems

ẋ = a+ dy, ẏ = b+ ex− x2 − y2. (34)

Then, from the first seven equations (7), we determine

s = u = 1, t = 0, U = 0, V = −2, W = 0, r = 0, q = −(d+ e),
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and the last three equations have the form

Eq8 = 2a, Eq9 = 2b− d2 − de+ 2p, Eq10 = −a(d+ e).

So, the equation Eq9 = 0 yields p = (d2 − 2b + de)/2 and we deduce that the condition a = 0 is

necessary and sufficient for a system (34) to possess an invariant conic.

On the other hand for these systems we calculate γ̂6 = 512a, i.e. this invariant polynomial is

responsible for the existence of an invariant conic. Thus we arrive at the family of systems

ẋ = dy, ẏ = b+ ex− x2 − y2,

which possess the invariant conic

Φ(x, y) =
d2 − 2b+ de

2
− (d+ e)x+ x2 + y2 = 0.

However, even though the canonical form of the above systems is simple, we would like to present

them in the same form as the previous ones.

So, we apply the following translation x1 = x + (d + e)/2 and, after additional change of the

parameter b by b1 using the formula b = (4b1 + d2 − e2)/4, we arrive at the canonical form (we pass

here to the old notation: x1 → x, y1 → y and b1 → b)

ẋ = dy, ẏ = b− dx− x2 − y2. (35)

We observe that the above family of systems is a subfamily of (21) defined by the condition h = −1

and clearly possess the same ellipse (22) which takes the form

Φ(x, y) = −b+ x2 + y2 = 0.

However from (23) we detect that the condition h = −1 cancels the invariant polynomial R̂2. So for

systems (35) we calculate

R̂6 = −4b,

and therefore the ellipse (22) with h = −1 is real for R̂6 < 0 and it is complex for R̂6 > 0.

3.1.2.2 The subcase β̂1 = 0. We claim that the conditions β̂1 = γ̂1 = 0 imply d = 0. Indeed

suppose the contrary, that d 6= 0. Considering (33) we obtain that the condition γ̂1 = 0 implies

Ψ̃ = 4(d+ e)g − c(g2 − 4) = 0. If g 6= 0 then we get e = (cg2 − 4c− 4dg)/(4g) and then we obtain

β̂1 = −d2(g2 + 4)(9g2 + 4)/16 6= 0.

In the case g = 0 the condition Ψ̃ = 0 gives c = 0 and we get β̂1 = −d2 6= 0, i.e. in both cases we

arrive at a contradiction which proves our claim.

Thus d = 0 and considering (7) for systems (32) with d = 0, we obtain

s = u = 1, t = 0, U = 2g, V = −2, W = r,

Eq6 = 2e+ 2q − gr, Eq8 = 2a− 2gp+ cq + er − qr,
Eq5 = 2c− gq − 2r, Eq9 = 2b+ 2p− r2, Eq10 = aq + br − pr,

Eq1 = Eq2 = Eq3 = Eq4 = Eq7 = 0.
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We detect that equations Eq5 = 0 and Eq6 = 0 yield

r = 2(2c+ eg)/(4 + g2), q = −2(2e− cg)/(4 + g2),

and then the equation Eq9 = 0 gives

p =
2(2c+ eg)2 − b(4 + g2)2

(4 + g2)2
.

For these values of the parameters q, r and p for the equation Eq8 = 0 we obtain

Eq8 =
2
[
(a+ bg)(4 + g2)2 + g(g2 − 8)(c2 − e2) + 2ce(4− 5g2)

]
(4 + g2)2

≡ 2B5
(4 + g2)2

.

So, the condition B5 = 0 is necessary for the existence of invariant conic and this condition yields

a = −bg − g(g2 − 8)(c2 − e2) + 2ce(4− 5g2)

(4 + g2)2
. (36)

In this case we obtain that all the Eqi = 0 (i = 1, . . . , 9) vanish identically, except Eq10 = 0, which

becomes

Eq10 =
2

(4 + g2)3
(4c+ 4eg − cg2)

[
b(4 + g2)2 + (c2 − e2)(g2 − 4)− 8ceg

]
≡ 2B6B7

(4 + g2)3
= 0.

So, the condition Eq10 = 0 implies B6B7 = 0 and we consider two possibilities: B6 6= 0 and B6 = 0.

a) The possibility B6 6= 0. This implies B7 = 0 and we obtain

b =
8ceg − (c2 − e2)(g2 − 4)

(4 + g2)2
.

Thus, we arrive at the family of systems

ẋ =
2(cg − 2e)(2c+ eg)

(4 + g2)2
+ cx+ gx2 =

(cg − 2e+ 4x+ g2x)(4c+ 2eg + 4gx+ g3x)

(4 + g2)2
,

ẏ = −(cg − 2c− 2e− eg)(2c− 2e+ cg + eg)

(4 + g2)2
+ ex− x2 + gxy − y2,

which possess the invariant conic

Φ(x, y) =
c2 + e2

4 + g2
− 2(2e− cg)

4 + g2
x+

2(2c+ eg)

4 + g2
y + x2 + y2 = 0.

However, this invariant conic is not irreducible, because the corresponding determinant (see Re-

mark 3) vanishes. In other words, we get a couple of two complex invariant lines. Moreover, we

observe that this family of systems also possesses a couple of parallel real invariant lines in the

direction x = 0.

b) The possibility B6 = 0. Then we have 4c + 4eg − cg2 = 0, and we observe that the condition

g 6= 0 must hold. Indeed, setting g = 0, we get c = 0, and this implies a = 0 which leads to

degenerate systems (32).
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So, g 6= 0 and B6 = 0 yields e = c(g2 − 4)/(4g), and we obtain the systems

ẋ =
g(c2 − 16b)

16
+ cx+ gx2, ẏ = b+

c(g2 − 4)

4g
x− x2 + gxy − y2, (37)

which possess the invariant conic

Φ(x, y) =
c2 − 8b

8
+
c

g
x+

c

2
y + x2 + y2 = 0.

The corresponding determinant of this conic is

∆ =
c2g2 − 4c2 − 16bg2

16g2
≡ D4

16g2
,

and according to Remark 3 we have an irreducible conic (which is an ellipse) if and only if D4 6= 0.

Thus we deduce that a system (32) with d = 0 possess an irreducible invariant conic if and only

if B5 = B6 = 0 and D4 6= 0. We have the next lemma.

Lemma 8. Assume that for a system (32) with d = 0 and g 6= 0 the conditions B5 = B6 = 0 and

D4 6= 0 are satisfied. Then, for this system we must have c2 − 4ag 6= 0.

Proof: Suppose the contrary, i.e. we have c2 − 4ag = 0. Then a = c2/(4g) and the condition

B6 = 4c + 4eg − cg2 = 0 gives e = c(g2 − 4)/(4g). For these values of the parameters a and e, we

obtain

B5 = −(g2 + 4)2

16g
(c2g2 − 4c2 − 16bg2), D4 = c2g2 − 4c2 − 16bg2,

and clearly the condition D4 6= 0 implies B5 6= 0. So, we arrive at a contradiction, which completes

the proof of the lemma.

On the other hand for systems (32) with d = 0 we calculate

γ̂7 = −12(c2 − 4ag)B5.

So the condition γ̂7 = 0 implies B5 = 0, i.e. we have the condition (36). For this value of the

parameter a we obtain

γ̂6 =
4g(10 + g2)

4 + g2
B26.

We claim that, in the case under consideration for non-degenerate systems, the condition g 6= 0 must

hold. Indeed, assuming g = 0 and considering the values of the polynomials B5 and B6 given above,

we obtain

B5 = 8(2a+ ce) = 0, B6 = 4c = 0,

and we get c = a = 0. However, this leads to the degenerate systems ẋ = 0, ẏ = b + ex − x2 − y2,
and our claim is proved.

Thus, g 6= 0 and the condition B6 = 0 is equivalent to γ̂6 = 0, and we obtain e = c(g2 − 4)/(4g).

This leads to the systems (37) which could be simplified. Indeed, since g 6= 0, we may apply to the

above systems the following translation

x1 = x+
c

2g
, y1 = y +

c

4
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(which replaces the center of the circle to the origin) and after additional change of the parameter

b by a1 and using the formula

b =
c2(g2 − 4)− 16a1g

16
,

we arrive at a simpler canonical form (we pass here to the old notation: x1 → x, y1 → y and a1 → a)

ẋ = a+ gx2, ẏ = −a
g
− x2 + gxy − y2.

We observe that the family of systems we obtained is a subfamily of (13) defined by the condition

h = −1 and d = 0. It is clear that the above systems possess the same ellipse (14) which does not

depend on the parameters h and d. Moreover, considering the value of the invariant polynomial R̂3

from (28), for h = −1 we obtain R̂3 = 160ag(1 + g2)(4 + g2). So we deduce that the ellipse (14) is

real for R̂3 < 0 and it is complex for R̂3 > 0.

Since all the cases are examined we conclude that Theorem 2 is proved.

3.1.3 The possibility θ = Ñ = 0

In this subsection we prove the next theorem which corresponds to the part of the Diagram 1 defined

by the condition θ = Ñ = 0.

Theorem 3. Assume that for a quadratic system (6) the conditions η < 0 and θ = 0 = Ñ hold.

Then, this system either has no invariant ellipse or it has an infinite family of invariant ellipses.

Moreover it possesses an 1-parameter family of invariant ellipses (real and complex) if and only if

β̂1 = γ̂5 = 0. In addition, the system possesses an invariant line and the position of these invariant

ellipses with respect to the invariant line is determined by the following conditions, correspondingly:

(i) if R̂7 < 0, then all the ellipses are real and they have two (real) common points of intersection

as it is shown in the picture F1 of Figure 1;

(ii) if R̂7 = 0, then all the ellipses are real and they have a unique (real) point of intersection as

it is shown in the picture F2 of Figure 1;

(iii) if R̂7 > 0, then the invariant ellipses of this family could either be real or complex, depending

on the parameter of the family of ellipses. The subfamily of real invariant ellipses has no real

intersection points and it is presented in Figure 1 by the family F3.

Proof: Considering (31) the condition Ñ = 0 yields, for systems (8), g = 0 and h = 1 (this implies

θ = 0), and applying an additional translation we may assume c = d = 0, arriving at the family of

systems

ẋ = a+ 2xy, ẏ = b+ ex+ fy − x2 + y2. (38)

Then, from the first five equations (7) for these systems, we determine

s = u = 1, t = 0, U = 0, V = 2, W = −r,

and
Eq6 = 2e, Eq7 = 2f, Eq8 = 2a+ er + qr,

Eq9 = 2b− 2p+ fr + r2, Eq10 = aq + br + pr.
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So, the equations Eq6 = Eq7 = 0 and Eq9 = 0 give us e = f = 0 and p = (2b+ r2)/2, and then we

obtain

Eq8 = 2a+ qr, Eq10 = (2aq + 4br + r3)/2. (39)

We shall examine two subcases: a = 0 and a 6= 0.

1) The subcase a = 0. So we get the family of systems

ẋ = 2xy, ẏ = b− x2 + y2. (40)

On the other hand, the conditions Eq8 = Eq10 = 0 imply qr = r(r2 + 4b) = 0.

a) If r = 0, we get the family of conics depending on the parameter q:

Φ(x, y) = b+ qx+ x2 + y2 = 0, (41)

and having the corresponding determinant

∆ = (4b− q2)/4.

So, by Lemma 5, for any fixed value of the parameter b, the ellipses from the family (41) are real if

and only if 4b− q2 < 0.

We observe that systems (40) possess the invariant line x = 0 and two real and two complex

finite singularities if b 6= 0, and one real invariant line of multiplicity four if b = 0 (since we get the

homogeneous system).

Then, it is clear that the real singularities are located on the invariant line if b ≤ 0 and outside of

the axis x = 0 if b > 0.

As a result, we obtain the family of ellipses F1 if b < 0, the family F2 if b = 0, and the family F3

if b > 0 (see Figure 1).

Figure 1: The family (41) of invariant ellipses of systems (40).

b) Assume now r 6= 0. Then, Eq10 = r(4b + r2)/2 = 0 implies 4b + r2 = 0. On the other hand,

considering the conditions s = u = 1, t = 0, q = 0, p = (2b+ r2)/2, we obtain the conics

Φ(x, y) = b+ r2/2 + x2 + ry + y2 = 0,

whose determinant is

∆ = (4b+ r2)/4.
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Evidently, we have that the condition 4b + r2 = 0 implies ∆ = 0, for any value of the parameter b,

and hence we could not have irreducible invariant conics in the considered case.

2) The subcase a 6= 0. Then, considering (39), from Eq8 = 2a + qr = 0 we get qr 6= 0 and

q = −2a/r. In this case we obtain

Eq10 = (r4 + 4br2 − 4a2)/(2r).

We claim that the condition Eq10 = 0 leads to degenerate conics. Indeed, taking into consideration

the equalities s = u = 1, t = 0, q = −2a/r, p = (2b+ r2)/2, we arrive at the family of conics

Φ(x, y) = b+ r2/2− 2ax/r + ry + x2 + y2 = 0,

whose determinant is

∆ = (r4 + 4br2 − 4a2)/(4r2).

By Lemma 5, the above conics are irreducible if and only if ∆ 6= 0. However, the condition Eq10 = 0

implies ∆ = 0, and this completes the proof of our claim.

Thus, we conclude that a system (38) either has no invariant ellipse or it has an infinite family of

invariant ellipses. As it was proved, this system possesses an infinite family of invariant ellipses if

and only if the condition a = f = e = 0 holds. Moreover the position of the real invariant ellipses

with respect to the invariant line x = 0 of systems (38) (in the case a = 0) is governed by the

parameter b.

On the other hand for (38) we calculate

β̂1 = −4(e2 + f2), γ̂5 = −32(2a− ef), R̂7 = 32b,

and it is clear that the conditions β̂1 = γ̂5 = 0 is equivalent to a = f = e = 0. Moreover we have

sign (R̂7) = sign (b) and this completes the proof of Theorem 3.

3.2 Systems with C2 = 0

We remark that if C2 = 0 then a non-degenerate real planar quadratic differential system has all

points at infinity (in the Poincaré compactification) as singularities.

In [22] the full study of the whole family of such systems was done. In this subsection we would

like to determine the necessary and sufficient affine invariant conditions for a quadratic system (6)

with C2 = 0 to possess an invariant ellipse. Therefore for the conic (5), we impose the condition

t2 − su < 0 ⇒ su > 0 (42)

to be satisfied. It is clear that, if a system possesses an invariant conic Φ(x, y) = 0, then the conic

αΦ(x, y) = 0, with α ∈ R, is also invariant for this system. So, we may assume u = 1, and in what

follows we will consider the following conic:

Φ(x, y) ≡ p+ qx+ ry + sx2 + 2txy + y2 = 0.

We prove the next theorem.
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Theorem 4. Assume that for a quadratic system (6) the condition C2 = 0 is fulfilled. Then this

system either has no invariant ellipse or it has an infinite family of invariant ellipses. Moreover

it possesses an 1-parameter family of invariant ellipses (real and complex) if and only if one of the

sets of conditions indicated below are satisfied. In addition, the system possesses an invariant line

and the position of these invariant ellipses with respect to the invariant line is determined by the

following conditions, correspondingly:

(i) H10 6= 0 and N7 = 0. Furthermore,

(i1) if H9 < 0, then all the invariant ellipses are real and they have two (real) common points

of intersection located on the invariant line. At these points the ellipses are all tangent to

each other, as it is shown in the picture F4 of Figure 2;

(i2) if H9 = 0, then all the invariant ellipses are real and they have a unique (real) point of

intersection located on the invariant line. The conics are all tangent to the line at this

point, as it is shown in the picture F5 of Figure 2;

(i3) if H9 > 0, then the invariant ellipses of this family could either be real or complex,

depending on the parameter of the family of ellipses. The subfamily of real invariant

ellipses has no real intersection points, and it is presented in Figure 2 by the family F6.

(ii) H10 = 0, H12 6= 0, and H2 = 0. The invariant ellipses of this family are complex for H11 < 0

and they are real if H11 > 0, and in this case their position with respect to the corresponding

invariant line is shown in the picture F4 of Figure 2.

Proof: Assume that for a quadratic system (6) the condition C2(x, y) = 0 is satisfied. Then, the line

at infinity is filled up with singularities and, according to Lemma 2, via a linear transformation and

time rescaling, quadratic systems could be brought to the systems (SV ). Applying the additional

translation (x, y) 7→ (x− f, y − e), we can assume e = f = 0 and this leads to the following systems

ẋ = â+ ĉx+ d̂y + x2, ẏ = b̂+ xy. (43)

Following [22], for the above systems we calculate H10 = 36d̂2. We observe that for d̂ = 0 these

systems possess two parallel invariant lines, and we consider two subcases: H10 6= 0 and H10 = 0.

3.2.1 The case H10 6= 0

Then, d̂ 6= 0. As it was shown in [22, page 749], in this case, via some parametrization and using an

additional affine transformation and time rescaling, we arrive at the following 2-parameter family of

systems

ẋ = a+ y + (x+ c)2, ẏ = xy. (44)

Considering (7) for these systems, we obtain

Eq1 = s(2− U), Eq2 = 2t(2− U)− sV, Eq3 = 2− U − 2tV, Eq4 = −V,

and evidently the equations Eq3 = Eq4 = 0 imply U = 2 and V = 0. Then, we have

Eq5 = −q + 4cs− sW = 0, Eq6 = −r + 2s+ 4ct− 2tW = 0,

Eq7 = 2t−W = 0, Eq8 = −2p+ 2cq + 2as+ 2c2s− qW = 0,
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and this gives

q = s(4c−W ), r = 2s+ 2cW −W 2, t = W/2,

p = s(2a+ 10c2 − 6cW +W 2)/2.

Considering these values of the parameters q, r, t, and p, we finally calculate

Eqi = 0, i = 1, 2, . . . , 8, Eq10 = s(2c−W )
[
4a+ (W − 2c)2

]
/2 = 0,

Eq9 = 4cs+ (a− 3s+ c2)W − 2cW 2 +W 3 = 0.

Since s 6= 0, we consider the two subcases defined by the equality (2c−W )
[
4a+ (W − 2c)2

]
= 0.

3.2.1.1 The subcase W = 2c. This implies Eq10 = 0 and Eq9 = 2c(a− s+ c2) = 0.

3.2.1.1.1 The possibility c = 0. In this case we obtain the 1-parameter family of systems

ẋ = a+ y + x2, ẏ = xy, (45)

which possesses the 2-parameter family of invariant conics

Φ(x, y) = as+ 2sy + sx2 + y2 = 0.

Since s > 0 (see condition (42)), we may set a new parameter m as follows: s = 1/m2, and this leads

to the 1-parameter family of ellipses

Φ̃(s, x, y) = a+ 2y + x2 +m2y2 = 0. (46)

We determine that, for this family, the corresponding determinant ∆ = am2 − 1. So, by Lemma

5, for any fixed value of the parameter a, the ellipses from the family (46) are real if and only if

am2 − 1 < 0.

We observe that systems (45) possess the invariant line y = 0 and two real or two complex finite

singularities located on this line if a 6= 0. In the case a = 0, we have on this invariant line one double

real singularity.

As a result, we obtain the family of ellipses F4 if a < 0, the family F5 if a = 0, and the family

F6 if a > 0 (see Figure 2). It remains to note that, for systems (45), we have H9 = 2304a3 and,

therefore, the invariant polynomial H9 distinguishes these cases.

3.2.1.1.2 The possibility a − s + c2 = 0. Then, s = a + c2 and systems (44) possess the

following invariant conic

Φ(x, y) = (a+ c2)(a+ c2 + 2cx+ 2y) + (a+ c2)x2 + 2cxy + y2 = 0,

for which we calculate ∆ = 0. Then, by Remark 3, this conic is reducible.
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Figure 2: The family (46) of invariant ellipses of systems (45).

3.2.1.2 The subcase 4a + (W − 2c)2 = 0. This implies Eq10 = 0. If a = 0, then W = 2c and,

as it was shown above, for the existence of an invariant conic it is necessary c = 0. So, we arrive

at the particular case of the family of ellipses (46), defined by the condition a = 0. Therefore, we

consider two possibilities: a < 0 and a > 0.

On the other hand, for systems (44), we have H9 = 2304a(a+c2)2, and clearly the above conditions

are governed by this invariant polynomial.

3.2.1.2.1 The possibility H9 < 0. Then, a < 0 and we may assume a = −k2. After the

rescaling (x, y, t) 7→ (kx, k2y, t/k), we obtain the systems

ẋ = y − 1 + (x+ c)2, ẏ = xy, (47)

for which we have W = 2(c ± 1), and we obtain Eq10 = 0, Eq9 = 2(c ± 3)
[
(c ± 1)2 − s

]
= 0. We

consider the two subcases given by two factors of the polynomial Eq9.

1) The subcase c± 3 = 0. We may assume c > 0 because of the rescaling (x, y, t) 7→ (−x, y,−t) in

the above systems. Therefore, we set c = 3 and then systems (47) could be brought to system (44)

with c = 0 and a = −1 via the transformation

(x, y, t) 7→
(
2(x− 1), 4(y − x− 1), t/2

)
.

So, we arrive at the system (45) with a = −1 and, as it was shown above, this system possesses the

family of ellipses (46) with a = −1.

2) The subcase (c ± 1)2 − s = 0. Then, s = (c ± 1)2 and this leads to the reducible conics

Φ(x, y) = (c2 − 1± x+ cx+ y)2 = 0.

3.2.1.2.2 The possibility H9 > 0. Then, a > 0 and we may assume a = k2. Applying the

same rescaling as earlier, we arrive at the family systems

ẋ = 1 + y + (x+ c)2, ẏ = xy.

In this case, the condition 4a+(W −2c)2 = 0 with a = 1 gives W = 2(c± i), and we obtain Eq10 = 0

and Eq9 = 2(c ± 3i)
[
(c ± i)2 − s

]
= 0. Since c ∈ R, we obtain s = (c ± i)2 and this again leads to

the reducible conics Φ(x, y) = (c2 + 1± ix+ cx+ y)2 = 0.
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Thus, we detect that, in the case H10 6= 0, a system (44) could possess an invariant ellipse if and

only if either the conditions c = 0 or c2 + 9a = 0 hold. On the other hand, for systems (44), we

calculate N7 = 16c(c2 +9a) and, therefore, we conclude that an arbitrary quadratic system (6), with

C2 = 0 and H10 6= 0, possesses at least one invariant ellipse if and only if N7 = 0.

3.2.2 The case H10 = 0.

This implies d̂ = 0. In this case, systems (43) become as systems

ẋ = â+ ĉx+ x2, ẏ = b̂+ xy, (48)

for which, following [22], we calculate the value of invariant polynomial H12 = −8â2x2 and we

consider two possibilities: H12 6= 0 and H12 = 0.

3.2.2.1 The possibility H12 6= 0. Then, â 6= 0 and as it was shown in [22, page 750], in this

case, via an affine transformation and time rescaling after some additional parametrization, we arrive

at the following 2-parameter family of systems

ẋ = a+ (x+ c)2, ẏ = xy, (49)

for which the condition H12 = −8(a+ c2)2x2 6= 0 must hold.

Next, in order to determine the conditions for the existence of an invariant conic, we apply as

earlier the equations (7). Since the quadratic parts of the above systems coincide with quadratic

parts of systems (44), by the same reasons from the first four equations (7), we determine that U = 2

and V = 0, and then calculations yield

Eq5 = −q + 4cs− sW = 0, Eq6 = −r + 4ct− 2tW = 0,

Eq7 = −W = 0, Eq8 = −2p+ 2cq + 2as+ 2c2s− qW = 0.

So, equation Eq7 = 0 gives W = 0, and then we obtain q = 4cs, r = 4ct, and p = s(a+ 5c2). In this

case, we calculate

Eqi = 0, i = 1, 2, . . . , 8, Eq9 = 2(a+ c2)t = 0, Eq10 = 4c(a+ c2)s = 0.

By the conditions (42) and H12 6= 0, we have s(a+ c2) 6= 0 and, therefore, we obtain t = c = 0. So,

we arrive at the 1-parameter family of systems

ẋ = a+ x2, ẏ = xy, (50)

which possesses the family of conics

Φ(x, y) = as+ sx2 + y2 = 0.

Since s > 0, we may set a new parameter m as follows: s = 1/m2, and then we arrive at the

1-parameter family of ellipses:

Φ̃(x, y) = a+ x2 +m2y2 = 0.

It is clear that the above ellipses are real if a < 0 and complex if a > 0. On the other hand, for the

systems (50) we have H11 = −192ax4, and hence the above conditions are governed by this invariant

polynomial.
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3.2.2.2 The possibility H12 = 0. Then, for systems (48), we have â = 0, and this condition

implies b̂ 6= 0 (otherwise we obtain degenerate systems). So, we may assume b̂ = 1, due to the

rescaling y → b̂y, and this leads to the 1-parameter family of systems (we set ĉ = c)

ẋ = cx+ x2, ẏ = 1 + xy.

And again, since the quadratic parts of the above systems coincide with quadratic parts of systems

(44), by the same reasons from the first four equations (7), we determine that U = 2 and V = 0,

and then calculations yield

Eq5 = −q + 2cs− sW = 0, Eq6 = −r + 2ct− 2tW = 0, Eq7 = −W = 0,

Eq8 = −2p+ cq + 2t− qW = 0, Eq9 = 2− rW = 0, Eq10 = r − pW.

So, it is evident that the conditions Eq7 = Eq9 = 0 lead to a contradiction.

Then, it was shown that in the case H10 = 0 (i.e d̂ = 0) systems (43) for H12 6= 0 (i.e â 6= 0)

could be brought via an affine transformation to the systems (49) with a+ c2 6= 0. Moreover, it was

proved that these systems possess at least one invariant ellipse if and only if c = 0.

On the other hand, for systems (49) we calculate H2 = 4cx2, and hence this invariant polynomial

is responsible for the condition c = 0.

Since all the cases are investigated we deduce that Theorem 4 is proved and hence the conditions

from the Diagram 2 are valid.

4 The proof of the Main Theorem: statement (B)

Consider the family of quadratic systems (6) and assume that these systems possess an invariant

ellipse, i.e. one of the set of the conditions provided by the statement (A) of the Main Theorem

(see Diagrams 1 and 2) is fulfilled. Then, according to [14], via an affine change and time rescaling,

they could be brought to the canonical systems of Qin Yuan-Xun (see also [13, page 412])

ẋ = 1− cy − x2 − axy − (b+ 1)y2, ẏ = x(c+ ax+ by). (51)

These systems possess the invariant conic

Φ(x, y) = x2 + y2 − 1 = 0.

According to [13] (see page 412), this conic is a limit cycle if and only if

a2 + b2 < c2, a 6= 0. (52)

We note that these conditions are different from the ones which appear in [7], where the conditions

contain a minor mistake.

For systems (51), we calculate

T3F = a2c2(a2 + b2 − c2)
[
a2 + (b− 2)2

]2
/8,

and, since from the conditions (52) we have ac 6= 0, the following lemma is valid.
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Lemma 9. If a quadratic system (6) possesses an invariant ellipse, then this ellipse is a limit cycle

of the system if and only if T3F < 0.

So, it remains only to detect which of the conditions, provided by Theorems 1, 2, 3, and 4, in the

case of systems (51), are compatible with the conditions (52).

Lemma 10. For systems (51) satisfying the conditions (52), the following conditions hold:

γ̂1 = γ̂2 = 0, η < 0, C2Ñ 6= 0 and β̂1β̂2 6= 0.

Proof: For systems (51) we calculate:

γ̂1 =0, γ̂2 = 0, η = −4
[
a2 + (b+ 1)2

]
,

C2 =−
[
ax+ (b+ 1)y

]
(x2 + y2),

Ñ =
[
18a2 − 9b(b+ 2)

]
x2 + 18a(3b+ 4)xy + 9

[
a2 − 2(b+ 1)(b+ 2)

]
y2,

β̂1 =− c2
[
a2 + (b− 2)2

][
a2 + (b+ 2)2

]
/16,

β̂2 =− a
[
(a2 + b2)2 − (2b+ 3)(a2 + b2) + 4(b+ 1)

]
/2.

Considering the conditions (52) and the formulae above, the conditions C2 6= 0, η < 0, β̂1 6= 0,

and β̂4 6= 0 follow immediately. We examine the remaining conditions: Ñ 6= 0 and β̂2 6= 0.

Suppose first that Ñ = 0. Then, due to a 6= 0, we obtain b = −4/3, and then we get

Ñ = (9a2 + 4)(2x2 − y2) 6= 0,

leading to a contradiction.

Next we examine the condition β̂2 6= 0. We write β̂2 = −aβ̃2
2

, where

β̃2 = (a2 + b2)2 − (2b+ 3)(a2 + b2) + 4(b+ 1)

and assume the contrary, that there exists (a0, b0) ∈ R2 such that β̃2(a0, b0) = 0. Denoting by

u = a2 + b2 we obtain

β̃2 = u2 − (2b+ 3)u+ 4(b+ 1) ≡ ϕ1(b, u)

and clearly we have ϕ1(b0, u0) = 0 where u0 = a20 + b20. We consider the plane (b, u) and examine

the graphics of the two conics: hyperbola ϕ1(b, u) = 0 and the parabola ϕ2(b, u) = u − b2 = 0 (see

Figure 3). We observe that these conics have two common points at which the conics are tangent.

Let b0 be a point on the axis Ob for which the equation ϕ1(b0, u) = 0 has at least one real solution.

Clearly we have exactly one solution if and only b0 is the abscissa of one of the common points of

the conics. In other cases, due to the choice of b0, the equation ϕ1(b0, u) = 0 possesses two solutions

u
(i)
0 , i = 1, 2, where u

(i)
0 =

(
a
(i)
0

)2
+ b20.

On the other hand from Figure 3 it follows that for each i = 1, 2 we have u
(i)
0 ≤ b20. However in

this case we get
(
a
(i)
0

)2
+ b20 ≤ b20, which is impossible due to a 6= 0 and this completes the proof of

this lemma.
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Figure 3: Grafics of the conics φ1(b, u) = 0 and φ2(b, u) = 0.

We claim that for any non-degenerate quadratic system with η < 0 the condition β̂2 6= 0 implies

Ñ 6= 0. Indeed, assume the contrary, that for a quadratic system the conditions η < 0, β̂2 6= 0

and Ñ = 0 are satisfied. Then via an affine transformation these systems could be brought to the

systems (38). However, for these systems we have β̂2 = 0, which leads to a contradiction.

Therefore considering Lemmas 9 and 10, and the conditions provided by Theorem 1 (in the case

θ 6= 0) and by Theorem 2 (in the case θ = 0 and Ñ 6= 0) for the existence of a real invariant ellipse,

we arrive at the next assertion.

Theorem 5. A quadratic system (6) possesses an invariant ellipse, which in addition is an algebraic

limit cycle, if and only if η < 0, T3F < 0, β̂1β̂2 6= 0, γ̂1 = γ̂2 = 0, and one of the following sets of

conditions is satisfied:

(i) θ 6= 0, β̂3 6= 0, R̂1 < 0; (a = −1, b = −5, c = −6);

(ii) θ 6= 0, β̂3 = 0, γ̂3 = 0, R̂1 < 0; (a = −3/4, b = −(10 + 3
√

3 )/4, c = −8);

(iii) θ = 0, γ̂6 = 0, R̂5 < 0; (a = −1/4, b = −(2 +
√

3 )/4, c = −2).

We remark that, in the second column in parentheses in Theorem 5, we present examples which

prove that the corresponding sets of the invariant conditions are not empty.
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