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Abstract. We study the maximum number of limit cycles that can bifurcate

from an integrable non-linear quadratic isochronous center, when perturbed

with a Liénard-like polynomial perturbation of arbitrary degree.

1. Introduction

The number of limit cycles in systems that are perturbation of a linear non-
denegerate center has been extensively studied in [2, 5, 4] . The main tool used to
study such problems are the averaging methods [2].

In this paper we consider systems of the form

(1.1)

{
ẋ = p(x, y) + εPn(x, y),
ẏ = q(x, y) + εQn(x, y),

where p, q are quadratic polynomials and Pn, Qn are n-degree polynomials to be
choosen inside a particular family to be specified later. It is natural to consider
that, for ε = 0, system (1.1) has a center at the origin. In addition, we shall consider
that for ε = 0, (1.1) has a isochronous system at origin.

Our aim is to study the maximum number of limit cycles that can appear on
system (1.1) when ε 6= 0. The main tool we employ is the averaging method
described in [2].

In [2] is proved that if we consider a 2-degree polynomial perturbation of system
(1.1), then at most 2 limit cycles bifurcate from this center. The same result was
proved in [9]. A computational-numeric approach to this problem (using general
perturbations up to some degree) can be found in [12, 6].

A correlated problem is the study of the number of limit cycles that bifurcates
from the linear center of system (1.2)

(1.2)

{
ẋ = −y + εPn(x, y),
ẏ = x+ εQn(x, y),

with ε = 0, when ε 6= 0. This problem is considered in a huge number of papers (see
[2] and references), including its analog in higher dimension. The averaging theory
has been the main technique to attack this problem, especially in the last years.
We shall compare our result, for system (1.1), with the existing results for system
(1.2). In particular, in Section 3, we emphasize the main differences between the
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application of averaging theory to linear centers (system (1.2)) and the general case
(system (1.1)).

The main result we prove in this paper is the following. Consider system

(1.3)

{
ẋ = −y + x2,
ẏ = x+ xy + ε (yfn(x) + gn(x)) ,

where fn, gn are polynomials of degree n.

Theorem 1.1. Suppose that in system (1.3), fn, gn are polynomials of degree n.
Then the maximum number of limit cycles that bifurcates from the center (ε = 0 in
(1.3)) is:
i) 1, if n = 2, 3,
ii) 2, if n = 4, 5,
iii) lower of equal than n− 2 (if n > 4 is even) or n− 3 (if n > 5 is odd).

One of the goals of this paper is consider perturbations of system (1.3) of arbi-
trary degree (inside a specific family), while the existing results are for perturbations
of fixed degree.

This paper is organized as follows. In Section 2 we provide a classification of
quadratic systems with an isochronous center at origin. In Section 3 we describe
the results of the averaging theory that we shall need to our purposes, and briefly
compare the applications of the averaging theorems for systems (1.1) and (1.2).
Moreover, we define the special family of perturbation we shall consider. The proof
of Theorem 1.1 is contained in Section 5.

2. Quadratic centers

In [7] is proved that the origin is an isochronous center of the quadratic system{
ẋ = −y + a2,0x

2 + a1,1xy + a0,2y
2

ẏ = x+ b2,0x
2 + b1,1xy + b0,2y

2

if and only if the system can be brought to one of the systems (2.1), (2.2), (2.3) or
(2.4) through a linear change of coordinates and a rescaling of time:

(2.1)

{
ẋ = −y + x2 − y2

ẏ = x(1 + 2y)

(2.2)

{
ẋ = −y + x2

ẏ = x(1 + y)

(2.3)

{
ẋ = −y − 4

3x
2

ẏ = x(1− 16
3 y)

(2.4)

{
ẋ = −y + 16

3 x
2 − 4

3y
2

ẏ = x(1 + 8
3y)

All these systems are integrable. Regarding the expression of the first integral,
system (2.2) is the simplest of all. In this paper, we just consider perturbations of
system (2.2).
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3. Averaging theory

In this section we briefly describe some results on periodic averaging of first
order. This is the simplest form of averaging, and is concerned with approximating
solutions of a non-autonomous differential equation by solutions of a autonomous
one. In particular, the first order averaging method is equivalent to the study of the
first order Melnikov function (both are equivalent to the study of the displacement
function). For more references on this, see [13].

The averaging theory was formalized by 1930, but some naive results were con-
jectured even in the 18th century. For a historical description, we suggest [10].

The next theorem is the classical averaging theorem for periodic differential
system.

Theorem 3.1. We consider the following differential system

(3.1) x′ = εf(t, x) + ε2g(t, x, ε)

where x ∈ D (D is an open subset of R), t ∈ [0,∞), ε ∈ (0, ε0], f, g are T -periodic
in the variable t. Suppose that f and g are maps of class C2. Consider the average
function of f(t, x) with respect to t

(3.2) f0(y) =

∫ T

0

f(t, y) dt.

If p ∈ D is such that f0(p) = 0 and Df0(p) 6= 0, then for every |ε| > 0 small,
there existes a T -periodic solution ϕε(t) of system (3.1) such that φ(t, ε) → p as
ε→ 0.

Systems in the form of (3.1) are said to be in the standard form. We remark
that the regularity condition that f, g are of class C2 is not really necessary, but
simplify the statement. For a proof and more comments, see chapter 6 of [10].

Theorem 3.1 is about the existence of periodic solutions for non-autonomous
systems. The following construction allows us to use this theorem for proving the
existence of limit cycles.

Consider the planar system

(3.3)

{
ẋ = p(x, y) + εP (x, y)
ẏ = q(x, y) + εQ(x, y)

where p, q, P,Q : R2 → R are continuous functions.
Let us first consider the case p(x, y) = −y and q(x, y) = x. Then, for ε = 0,

system (3.3) is the linear center.
In this case, using a polar change of coordinates x = r cos(θ), y = r sin(θ), we

obtain

(3.4)

{
ṙ = ε [cos(θ)P (r cos(θ), r sin(θ)) + sin(θ)Q(r cos(θ), r sin(θ))]

θ̇ = 1 + (ε/r) [cos(θ)Q(r cos(θ))− sin(θ)P (r cos(θ), r sin(θ))]

For small ε > 0, the second equation of (3.4) is not zero. Then we can reparametrize
(3.4) to obtain
(3.5){

ṙ = ε [cos(θ)P (r cos(θ), r sin(θ)) + sin(θ)Q(r cos(θ), r sin(θ))] + o(ε2)

θ̇ = 1
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Taking θ as the new time, (3.5) turns into a non-autonomous differential equation
(3.6){

r′ = ε [cos(θ)P (r cos(θ), r sin(θ)) + sin(θ)Q(r cos(θ), r sin(θ))] + o(ε2)

where the prime is derivative with respect to θ.
Note that we can apply Theorem 3.1 to system (3.6).
Let

G(r) =

∫ 2π

0

[cos(θ)P (r cos(θ), r sin(θ)) + sin(θ)Q(r cos(θ), r sin(θ))] dθ.

By Theorem 3.1, each simple zero of G is associated with a periodic solution of
(3.6) and then with a limit cycle of (3.3).

If P,Q are polynomials with no constant terms, P with degree M and Q with
degree N , for instance,

(3.7) P (x, y) =

M∑
k=1

∑
i+j=k

ai,jx
iyj , Q(x, y) =

N∑
k=1

∑
i+j=k

bi,jx
iyj ,

then G(r) writes as

G(r) =

M∑
k=1

rk
∑
i+j=k

ai,j

∫ 2π

0

cosi+1(θ) sinj(θ) dθ.

+

N∑
k=1

rk
∑
i+j=k

bi,j

∫ 2π

0

cosi(θ) sinj+1(θ) dθ.

Note that G(r) is a polynomial with degree max{M,N}, that is, the maximum
number of limit cycles of system (3.3) with p(x, y) = −y, q(x, y) = x and P,Q
polynomials given by (3.7) is max{M,N}. In particular, the number of limit cycles,
and even the function G, depends directly on the coefficients of P,Q: the coefficient
of rk depends just on ai,j , bi,j with i+ j = k.

Now we turn to the general case. Our aim is to put (3.3) in the standard form
to apply the Averaging Theorem 3.1.

The polar coordinates do not help anymore - in fact, they just work when the
system is a linear center for ε = 0.

From now, we assume that (3.3), for ε = 0, has a first integral H, and a contin-
uous family of closed orbits

{Γh} ⊂ {(x, y) : H(x, y) = h, h1 < h < h2}.

This allow us to find a change of coordinates that put (3.3) in the standard form.
Assume that xp(x, y)− yp(x, y) 6= 0 for all (x, y) in

⋃
Γh. Let

ρ : (
√
h1,
√
h2)× [0, 2π)→ [0,∞)

be a continuous function such that

H(ρ(R,φ) cos(φ), ρ(R,φ) sin(φ)) = R2

for all R ∈ (
√
h1,
√
h2) and all φ ∈ [0, 2π).

The change of coordinates x = ρ(R,φ) cos(φ), y = ρ(R,φ) sin(φ) applied to
system (3.3) give us {

Ṙ = εL(R,φ),

φ̇ = 1 + εS(R,φ),
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for some smooth functions L, S. Now, using the same argument as in the linear
center, we can obtain a non-autonomous system in the form

(3.8) R′ = εL(R,φ) + o(ε2),

where the prime is the derivative with respect to φ. Note that (3.8) is in the
standard form.

Applying the Averaging Theorem 3.1 to (3.8) and writing the expression of L,
we obtain the following result:

Theorem 3.2 ([2], Theorem 5.2). Consider that system (3.3) has a first integral
H for ε = 0, and a continuous family of closed orbits

{Γh} ⊂ {(x, y) : H(x, y) = h, h1 < h < h2}.

Let µ(x, y) be an integrating factor for system (3.3). If

(3.9) F (R) =

∫ 2π

0

µ · (x2 + y2) · (Pq −Qp)
2R · (qx− py)

dφ,

where µ, P, p,Q, q depends on x = ρ(R,φ) cos(φ) and y = ρ(R,φ) sin(φ), then each
simple zero of F (R) give us a limit cycle of (3.3).

Remark 3.3. The integrand of F (R) is exactly the function L(R,φ) we defined
above.

Now we workout an example that shows that the dependence of F on P,Q is not
so directly as in the linear case.

Consider the system of differential equations

(3.10)

{
ẋ = −y + x2 + εcxy2,
ẏ = x+ xy + ε(ax2 + by3),

where ε > 0 is a small parameter and a, b, c ∈ R. For ε = 0, this system has a
center at the origin.

The function F given by (3.9) is

F (Z) = ρ(Z)(2aZ2 + (a+ c− 3b)Z − 2c),

where R =
√

1− Z2 and ρ is a C1 function without zeroes for Z ∈ (0, 1).

Note that the leader coefficient in the polynomial d(Z) =
F (Z)

ρ(Z)
is 2a, but a is

not associated with the higher degree terms in (3.10); furthermore, the coefficient
associated to the third order term y3 in the second line of (3.10) appears just on
the coefficient of the linear term of d.

This indirect dependence of F on the coefficients of the perturbation make dif-
ficult to consider general perturbations of non-linear centers.

As we want to study systems with perturbations of arbitrary degree, we fix a
system, given by

(3.11)

{
ẋ = −y + x2,
ẏ = x+ xy + ε (yfn(x) + gn(x)) ,

where fn, gn are polynomials of degree n.
We call this perturbation Lienard like due to its similarity with the classical

Lienard system.
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4. Proof of Theorem 1.1

Recall system (1.3)

(4.1)

{
ẋ = −y + x2,
ẏ = x+ xy + ε (yfn(x) + gn(x)) ,

with fn, gn polynomials of degree n. If we take H(x, y) =
x2 + y2

(1 + y)2
, then H is a first

integral for (4.1) with ε = 0, and all the level curves H = c are closed for c ∈ (0, 1).

The solution of H(ρ cos(ψ), ρ sin(ψ)) = R2 is ρ =
R

1−R sin(ψ)
. Note also that

the integrand factor is µ =
2

(1 + y)3
.

The integrand in expression (3.9), for this case, is given by

(4.2)

L(R,ψ) = ζ(R,ψ)fn

(
R cos(ψ)

1−R sin(ψ)

)
+ η(R,ψ)gn

(
R cos(ψ)

1−R sin(ψ)

)
,

where
ζ(R,ψ) = −R2 sin(ψ)−R cos2(ψ) +R,

η(R,ψ) = R2 sin(ψ)− 2R+R cos2(ψ) + sin(ψ).

Finally, the first Melnikov function (given by (3.9)) is

F (R) =

∫ 2π

0

(
ζ(R,ψ)fn

(
R cos(ψ)

1−R sin(ψ)

)
+ η(R,ψ)gn

(
R cos(ψ)

1−R sin(ψ)

))
dψ.

Note that we are interested in the isolated zeros of F (R) with R ∈ (0, 1) (as the
center is contained in H−1((0, 1)).

Put fn(x) =
∑n
j=1 ajx

j and gn(x) =
∑n
j=1 bjx

j . Then F (R) is given by

(4.3)

F (R) =

∫ 2π

0

ζ(R,ψ)

n∑
j=1

aj

(
R cos(ψ)

1−R sin(ψ)

)j
+ η(R,ψ)

n∑
j=1

bj

(
R cos(ψ)

1−R sin(ψ)

)j dψ

=

∫ 2π

0

ζ(R,ψ)

n∑
j=1

aj
Rj cosj(ψ)

(1−R sin(ψ))j
+ η(R,ψ)

n∑
j=1

bj
Rj cosj(ψ)

(1−R sin(ψ))j

 dψ

= −
n∑
j=1

ajR
j+2

∫ 2π

0

sin(ψ) cosj(ψ)

(1−R sin(ψ))j
dψ −

n∑
j=1

ajR
j+1

∫ 2π

0

cosj+2(ψ)

(1−R sin(ψ))j
dψ

+

n∑
j=1

ajR
j+1

∫ 2π

0

cosj(ψ)

(1−R sin(ψ))j
dψ +

n∑
j=1

bjR
j+2

∫ 2π

0

sin(ψ) cosj(ψ)

(1−R sin(ψ))j
dψ

+

n∑
j=1

bjR
j+1

∫ 2π

0

cosj+2(ψ)

(1−R sin(ψ))j
dψ − 2

n∑
j=1

bjR
j+1

∫ 2π

0

cosj(ψ)

(1−R sin(ψ))j
dψ

+

n∑
j=1

bjR
j

∫ 2π

0

sin(ψ) cosj(ψ)

(1−R sin(ψ))j
dψ.
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Denote

(4.4) Jα,β,γ(R) =

∫ 2π

0

sinα(ψ) cosβ(ψ)

(1−R sin(ψ))γ
dψ.

The next lemmas make explicit expressions for J1,j,j(R), J0,j+2,j(R) and J0,j,j(R).
We just present the proofs for two of them, the others are similar.

Lemma 4.1. J0,2l+1,2l+1(R) ≡ 0, for all l.

Proof. Note that

J0,2l+1,2l+1(R) =

∫ 2π

0

cos2l+1(ψ)

(1−R sin(ψ))2l+1
dψ

=

∫ 2π

0

cos2l(ψ) cos(ψ)

(1−R sin(ψ))2l+1
dψ

=

∫ 1

0

(1− u2)l du

(1−Ru))2l+1
−
∫ 1

−1

(1− u2)l du

(1−Ru))2l+1
+

∫ 0

−1

(1− u2)l du

(1−Ru))2l+1

= 0

�

Lemma 4.2. J0,2l,2l(R) = λ
ul−1(Z)

Z2l−1(1 + Z)l
, for all l, where Z =

√
1−R2, λ is

some constant and uj is a j-degree polynomial.

Proof. If we write z = tan(ψ/2) then cos(ψ) =
1− z2

1 + z2
, sin(ψ) =

2z

1 + z2
, dψ =

2 dz

1 + z2
; then we have to solve∫ ∞

−∞

2(1− z2)2l

(1 + z2)(z2 − 2Rz + 1)2l
dz.

We proceed using an well-know application of the Residue Theorem [1].

Lemma 4.3 ([1], section 5.3). If G is a rational function, an integral of the form∫∞
−∞G(x) dx converges if and only if the degree of the denominator of G is at least

two units higher than the degree of the numerator, and if no poles lies on the real
axis. In this case,

(4.5)

∫ ∞
−∞

G(x) dx = 2πi
∑
j

ReswjG,

where Reswj
G is the residue of G on the pole wj, and the summation is done over

all poles in the upper half plane.

Remark 4.4. Obviously, the complex product in (4.5) is a real number.

Let

G(w) =
2(1− w2)2l

(1 + w2)(w2 − 2Rw + 1)2l

where w is a complex variable.
The poles on the upper half plane are w1 = i (simple pole) and w2 = R +

i
√

1−R2 (pole of order 2l). We have to compute the residues of G over these
poles.
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Lemma 4.5 ([1]). The point z0 is a pole of order m ≥ 1 for G if and only if

G(w) =
φ(w)

(w − w0)m
for some analytic function φ. In this case, the residue of G

over w0 is given by

Resw0
G =

φ(m−1)(w0)

(m− 1)!
,

where φ(m−1) is the (m− 1)-derivative of φ.

The residue over w1 is easy to compute: we write

G1(w) = (w − i)G(w) =
2(1− w2)2l

(w + i)(w2 − 2Rw + 1)2l

and then Resw1
G = G1(w1) =

i(−1)l+1

R2l
.

Now let ρ1 = R+ i
√

1−R2 and ρ2 = R− i
√

1−R2. Then

G(w) =
1

(w − ρ1)2l

2(1− w2)2l

(1 + w2)(w − ρ2)2l
.

If we define φ(w) =
2(1− w2)2l

(1 + w2)(w − ρ2)2l
, then to obtain the residue of G over w1

we need to compute φ(2l−1)(ρ1).

For l = 1, φ(w) =
2(1− w2)2

(1 + w2)(w − ρ2)2
and

φ(1)(ρ1) =
i
(
−i+ iR2 −R

√
1−R2

)2(
iR−

√
1−R2

)2
R2 (1−R2)

3/2

Using the change Z =
√

1−R2 in both residues we obtain

∫ ∞
−∞

2(1− z2)2

(1 + z2)(z2 − 2Rz + 1)2
dz = 2πi

(
i

1− Z2
+

−i
(
iZ +

√
1− Z2

)2
Z
(
i
√

1− Z2 − Z
)2

(−1 + Z2)

)

=
2π
(
−2Z2 + 2 i

√
1− Z2Z + 1

)(
i
√

1− Z2 − Z
)2

(Z + 1)Z

=
2π

Z(Z + 1)

where Z =
√

1−R2. So the case l = 1 is done. The case l > 1 is similar. The
specific degree in the statement is obtained when we simplify the sum of residues.

�

Lemma 4.6. J0,2l+3,2l+1(R) ≡ 0, for all l.

Lemma 4.7. J0,2,0(R) = π, J0,4,2(R) =
3π

(1 + Z)2
, J0,2l+2,2l(R) =

2l + 1

2l−1

vl−2(Z)

(Z + 1)l+1Z2l−3

for all l ≥ 2, where Z =
√

1−R2 and vj is a j-degree polynomial.

Lemma 4.8. J1,2l+1,2l+1(R) ≡ 0, for all l.
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Lemma 4.9. J1,2,2(R) =
2π(1− Z)

RZ(1 + Z)
, J1,2l,2l(R) =

λlπwl(Z)

R(1 + Z)lZ2l−1
, for all l ≥ 2,

where Z =
√

1−R2 and wj is a j-degree polynomial.

Now we apply Lemmas 4.1-4.9 to simplify (4.3).

Lemma 4.10. The coefficients aj , bj of fn, gn with j odd don’t contribute to (4.3).

Proof. Just note that these coefficients are associated to the integrals J0,2l+1,2l+1

or J0,2l+3,2l+1 or J1,2l+1,2l+1, and according to Lemmas (4.1), (4.6), (4.8), these
integrals vanishes. �

By Lemma (4.10) we may consider fn, gn even degree polynomials; moreover, we
may take these polynomials even functions, that is, without odd degree terms. So
from now on we consider just this case.

Lemma 4.11. Consider n = 2 in (4.3). Then

F (Z) = π
(Z − 1)2((2a2 − 2b2)Z − a2 − b2)√

1− Z2
,

where Z =
√

1−R2. The equation F (Z) = 0 has exactly one solution for Z ∈ (0, 1)

when a2 6= b2 and 0 <
a2 + b2

2a2 − 2b2
< 1; otherwise there is no solution.

Proof. Straightforward calculations. �

Lemma 4.12. Consider n = 2m (m > 1) in (4.3). Then the numerator of R ·F (Z)
is given by

numer(R · F (Z)) =

m∑
j=0

α2j(a, b)Z
2j + β2m−3(a, b)Z2m−3 + β2m−1(a, b)Z2m−1

= (Z − 1)2
2m−2∑
j=0

µj(a, b)Z
j ,

where Z =
√

1−R2 and αl(a, b), βs(a, b), µj(a, b), depend on aj , bj (recall that j
is always even), while the denominator is a function without zeroes in the interval
(0, 1). In particular, the equation F (Z) = 0 have at most 2m − 2 solutions for
Z ∈ (0, 1).

Example 4.13. Consider the system

(4.6)

{
ẋ = −y + x2,
ẏ = x+ xy + ε

(
y(a2x

2 + a4x
4) + (b2x

2 + b4x
4)
)
,

where ε > 0 is a small parameter and a2, a4, b2, b4 are real constants. Then

F (Z) = π(Z − 1)2 (−3a4 + 2a2 + 3b4 − 2b2)Z2 + (5a4 − a2 − 3b3 − b2)Z − 2a4

Z
√

1− Z2

The equation F (Z) = 0 has at most two solutions for Z ∈ (0, 1). In particular,
if
∆ = a4

2− 6 a4b4 + 6 a4a2− 26 a4b2 + 9 b4
2 + 6 b4a2 + 6 b4b2 + a2

2 + 2 a2b2 + b2
2 > 0,

Γ = −5 a4 + 3 b4 + a2 + b2 and
ζ = 2(3 b4 − 2 b2 + 2 a2 − 3 a4) 6= 0,
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the solutions are Z± =
Γ±
√

∆

ζ
. For instance, choosing a2 = − 2

3 , a4 = − 1
12 , b2 = 1

and b4 = 1
36 we obtain two solutions.

The estimative in the last lemma that the equation F (Z) = 0 have at most

2m− 2 solutions is just based on the degree of
R · F (Z)

π(Z − 1)2
and is not sharp.

Example 4.14. Consider the system

(4.7)

{
ẋ = −y + x2,
ẏ = x+ xy + ε

(
y(a2x

2 + a4x
4 + a6x

6) + (b2x
2 + b4x

4 + b6x
6)
)
,

where ε > 0 is a small parameter and a2, a4, a6, b2, b4, b6 are real constants. Then

G6(Z) =
R · F (Z)

π(Z − 1)2
= (12b4 − 15b6 + 15a6 − 12a4 − 8b2 + 8a2)Z4

+ (−12b4 + 30b6 − 4b2 + 20a4 − 4a2 − 38a6)Z3

+ (−15b6 − 8a4 + 29a6)Z2 − 4a6Z − 2a6

The degree of polynomial G6 is 4, but we cannot choose coefficients such that
this polynomial has 4 roots in the interval (0, 1). In this case we have just 3 roots.

Remark 4.15 (Conjecture). Consider system (4.1) with fn, gn polynomials of degree
n. We conjecture that the maximum number of limit cycles (solutions of F (Z) = 0
for Z ∈ (0, 1)) is n− 3 when n is odd and n− 4 when n is even.

Remark 4.16. We note that the difficult in proving general quotas is common in
papers dealing with perturbation of non-linear centers. Note that in the proof of
Theorem 1.1 (in special in the proof of Lemma 4.2) the degree of ul−1 was easy
obtained, but its exact dependence on the coefficients is hard to determine. Similar
problems are found in [3].
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LIÉNARD-LIKE PERTURBATION OF A NON-LINEAR CENTER 11

[12] P. Yu, M. Han, Bifurcation of limit cycles in quadratic Hamiltonian systems with various

degree polynomial perturbations. Chaos, Solitons & Fractals 45 (2012) 772–794.

[13] Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles, Maoan Han,Pei Yu

Department of Physics, Chemistry and Mathematics, UFSCar. 18052-780, Sorocaba,
SP, Brazil

E-mail address, A. C. Mereu: anamereu@ufscar.br

Department of Matematics, ICMC, USP. 13560-590, São Carlos, SP, Brazil.

E-mail address, R. D. S. Oliveira: regilene@icmc.usp.br

Department of Mathematics, IMECC, Unicamp. 13083-970, Campinas SP, Brazil

E-mail address, R.M. Martins: rmiranda@ime.unicamp.br


	1. Introduction
	2. Quadratic centers
	3. Averaging theory
	4. Proof of Theorem 1.1
	References

