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Uniform stability of a non-autonomous semilinear Bresse system

with memory

Rawlilson O. Araújo To Fu Ma Sheyla S. Marinho Julio S. Prates Filho ∗

Abstract

The Bresse system is a recognized mathematical model for vibrations of a circular
arched beam that contains the class of Timoshenko beams when the arch’s curvature
is zero. It turns out that the majority of mathematical analysis to Bresse systems are
concerned with the asymptotic stability of linear homogeneous problems. Under this
scenario, we consider a nonlinear Bresse system modeling arched beams with memory
effects, in a nonlinear elastic foundation. Then we establish uniform decay rates of the
energy under time-dependent external forces.

Keywords: Bresse system, energy decay, visco-elasticity, infinite memory.

1 Introduction

In recent years, the Bresse system [4, 14] was studied by many authors. It is a robust
mathematical model for vibrations of circular arched beams given by a system of three
specially coupled wave equations. Let the variables ϕ, ψ,w, represent, respectively, vertical
displacement, shear angle and axial displacement. Then the Bresse system can be deduced
from the governing equations

ρ1ϕtt = Qx + `N + F1, (1.1)

ρ2ψtt = Mx −Q+ F2, (1.2)

ρ1wtt = Nx − `Q+ F3, (1.3)

together with the constitutive laws

N = k0(wx − `ϕ), Q = k(ϕx + `w + ψ), M = bψx, (1.4)

where Q,M,N stand for, respectively, shear force, bending moment, axial force, and ` > 0
is the beam’s curvature. The quantities ρ1, ρ2, k, b, k0, are positive parameters of the system,

∗Corresponding author.
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and F1, F2, F3 represent forcing terms and dissipative effects to the system. Inserting (1.4)
into (1.1)-(1.3) we obtain the usual form of the Bresse system

ρ1ϕtt − k(ϕx + ψ + `w)x − k0`(wx − `ϕ) = F1,

ρ2ψtt − bψxx + k(ϕx + ψ + `w) = F2,

ρ1wtt − k0(wx − `ϕ)x + k`(ϕx + ψ + `w) = F3,

defined in a bounded x-domain, say, (0, L).
It is clear that when the parameter ` vanishes the Bresse system reduces to the Timo-

shenko system [1, 15, 22]

ρ1ϕtt − k(ϕx + ψ)x = F1,

ρ2ψtt − bψxx + k(ϕx + ψ) = F2,

plus an independent wave equation ρ1wtt − k0wxx = F3.
We recall that the Timoshenko system has a characteristic property related to the equal

wave speeds condition. Indeed, with damping term present in only one of its equations, it is
known that the energy of the Timoshenko system is exponentially stable if and only if

k

ρ1
=

b

ρ2

holds (e.g. [20, 2, 3, 13]). It happens that Bresse system also has a characteristic property
related to the equal wave speeds condition, with further k = k0. To this concern we refer the
reader to, for instance, [1, 7, 8, 9, 17, 19, 21, 23].

Our study is related to the one by Guesmia and Kafini [12] where it was studied a Bresse
system with infinite memory. More precisely, with notation (g ∗ u)(t) =

∫∞
0
g(s)u(t − s)ds,

they considered (1.1)-(1.3) with Fi as memory terms of the form

F1 = −g1 ∗ ϕxx, F2 = −g2 ∗ ψxx, F3 = −g3 ∗ wxx,

where gi > 0 are decreasing memory kernels. In a configuration with Dirichlet boundary
condition and with prescribed past history for ϕ(t), ψ(t), w(t), t ≤ 0, they studied the ex-
ponential and polynomial energy decay, in a history setting. Since the system has damping
terms in all of the three equations, it was not assumed any equal wave speeds condition.

We notice that all above mentioned studies on Bresse systems deal with linear homoge-
neous problems. Dynamics of nonlinear Bresse systems was only recently studied in [15],
where it was considered an autonomous problem without memory terms.

Here we study a Bresse system with memory in a framework with nonlinear foundation.
Then our problem reads as follows:

ρ1ϕtt − k(ϕx + ψ + `w)x − k0`(wx − `ϕ) + g1 ∗ ϕxx + f1(ϕ, ψ,w) = h1, (1.5)

ρ2ψtt − bψxx + k(ϕx + ψ + `w) + g2 ∗ ψxx + f2(ϕ, ψ,w) = h2, (1.6)

ρ1wtt − k0(wx − `ϕ)x + k`(ϕx + ψ + `w) + g3 ∗ wxx + f3(ϕ, ψ,w) = h3, (1.7)
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where hi = hi(x, t) and (f1, f2, f3) = ∇F , for some potential function F . The needed
prescribed past history is denoted by

ϕ(x, t) = ϕ0(x, t), ψ(x, t) = ψ0(x, t), w(x, t) = w0(x, t), t ≤ 0, x ∈ (0, L).

Our main objective is to prove the uniform stability of the system (1.5)-(1.7) under the
influence of external time-dependent forces hi = hi(x, t). The global existence for the system
is presented in Theorem 2.1. The uniform exponential decay of the energy is presented in
Theorem 2.2. To our best knowledge this is the first work concerned with Bresse systems
with non-autonomous forces. However, non-autonomous Timoshenko systems were earlier
studied in [11, 16].

2 Preliminaries

2.1 History setting

In order to deal with infinite memory a standard procedure is the one by Dafermos [6].
To this end we shall follow that arguments and notations in [10, 12]. Accordingly, one defines
the following new variable ηi, for t, s ≥ 0,

ηt1(x, s) = ϕ(x, t)− ϕ(x, t− s),
ηt2(x, s) = ψ(x, t)− ψ(x, t− s),
ηt3(x, s) = w(x, t)− w(x, t− s),

that account for the past history. Then we obtain

∂tη
t
1(x, s) = ϕt(x, t)− ∂sηt1(x, s),

∂tη
t
2(x, s) = ψt(x, t)− ∂sηt2(x, s),

∂tη
t
3(x, s) = wt(x, t)− ∂sηt3(x, s).

From this, the memory terms become∫ ∞
0

g1(s)ϕxx(t− s)ds = −
∫ ∞
0

g1(s)∂xxη
t
1(s) ds+ g01 ϕxx(t),∫ ∞

0

g2(s)ψxx(t− s)ds = −
∫ ∞
0

g2(s)∂xxη
t
2(s) ds+ g02 ψxx(t),∫ ∞

0

g3(s)wxx(t− s)ds = −
∫ ∞
0

g3(s)∂xxη
t
3(s) ds+ g03 wxx(t),

where gi ≥ 0 and

g0i =

∫ ∞
0

gi(s) ds > 0, i = 1, 2, 3,
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are assumed to be small. Finally, we obtain the new system (of six equations):

ρ1ϕtt − k(ϕx + ψ + `w)x − k0`(wx − `ϕ)−
∫ ∞
0

g1 ∂xxη1 ds+ g01 ϕxx + f1 = h1, (2.8)

ρ2ψtt − bψxx + k(ϕx + ψ + `w)−
∫ ∞
0

g2 ∂xxη2 ds+ g02 ψxx + f2 = h2, (2.9)

ρ1wtt − k0(wx − `ϕ)x + k`(ϕx + ψ + `w)−
∫ ∞
0

g3 ∂xxη3 ds+ g03 wxx + f3 = h3, (2.10)

∂tη1 − ϕt + ∂sη1 = 0, (2.11)

∂tη2 − ψt + ∂sη2 = 0, (2.12)

∂tη3 − wt + ∂sη3 = 0, (2.13)

defined for (x, t) ∈ (0, L)× R+, where fi = fi(ϕ, ψ,w). To the system we add the boundary
condition

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = w(0, t) = w(L, t) = 0, t ≥ 0, (2.14)

ηti(0, s) = ηti(L, s) = 0, t, s ≥ 0, i = 1, 2, 3, (2.15)

and the initial conditions

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), w(x, 0) = w0(x), x ∈ (0, L), (2.16)

ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), wt(x, 0) = w1(x), x ∈ (0, L), (2.17)

η0i (x, s) = ηi0(x, s), x ∈ (0, L), s > 0, i = 1, 2, 3, (2.18)

with
ηti(x, 0) = 0, t ≥ 0, x ∈ (0, L), i = 1, 2, 3. (2.19)

In what follows we use standard Lebesgue space Lp(0, L) and Sobolev spaces H1
0 (0, L)

and H2(0, L), with norm notation

‖u‖p = ‖u‖Lp and ‖ux‖2 = ‖u‖H1
0
.

The energy space to the system is defined by

H = H1
0 (0, L)3 × L2(0, L)3 ×M1 ×M2 ×M3,

where

Mi = L2
gi

(R+;H1
0 (0, L)) =

{
η : R+ → H1

0 (0, L)
∣∣ ∫ ∞

0

gi(s)‖∂xη(s)‖22 ds <∞
}
,

with norm

‖η‖2Mi
=

∫ ∞
0

gi(s)‖∂xη(s)‖22 ds, i = 1, 2, 3.
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Given z = (ϕ, ψ,w, ϕ̃, ψ̃, w̃, η1, η2, η3) ∈ H, the usual norm is

‖z‖2usual = ‖ϕx‖22 + ‖ψx‖22 + ‖wx‖22 + ‖ϕ̃‖22 + ‖ψ̃‖22 + ‖w̃‖22 + ‖η1‖2M1
+ ‖η2‖2M2

+ ‖η3‖2M3
.

It is well known (cf. [15, 18]) that

‖(ϕ, ψ,w)‖2H = ‖ϕx‖22 + ‖ψx‖22 + ‖wx‖22
and

‖(ϕ, ψ,w)‖2B = k‖ϕx + ψ + `w‖22 + b‖ψx‖22 + k0‖wx − `ϕ‖22
are equivalent norms in H1

0 (0, L)3. In particular, there exists γB > 0 such that

‖(ϕ, ψ,w)‖2B ≥ γB‖(ϕ, ψ,w)‖2H . (2.20)

Then, if g0i are sufficiently small, it follows that the Bresse norm

‖z‖2H = k‖ϕx + ψ + `w‖22 + b‖ψx‖22 + k0‖wx − `ϕ‖22 + ρ1‖ϕ̃‖22 + ρ2‖ψ̃‖22 + ρ1‖w̃‖22
+ ‖η1‖2M1

+ ‖η2‖2M2
+ ‖η3‖2M3

− g01 ‖ϕx‖22 − g02 ‖ψx‖22 − g03 ‖wx‖22, (2.21)

is well-defined in H and equivalent to the usual one.

2.2 Assumptions

With respect to the kernel terms we assume, for each i = 1, 2, 3, gi ∈ C0([0,∞))∩C1(R+),

gi ≥ 0, g0i =

∫ ∞
0

gi(s) ds > 0, g0 = max{g01, g02, g03} < γB, (2.22)

and for some ξ > 0,
g′i(s) ≤ −ξgi(s), ∀s > 0. (2.23)

With respect to the nonlinear foundation, we assume that there exists a function F : R3 → R,
of class C2, such that

∇F = (f1, f2, f3), (2.24)

and satisfying
∇F (ϕ, ψ,w)(ϕ, ψ,w) ≥ F (ϕ, ψ,w) ≥ 0, (2.25)

and for some p ≥ 0, there exists CF > 0 such that,

|∇fi(ϕ, ψ,w)| ≤ CF
(
1 + |ϕ|p + |ψ|p + |w|p

)
, i = 1, 2, 3. (2.26)

Finally, for the non-autonomous forcing, we assume that

hi ∈ L2
loc(R+, L2(0, L)), i = 1, 2, 3, (2.27)

and there exist constants σ,Ch > 0 such that∫ ∞
0

eσs
(
‖h1(s)‖22 + ‖h2(s)‖22 + ‖h3(s)‖22

)
ds < Ch. (2.28)

Examples of such (f1, f2, f3) can be found in [15].
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2.3 Results

The first result is dedicated to the global solvability.

Theorem 2.1. Under the assumptions (2.22)-(2.27), the Bresse system (2.8)-(2.19) has a
unique weak solution

z ∈ C0([0,∞);H), z(0) = z0,

for any z0 ∈ H. Moreover, if z0 ∈ D(A) and hi ∈ H1
loc([0,∞);L2(0, L)), i = 1, 2, 3, then the

solution has regularity
z ∈ C1([0,∞);H) ∩ C0([0,∞);D(A)).

The second result is dedicated to the decay of the energy. We note that from assumption
(2.22) and inequality (2.20), the Bresse norm (2.21) is well defined. Then, along a weak
solution z(t) = (ϕ(t), ψ(t), w(t), ϕt(t), ψt(t), wt(t), η

t
1, η

t
2, η

t
3), t ≥ 0, the energy of the system

is defined by

E(t) =
1

2
‖z(t)‖2H +

∫ L

0

F (ϕ(t), ψ(t), w(t)) dx.

In the next theorem, the uniform stability will require that the nonlinear terms fi have at
most a linear growth.

Theorem 2.2. Under the assumptions (2.22)-(2.28), with p = 0 in (2.26), the energy of the
Bresse system (2.8)-(2.19) has uniform exponential decay. More precisely,

E(t) ≤ C0(E(0) + Ch)e
−γt, t ≥ 0, (2.29)

where 0 < γ ≤ σ and C0 > 0 do not depend on the initial energy.

In the case fi are superlinear, we still have exponential decay of the energy, provided that
hi = 0.

Theorem 2.3. Under the assumptions (2.22)-(2.26), the energy of the Bresse system (2.8)-
(2.19), with hi = 0, decays exponentially. More precisely, given R > 0, there exist constants
CR, γR > 0 such that

E(t) ≤ CRE(0)e−γRt, t ≥ 0, (2.30)

for any solution z with initial value satisfying ‖z0‖H ≤ R.

3 Global existence

In order to use semigroup theory we write our system (2.8)-(2.19) as a Cauchy problem

d

dt
z(t) = Az(t) + F(t, z(t)), z(0) = z0, (3.31)

where

z(t) = (ϕ(t), ψ(t), w(t), ϕ′(t), ψ′(t), w′(t), ηt1, η
t
2, η

t
3) ∈ H, ϕ′ = ϕt, ψ

′ = ψt, w
′ = wt.
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and initial data
z0 = (ϕ0, ψ0, w0, ϕ

′
0, ψ

′
0, w

′
0, η10, η20, η30) ∈ H,

The operator A is linear and defined by

Az =



ϕ′

ψ′

w′

k
ρ1

(ϕx + ψ + `w)x + k0
ρ1
`(wx − `ϕ) + 1

ρ1

∫∞
0
g1(s)∂xxη1(s) ds− g01

ρ1
ϕxx

b
ρ2
ψxx − k

ρ2
(ϕx + ψ + `w) + 1

ρ2

∫∞
0
g2(s)∂xxη2(s) ds− g02

ρ2
ψxx

k0
ρ1

(wx − `ϕ)x − k
ρ2
`(ϕx + ψ + `w) + 1

ρ1

∫∞
0
g3(s)∂xxη3(s) ds− g03

ρ1
wxx

ϕ′ − ∂sη1
ψ′ − ∂sη2
w′ − ∂sη3



,

with domain
D(A) =

{
z ∈ H | Az ∈ H and ηi|s=0 = 0, i = 1, 2, 3

}
.

The nonlinear elastic foundation and non-autonomous forcing terms are given by F : [0,∞)×
H → H,

F(t, z) =



0
0
0

1
ρ1

(
h1(t)− f1(ϕ, ψ,w)

)
1
ρ2

(
h2(t)− f2(ϕ, ψ,w)

)
1
ρ1

(
h3(t)− f3(ϕ, ψ,w)

)
0
0
0


.

The following energy estimate will be useful.

Lemma 3.1. Given δ > 0 one has

d

dt
E(t) ≤ 1

2

3∑
i=1

∫ ∞
0

g′i(s)‖∂xηti(s)‖22 ds+δ‖(ϕt(t), ψt(t), wt(t))‖2(L2)3 +
1

4δ

3∑
i=1

‖hi(t)‖22. (3.32)

Proof. We shall assume the solution z regular, that is, z ∈ C0([0,∞);D(A)). Then all the
calculus below will be legitimate. The result also holds for weak solutions by a standard
density argument.
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Multiplying equations (2.8)-(2.10) by ϕt, ψt, wt, respectively, and integrating over (0, L)
we conclude that

d

dt
E =

1

2

3∑
i=1

∫ ∞
0

g′i‖∂xηi‖22 ds+

∫ L

0

(
h1ϕt + h2ψt + h3wt

)
dx. (3.33)

Then (3.32) follows.

Proof of Theorem 2.1. The existence of solutions for the linear system zt = Az was
studied in [12] by showing that −A is maximal monotone in H. To solve our nonlinear
problem (3.31) we first observe that assumption (2.26) implies that F(t, z) is locally Lipschitz
in z, for each fixed t . Indeed, let us take z1, z2 ∈ H,

z1 = (ϕ1, ψ1, w1, ϕ1′, ψ1′, w1′, η11, η
1
2, η

1
3), z2 = (ϕ2, ψ2, w2, ϕ2′, ψ2′, w2′, η21, η

2
2, η

2
3).

Now, using (2.26), there exists an embedding constant C > 0 such that

1

ρ21

∫ L

0

|f1(ϕ1, ψ1, w1)− f1(ϕ2, ψ2, w2)|2 dx

≤ CCF
(
1 + ‖z1‖2pH + ‖z2‖2pH

)(
‖ϕ1 − ϕ2‖22 + ‖ψ1 − ψ2‖22 + ‖w1 − w2‖22

)
,

≤ Cr‖z1 − z2‖2H,

where Cr > 0 depends on r = max{‖z1‖H, ‖z2‖H}. Same estimate holds for the cases f2, f3.
Then

‖F(t, z1)−F(t, z2)‖H ≤ (3Cr)
1
2‖z1 − z2‖H, t ≥ 0,

which shows that F is locally Lipschitz. Hence from classical results, e.g., [5, Theorem
7.2], for z0 ∈ H, problem (2.8)-(2.19) has a unique weak solution z = z(t) defined on an
interval [0, tmax). Moreover, if tmax < ∞ then ‖z(t)‖H → ∞ as t → t−max. If the initial value
z0 ∈ D(A), the same conclusion is valid for strong solutions.

It remains to show that the solution is global in time. From inequality (3.32) we infer
that

E ′(t) ≤ E(t) +
1

2

3∑
i=1

‖hi(t)‖22, t ∈ [0, tmax).

Hence the Gronwall inequality implies that

E(t) ≤

(
E(0) +

1

2

3∑
i=1

∫ tmax

0

‖hi(s)‖22 ds

)
etmax , t ∈ [0, tmax).

Since hi are locally integrable we see that E(t) is finite in [0, tmax) whenever tmax is finite.
Therefore tmax =∞ and this completes the proof of Theorem 2.1.
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4 Exponential stability

In this section we prove our main result by using energy methods. Let us define the
functionals

I(t) =

∫ L

0

ρ1ϕ(t)ϕt(t) + ρ2ψ(t)ψt(t) + ρ1w(t)wt(t) dx,

J1(t) = −ρ1
∫ ∞
0

g1(s)

∫ L

0

ηt1(s)ϕt(t) dxds,

J2(t) = −ρ2
∫ ∞
0

g2(s)

∫ L

0

ηt2(s)ψt(t) dxds,

J3(t) = −ρ1
∫ ∞
0

g3(s)

∫ L

0

ηt3(s)wt(t) dxds.

Denoting J = J1 + J2 + J3 we consider the perturbed energy

L(t) = E(t) + ε2(ε1I(t) + J(t)), t ≥ 0,

where ε1, ε2 > 0 are parameters to be fixed later.

Lemma 4.1. There exist constants ε0, β1, β2 > 0 such that

β1E(t) ≤ L(t) ≤ β1E(t), t ≥ 0, (4.34)

for any ε1, ε2 ∈ (0, ε0].

Proof. Clearly there exists a constant C̃ > 0 such that

|I(t)|+ |J(t)| ≤ C̃E(t), t ≥ 0.

Taking ε0 < min{1, C̃−1}, we have

|ε2(ε1I(t) + J(t))| < ε0C̃E(t), t ≥ 0,

for ε1, ε2 ≤ ε0. Since ε0C̃ < 1, we obtain (4.34) with β1 = 1− ε0C̃ and β2 = 1 + ε0C̃ .

Lemma 4.2. There exist constants α,C1, C2, C3 > 0 such that

I ′(t) ≤− E(t)− α‖(ϕx(t), ψx(t), wx(t))‖2(L2)3 + C1‖(ϕt(t), ψt(t), wt(t))‖2(L2)3

+ C2

3∑
i=1

‖hi(t)‖22 − C3

3∑
i=1

∫ ∞
0

g′i(s)‖∂xηti(s)‖22 ds, t ≥ 0.

Proof. We begin by noting that

I ′ ≤ max{ρ1, ρ2}‖(ϕt, ψt, wt)‖2(L2)3 +

∫ L

0

(
ρ1ϕttϕ+ ρ2ψttψ + ρ2wttw

)
dx. (4.35)
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From the equations (2.8)-(2.13) we see that∫ L

0

(
ρ1ϕttϕ+ ρ2ψttψ + ρ2wttw

)
dx =− ‖(ϕ, ψ,w)‖2B +

(
g01‖ϕx‖22 + g02‖ψx‖22 + g03‖wx‖22

)
−
∫ L

0

∇F (ϕ, ψ,w)(ϕ, ψ,w)dx

+

∫ L

0

(
h1ϕ+ h2ψ + h3w

)
dx+M,

where

M = −
∫ ∞
0

g1

∫ L

0

∂xη1 ϕx dx−
∫ ∞
0

g2

∫ L

0

∂xη2 ψx dx−
∫ ∞
0

g3

∫ L

0

∂xη3wx dx.

For convenience, we can estimate∫ L

0

(
h1ϕ+ h2ψ + h3w

)
dx ≤ γB − g0

8
‖(ϕx, ψx, wx)‖2(L2)3 + Cγ

3∑
i=1

‖hi‖22 (4.36)

and

M ≤ γB − g0

8
‖(ϕx, ψx, wx)‖2(L2)3 + Cγ

3∑
i=1

‖ηi‖2Mi
, (4.37)

for some Cγ > 0. Then, inserting (4.36)-(4.37) into (4.35) we obtain

I ′ ≤− ‖(ϕ, ψ,w)‖2B +
(
g01‖ϕx‖22 + g02‖ψx‖22 + g03‖wx‖22

)
+

(γB − g0)
4

‖(ϕx, ψx, wx)‖2(L2)3 + max{ρ1, ρ2}‖(ϕt, ψt, wt)‖2(L2)3

−
∫ L

0

∇F (ϕ, ψ,w)(ϕ, ψ,w)dx+ Cγ

3∑
i=1

‖hi‖22 + Cγ

3∑
i=1

‖ηi‖2Mi
.

Adding −E(t) to the inequality, and taking into account assumption (2.25), we obtain

I ′ ≤− E − 1

2
‖(ϕ, ψ,w)‖2B +

1

2

(
g01‖ϕx‖22 + g02‖ψx‖22 + g03‖wx‖22

)
+

(γB − g0)
4

‖(ϕx, ψx, wx)‖2(L2)3 +
3

2
max{ρ1, ρ2}‖(ϕt, ψt, wt)‖2(L2)3

+ Cγ

3∑
i=1

‖hi‖22 +
(1

2
+ Cγ

) 3∑
i=1

‖ηi‖2Mi
.

But using inequality (2.20) and assumption (2.22),

−1

2
‖(ϕ, ψ,w)‖2B +

1

2

(
g01‖ϕx‖22 + g02‖ψx‖22 + g03‖wx‖22

)
≤ −(γB − g0)

2
‖(ϕx, ψx, wx)‖2(L2)3 .
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Then, noting that,

‖ηi‖2Mi
≤ −1

ξ

∫ ∞
0

g′i‖∂xηi‖22 ds, i = 1, 2, 3, (4.38)

the lemma follows with α = 1
4
(γB−g0), C1 = 3

2
max{ρ1, ρ2}, C2 = Cγ and C3 = 1

ξ

(
1
2
+Cγ

)
.

Lemma 4.3. Assume p = 0 in (2.26). Then given ν > 0, there exists Cν > 0 such that

J ′(t) ≤− κ‖(ϕt(t), ψt(t), wt(t))‖2(L2)3 + ν‖(ϕx(t), ψx(t), wx(t))‖2(L2)3

− Cν
3∑
i=1

∫ ∞
0

g′i(s)‖∂xηti(s)‖22 ds+
3∑
i=1

‖hi(t)‖22, t ≥ 0, (4.39)

where κ > 0 does not depend on ν.

Proof. We begin with
J ′1 = A+B,

where

A = −ρ1
∫ ∞
0

g1

∫ L

0

∂tη1 ϕt dxds and B = −
∫ L

0

ρ1ϕtt

∫ ∞
0

g1η1 dsdx.

Since ∂tη1 = ϕt − ∂sη1, we have

A = −ρ1g01‖ϕt‖22 + ρ1

∫ ∞
0

−g′1
∫ L

0

η1 ϕt dxds.

Moreover, there exists C4 > 0 such that

ρ1

∫ ∞
0

−g′1
∫ L

0

η1 ϕt dxds ≤− Cρ1
∫ ∞
0

g′1‖∂xη1‖2‖ϕt‖2 ds

≤ ρ1g
0
1

2
‖ϕt‖22 − C4

∫ ∞
0

g′1‖∂xη1‖22 ds.

Hence

A ≤ −ρ1g
0
1

2
‖ϕt‖22 − C4

∫ ∞
0

g′1‖∂xη1‖22 ds. (4.40)

With respect to B, using equation (2.8), we obtain

B =

∫ L

0

(
−k(ϕx+ψ+`w)x−k0`(wx−`ϕ)−

∫ ∞
0

g1∂xxη1 ds+f1+g01ϕxx−h1
)(∫ ∞

0

g1η1 ds
)
dx.

We shall estimate each term of B. Clearly, given δ1 > 0 there exists Cδ1 > 0 such that,∫ L

0

−k(ϕx + ψ + `w)x

∫ ∞
0

g1η1 dsdx ≤ δ1‖(ϕx, ψx, wx)‖2(L2)3 + Cδ1‖η1‖2M1
,

∫ L

0

g01 ϕxx

∫ ∞
0

g1η1 dsdx ≤ δ1‖(ϕx, ψx, wx)‖2(L2)3 + Cδ1‖η1‖2M1
,
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and

−
∫ L

0

k0`(wx − `ϕ)

∫ ∞
0

g1η1 dsdx ≤ δ1‖(ϕx, ψx, wx)‖2(L2)3 + Cδ1‖η1‖2M1
.

Also,

−
∫ L

0

(∫ ∞
0

g1∂xxη1 ds
)(∫ ∞

0

g1η1 ds
)
dx ≤ g01‖η1‖2M1

,

and

−
∫ L

0

h1

∫ ∞
0

g1η1 dsdx ≤ ‖h1‖22 +
g01π

2

4L2
‖η1‖2M1

.

Finally, ∫ L

0

f1(ϕ, ψ, w)

∫ ∞
0

g1η1 dsdx ≤
π

L

√
g01 ‖f1(ϕ, ψ, w)‖2‖η1‖M1 .

But using (2.26) with p = 0, there exists C > 0 such that,

‖f1(ϕ, ψ,w)‖22 ≤ C‖(ϕx, ψx, wx)‖2(L2)3 .

Then, given δ2 > 0 there exists Cδ2 > 0 such that∫ L

0

f1(ϕ, ψ, w)

∫ ∞
0

g1η1 dsdx ≤ δ2‖(ϕx, ψx, wx)‖2(L2)3 + Cδ2‖η1‖2M1
.

Combining above estimates, given δ3 > 0, there exists Cδ3 > 0 such that

B ≤ δ3‖(ϕx, ψx, wx)‖2(L2)3 + Cδ3‖η1‖2M1
+ ‖h1‖22. (4.41)

Then, from (4.40), (4.41) and (4.38), we conclude that, given δ′ > 0 there exists Cδ′ > 0 such
that

J ′1 ≤ −
ρ1g

0
1

2
‖ϕt‖22 + δ′‖(ϕx, ψx, wx)‖2(L2)3 − Cδ′

∫ ∞
0

g′1‖∂xη1‖22 ds+ ‖h1‖22.

Analogously we have,

J ′2 ≤ −
ρ2g

0
2

2
‖ψt‖22 + δ′‖(ϕx, ψx, wx)‖2(L2)3 − Cδ′

∫ ∞
0

g′2‖∂xη2‖22 ds+ ‖h2‖22.

and

J ′3 ≤ −
ρ1g

0
3

2
‖wt‖22 + δ′‖(ϕx, ψx, wx)‖2(L2)3 − Cδ′

∫ ∞
0

g′3‖∂xη3‖22 ds+ ‖h3‖22.

Then we infer that given ν > 0 there exists Cν > 0 such that

J ′ ≤ −κ‖(ϕt, ψt, wt)‖2(L2)3 + ν‖(ϕx, ψx, wx)‖2(L2)3 − Cν
3∑
i=1

∫ ∞
0

g′i‖∂xηi‖22 ds+
3∑
i=1

‖hi‖22,

where κ = 1
2

min{ρ1g01, ρ2g02, ρ1g03}.
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Proof of Theorem 2.2 The uniform decay of the energy follows from Lemmas 4.1-4.3 and
energy estimate (3.32). Indeed, let us take ε1, ν > 0 such that

ε1C1 <
κ

2
and ν < ε1α.

Then from Lemmas 4.2 and 4.3 we obtain

ε1I
′(t) + J ′(t) ≤− ε1E(t)− κ

2
‖(ϕt(t), ψt(t), wt(t))‖2(L2)3

+ (C2 + 1)
3∑
i=1

‖hi(t)‖22 − (C3 + Cν)
3∑
i=1

∫ ∞
0

g′i(s)‖∂xηti(s)‖22 ds.

Now, we choose ε2, δ > 0 such that

ε2(C3 + Cν) <
1

2
and δ < ε2

κ

2
.

Then from (3.32),

E ′(t) + ε2
(
ε1I
′(t) + J ′(t)

)
≤ −ε1ε2E(t) + C5

3∑
i=1

‖hi(t)‖22,

where C5 = 1
4δ

+ C2 + 1. Choosing ε1, ε2 ≤ ε0, we infer from definition of L(t) and Lemma
4.1, that

L′(t) ≤ −ε1ε2
β2
L(t) + C5

3∑
i=1

‖hi(t)‖22, t ≥ 0. (4.42)

Replacing ε1ε2
β2

in (4.42) by

γ = min
{ε1ε2
β2

, σ
}
,

and using the integrand factor eγt, we see that

L(t) ≤ e−γtL(0) + e−γtC5

∫ t

0

eσs
3∑
i=1

‖hi(s)‖22 ds.

Using Lemma 4.1 once more and assumption (2.28) we get

E(t) ≤ β2
β1
e−γtE(0) +

1

β1
e−γtC5Ch,

which implies (2.29). We observe that positive constants β1, β2, C5 do not depend on the
initial energy. This completes the proof of Theorem 2.2.
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Proof of Theorem 2.3 The arguments follow the same lines of the proof of Theorem 2.2.
The main difference is in the Lemma 4.3, where now, the constant Cν > 0 in (4.39) is depen-
dent on the initial data. Indeed, to prove Lemma 4.3 we need a estimate for ‖f1(ϕ, ψ, w)‖22.
Since p > 0 in (2.26), we have for some C > 0,

‖f1(ϕ, ψ,w)‖22 ≤ C

∫ L

0

(
1 + |ϕ|2p + |ψ|2p + |w|2p

)(
|ϕ|2 + |ψ|2 + |w|2

)
dx

≤ C
(

1 + ‖(ϕx, ψx, wx)‖2p(L2)3

)
‖(ϕx, ψx, wx)‖2(L2)3

≤ C
(
1 + E(t)p

)
‖(ϕx, ψx, wx)‖2(L2)3 .

Now, because hi = 0, identity (3.33) shows that energy E(t) is decreasing and hence E(t)p ≤
E(0)p, t ≥ 0. In particular, for initial data satisfying ‖z0‖H ≤ R, there exists kR > 0 such
that

‖f1(ϕ, ψ, w)‖22 ≤ kR‖(ϕx, ψx, wx)‖2(L2)3 .

Therefore, given δ2 > 0 there exists Cδ2 > 0 (now dependent on R) such that∫ L

0

f1(ϕ, ψ,w)

∫ ∞
0

g1η1 dsdx ≤ δ2‖(ϕx, ψx, wx)‖2(L2)3 + Cδ2‖η1‖2M1
,

and the rest of the proof of Lemma 4.3 remains unchanged.
To obtain (2.30) we follow the steps of the proof of Theorem 2.2 with hi = 0 and taking

into account that Cν > 0 in (4.39) depends on the initial data.
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