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Convergence for non-autonomous semidynamical
systems with impulses

E. M. Bonotto, D. P. Demuner and M. Z. Jimenez

Abstract

The present paper deals with impulsive non-autonomous systems with conver-
gence. We show that the structure of the center of Levinson is preserved under
homomorphism in impulsive convergent systems. Also, we present some criteria of
convergence using Lyapunov functions.

1 Introduction

The theory of impulsive systems is an attractive area of investigation since many
applications and complex problems can be modelled by such systems. The reader may
consult [2], [16], [17] and [18], for instance.

The theory of dissipative impulsive autonomous systems has been started its study
recently. In [7], the authors define various types of dissipativity and they present a study
of the structure of the center of Levinson of a compact dissipative system. The reader
may consult [9] to obtain properties of dissipative continuous dynamical systems.

On the other hand, there are systems that are identified by a surjective continuous
mapping which takes orbits in orbits. These types of systems are called non-autonomous
systems in the sense of [9].

The aim of this work is to consider non-autonomous systems subject to impulse con-
ditions with convergence. These systems give us a one-to-one correspondence between
the centers of Levinson of two homomorphic systems. Moreover, the centers of Levinson
of homomorphic systems are homeomorphic, see Lemma 2.11 in [9]. In the next lines, we
describe the organization of the paper and the main results.

In Section 2, we present the basis of the theory of impulsive semidynamical systems
as basic definitions and notations.

In Section 3, we present additional useful definitions. We describe a brief resume
of dissipative impulsive systems. In special, we exhibit the properties of the center of
Levinson of a compact dissipative system.

Section 4 concerns with the main results. We divide this section in three subsections.
In Subsection 4.1, we define the concept of a homomorphism between two impulsive
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systems. We show that several topological properties are preserved under homomorphism.
A continuous section of a homomorphism is also considered in this subsection.

In Subsection 4.2, we define the concept of impulsive non-autonomous semidynamical
systems with convergence. We present sufficient conditions to obtain convergence.

In the last subsection, we use functions of Lyapunov to get conditions of convergence
for impulsive non-autonomous systems.

2 Preliminaries

Let X be a metric space, R+ be the set of non-negative real numbers and N be the set of
natural numbers {0, 1, 2, 3, . . .}. The triple (X, π,R+) is called a semidynamical system, if
the mapping π : X×R+ → X is continuous with π(x, 0) = x and π(π(x, t), s) = π(x, t+s),
for all x ∈ X and t, s ∈ R+. We denote such system simply by (X, π). For every x ∈ X,
we consider the continuous function πx : R+ → X given by πx(t) = π(x, t) and we call it
the motion of x.

Let (X, π) be a semidynamical system. Given x ∈ X, the positive orbit of x is given by

π+(x) = {π(x, t) : t ∈ R+}. Given A ⊂ X and ∆ ⊂ R+, we define π+(A) =
⋃
x∈A

π+(x) and

π(A,∆) =
⋃

x∈A, t∈∆

π(x, t). For t ≥ 0 and x ∈ X, we define F (x, t) = {y ∈ X : π(y, t) = x}

and, for ∆ ⊂ R+ and D ⊂ X, we define F (D,∆) = ∪{F (x, t) : x ∈ D and t ∈ ∆}. Then
a point x ∈ X is called an initial point if F (x, t) = ∅ for all t > 0.

In the sequel, we define semidynamical systems with impulse action. An impulsive
semidynamical system (X, π;M, I) consists of a semidynamical system (X, π), a nonempty
closed subset M of X such that for every x ∈M there exists εx > 0 such that

F (x, (0, εx)) ∩M = ∅ and π(x, (0, εx)) ∩M = ∅,

and a continuous function I : M → X whose action we explain below in the description
of the impulsive trajectory of an impulsive semidynamical system. The set M is called
the impulsive set and the function I is called impulse function. We also define

M+(x) =

(⋃
t>0

π(x, t)

)
∩M.

Given an impulsive semidynamical system (X, π;M, I) and x ∈ X such that
M+(x) 6= ∅, it is always possible to find a smallest number s such that the trajectory
πx(t) does not intercept the set M for 0 < t < s. This result is stated next and a proof
of it can be found in [4].

Lemma 2.1. Let (X, π;M, I) be an impulsive semidynamical system. Then for every
x ∈ X, there is a positive number s, 0 < s ≤ +∞, such that π(x, t) /∈ M whenever
0 < t < s and π(x, s) ∈M if M+(x) 6= ∅.
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By means of Lemma 2.1, it is possible to define the function φ : X → (0,+∞] by

φ(x) =

{
s, if π(x, s) ∈M and π(x, t) /∈M for 0 < t < s,

+∞, if M+(x) = ∅,

which represents the least positive time for which the trajectory of x meets M when
M+(x) 6= ∅. Thus for each x ∈ X, we call π(x, φ(x)) the impulsive point of x.

The impulsive trajectory of x in (X, π;M, I) is an X−valued function π̃x defined on the
subset [0, s) of R+ (s may be +∞). The description of such trajectory follows inductively
as described in the following lines.

If M+(x) = ∅, then φ(x) = +∞ and π̃x(t) = π(x, t) for all t ∈ R+. However, if
M+(x) 6= ∅, then it follows from Lemma 2.1 that there is a smallest positive number s0

such that π(x, s0) = x1 ∈M and π(x, t) /∈M for 0 < t < s0. Thus we define π̃x on [0, s0]
by

π̃x(t) =

{
π(x, t), 0 ≤ t < s0,

x+
1 , t = s0,

where x+
1 = I(x1) and φ(x) = s0. Let us denote x by x+

0 .
Since s0 < +∞, the process now continues from x+

1 onwards. If M+(x+
1 ) = ∅, then

we define π̃x(t) = π(x+
1 , t − s0) for s0 ≤ t < +∞ and in this case we have φ(x+

1 ) = +∞.
When M+(x+

1 ) 6= ∅, it follows again from Lemma 2.1 that there is a smallest positive
number s1 such that π(x+

1 , s1) = x2 ∈ M and π(x+
1 , t − s0) /∈ M for s0 < t < s0 + s1.

Then we define π̃x on [s0, s0 + s1] by

π̃x(t) =

{
π(x+

1 , t− s0), s0 ≤ t < s0 + s1,

x+
2 , t = s0 + s1,

where x+
2 = I(x2) and φ(x+

1 ) = s1, and so on. Notice that π̃x is defined on each interval

[tn, tn+1], where t0 = 0 and tn+1 =
n∑
i=0

si, n = 0, 1, 2, . . .. Hence, π̃x is defined on [0, tn]

for each n = 1, 2, . . ..
The process above ends after a finite number of steps, whenever M+(x+

n ) = ∅ for some
natural n. However, it continues infinitely if M+(x+

n ) 6= ∅ for all n = 0, 1, 2, . . . , and in

this case the function π̃x is defined on the interval [0, T (x)), where T (x) =
∞∑
i=0

si.

Let (X, π;M, I) be an impulsive semidynamical system. Given x ∈ X, the impulsive
positive orbit of x is defined by the set π̃+(x) = {π̃(x, t) : t ∈ [0, T (x))}.

Analogously to the non-impulsive case, an impulsive semidynamical system satisfies
the following standard properties: π̃(x, 0) = x for all x ∈ X and π̃(π̃(x, t), s) = π̃(x, t+s),
for all x ∈ X and for all t, s ∈ [0, T (x)) such that t + s ∈ [0, T (x)). See [5] for a proof of
it.
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For details about the structure of these types of impulsive semidynamical systems, the
reader may consult [4, 5, 6, 7] and [10, 11, 12, 13, 14, 15].

Now, let us discuss the continuity of the function φ defined previously which indicates
the moments of impulse action of a trajectory in an impulsive system. The theory below
is borrowed from [10].

Let (X, π) be a semidynamical system. Any closed set S ⊂ X containing x (x ∈ X)
is called a section or a λ-section through x, with λ > 0, if there exists a closed set L ⊂ X
such that

i) F (L, λ) = S;

ii) F (L, [0, 2λ]) is a neighborhood of x;

iii) F (L, µ) ∩ F (L, ν) = ∅, for 0 ≤ µ < ν ≤ 2λ.

The set F (L, [0, 2λ]) is called a tube or a λ-tube and the set L is called a bar. Let
(X, π;M, I) be an impulsive semidynamical system. We now present the conditions TC
and STC for a tube.

Any tube F (L, [0, 2λ]) given by a section S through x ∈ X such that S ⊂ M ∩
F (L, [0, 2λ]) is called TC-tube on x. We say that a point x ∈M fulfills the Tube Condition
and we write TC, if there exists a TC-tube F (L, [0, 2λ]) through x. In particular, if
S = M ∩F (L, [0, 2λ]) we have a STC-tube on x and we say that a point x ∈M fulfills the
Strong Tube Condition (we write STC), if there exists a STC-tube F (L, [0, 2λ]) through
x.

The following theorem concerns the continuity of φ which is accomplished outside M
for M satisfying the condition TC.

Theorem 2.1. [10, Theorem 3.8] Consider an impulsive system (X, π;M, I). Assume
that no initial point in (X, π) belongs to the impulsive set M and that each element of M
satisfies the condition TC. Then φ is continuous at x if and only if x /∈M .

3 Additional definitions

Let us consider a metric space X with metric ρX . By BX(x, δ) we mean the open ball
in X with center at x ∈ X and radius δ > 0. Given A ⊂ X, let BX(A, δ) = {x ∈ X :
ρX(x,A) < δ} where ρX(x,A) = inf{ρX(x, y) : y ∈ A}. Let Comp(X) and B(X) be the
collection of all compact subsets and bounded subsets from X, respectively.

In what follows, (X, π; MX , IX) is an impulsive semidynamical system.
Henceforth, we shall assume that the following conditions hold:

H1) No initial point in (X, π) belongs to the impulsive set MX and each element of MX

satisfies the condition STC, consequently φX is continuous on X \MX (see Theorem
2.1).
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H2) MX ∩ IX(MX) = ∅.

H3) For each x ∈ X, the motion π̃(x, t) is defined for every t ≥ 0, that is, [0,+∞)
denotes the maximal interval of definition of π̃x.

Conditions (H1)-(H3) are motivated by several results in the theory of impulsive sys-
tems which can be found, in particular, in [1, 12, 15].

GivenA ⊂ X and ∆ ⊂ R+, we define π̃+(A) =
⋃
x∈A

π̃+(x) and π̃(A,∆) =
⋃

x∈A,t∈∆

π̃(x, t).

If π̃+(A) ⊂ A, we say that A is positively π̃−invariant.
The limit set of A ⊂ X in (X, π;MX , IX) is given by

L̃+
X(A) = {y ∈ X : there exist sequences {xn}n≥1 ⊂ A and {tn}n≥1 ⊂ R+

such that tn
n→+∞−→ +∞ and π̃(xn, tn)

n→+∞−→ y},

the prolongational limit set of A ⊂ X is defined by

J̃+
X(A) = {y ∈ X : there are sequences {xn}n≥1 ⊂ X and {tn}n≥1 ⊂ R+ such that

ρX(xn, A)
n→+∞−→ 0, tn

n→+∞−→ +∞ and π̃(xn, tn)
n→+∞−→ y}

and the prolongation set of A ⊂ X is defined by

D̃+
X(A) = {y ∈ X : there are sequences {xn}n≥1 ⊂ X and {tn}n≥1 ⊂ R+ such that

ρX(xn, A)
n→+∞−→ 0 and π̃(xn, tn)

n→+∞−→ y}.

If A = {x}, we set L̃+
X(x) = L̃+

X({x}), J̃+
X(x) = J̃+

X({x}) and D̃+
X(x) = D̃+

X({x}).

Given A and B nonempty bounded subsets of X, we denote by βX(A,B) the semi-
deviation of A to B, that is, βX(A,B) = sup{ρX(a,B) : a ∈ A}.

Next, we present an auxiliary result.

Lemma 3.1. [6, Lemma 3.3] Given an impulsive semidynamical system (X, π; MX , IX),
assume that w ∈ X \MX and {zn}n≥1 is a sequence in X which converges to w. Then,

for any t ≥ 0 such that t 6=
k∑
j=0

φX(w+
j ), k = 0, 1, 2, ..., we have π̃(zn, t)

n→+∞−→ π̃(w, t).

A compact set A in (X, π;MX , IX) is said to be:

1. orbitally π̃−stable, if given ε > 0 there is δ = δ(ε) > 0 such that ρX(x,A) < δ
implies ρX(π̃(x, t), A) < ε for all t ≥ 0;

2. uniformly π̃−attracting, if there is γ > 0 such that lim
t→+∞

sup
x∈BX(A,γ)

ρX(π̃(x, t), A) = 0.

5



Now, we turn our attention to the theory of dissipativity on impulsive semidynamical
systems. The study of dissipativity for continuous dynamical systems may be found in
[9] and its study for the impulsive case is presented in [7].

An impulsive system (X, π;MX , IX) is said to be:

3. point b-dissipative if there exists a bounded subset K ⊂ X \MX such that for every
x ∈ X

lim
t→+∞

ρX(π̃(x, t), K) = 0; (3.1)

4. compact b-dissipative if the convergence in (3.1) takes place uniformly with respect
to x on the compact subsets from X;

5. locally b-dissipative if for each point x ∈ X there exists δx > 0 such that the
convergence (3.1) takes place uniformly with respect to y ∈ BX(x, δx);

6. bounded b-dissipative if the convergence (3.1) takes place uniformly with respect to
x on every bounded subset from X.

There exists a more general definition of M−dissipativity for impulsive systems, where
M is a family of subsets from X. This definition is stated in [7] and it says that an impul-
sive system (X, π;MX , IX) is M−dissipative if there exists a bounded set K ⊂ X \MX

such that for every ε > 0 and A ∈M there exists `(ε, A) > 0 such that π̃(A, t) ⊂ BX(K, ε)
for all t ≥ `(ε, A). In this case, the set K is called an attractor for the family M.

Remark 3.1. A point (compact)(locally)(bounded) b−dissipative system is a M−dissipa-
tive system with M = {{x} : x ∈ X} (M = Comp(X))(M = {BX(x, δx) : x ∈ X, δx >
0})(M = B(X)).

Remark 3.2. In Definitions 3, 4, 5 and 6 above, when K is compact, we say that the
impulsive system (X, π;MX , IX) is compact k−dissipative.

Let (X, π;MX , IX) be compact k−dissipative and K be a nonempty compact set such
that K ∩MX = ∅ and it is an attractor for all compact subsets of X. The set

JX = L̃+
X(K)

is called the center of Levinson of the compact k−dissipative system (X, π;MX , IX). Also,
it is showed that JX = ∩{π̃(K, t) : t ≥ 0}, see Lemma 3.13 in [7].

The set JX does not depend on the choice of set K which attracts all compact subsets
of X and K ∩MX = ∅. Also, we have JX ∩MX = ∅. For more details, see [7].

Theorem 3.1. [7, Theorem 3.20] Let (X, π;MX , IX) be compact k−dissipative and JX
be its center of Levinson. Then
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a) JX is a compact positively π̃−invariant set;

b) JX is orbitally π̃−stable;

c) JX is the attractor of the family of all compacts of X;

d) JX is the maximal compact positively π̃−invariant set in (X, π;MX , IX) such that
JX ⊂ π̃(JX , t) for each t ≥ 0.

Define ΩX by the set ∪{L̃+
X(x) : x ∈ X}. If (X, π;M, I) is compact k−dissipative then

L̃+
X(x) ⊂ JX for all x ∈ X, and therefore ΩX ⊂ JX .

4 The main results

In this section, we present the main results from this paper. Let X and Y be metric
spaces with metrics ρX and ρY , respectively. Let (X, π;MX , IX) and (Y, σ;MY , IY ) be
impulsive semidynamical systems. All the concepts defined in the system (X, π;MX , IX)
are defined in (Y, σ;MY , IY ) similarly.

We shall assume that (X, π;MX , IX) and (Y, σ;MY , IY ) satisfy the hypotheses H1),
H2) and H3) presented in Section 3.

4.1 Homomorphisms

The concept of a homomorphism between two impulsive systems is defined similarly
as in the continuous case.

Definition 4.1. A mapping h : X → Y is called a homomorphism from the impul-
sive system (X, π;MX , IX) with values in (Y, σ;MY , IY ), if the mapping h is continuous,
surjective and h(π̃(x, t)) = σ̃(h(x), t) for all x ∈ X and for all t ∈ R+.

In the sequel, we prove that some topological properties are preserved under homo-
morphisms. The first result shows that MY ⊂ h(MX).

Lemma 4.1. Let h : X → Y be a homomorphism from the system (X, π;MX , IX) to
(Y, σ;MY , IY ). Then MY ⊂ h(MX).

Proof. Let y ∈ MY be arbitrary. Since y is not an initial point in the continuous system
(Y, σ), there is y0 ∈ Y \MY such that y = σ(y0, φY (y0)). Note that

σ̃(y0, t) =

{
σ(y0, t), 0 ≤ t < φY (y0),
IY (y), t = φY (y0).
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Let x ∈ X be such that h(x) = y0. Then

h(π̃(x, t)) =

{
h(π̃(x, t)), 0 ≤ t < φY (y0),
h(π̃(x, φY (y0))), t = φY (y0).

Now, we claim that φY (y0) =
k∑

j=−1

φX(x+
j ) for some k ∈ N, where we set φX(x+

−1) = 0.

Suppose to the contrary that φY (y0) 6=
k∑

j=−1

φX(x+
j ) for all k ∈ N. Then there is k0 ∈ N

such that
k0−1∑
j=−1

φX(x+
j ) < φY (y0) <

k0∑
j=−1

φX(x+
j ).

Thus we can write φY (y0) =

k0−1∑
j=−1

φX(x+
j ) + η, with 0 < η < φX(x+

k0
). Let ξ > 0 be such

that η − ξ > 0. Then

π̃(x, φY (y0)− ξ) = π(x+
k0
, η − ξ) ξ→0+−→ π(x+

k0
, η) = π̃(x, φY (y0)).

Since h is continuous we have σ̃(y0, φY (y0)−ξ) ξ→0+−→ σ̃(y0, φY (y0)). But σ̃(y0, φY (y0)−ξ) =

σ(y0, φY (y0)− ξ) ξ→0+−→ y. By uniqueness we have

y = σ̃(y0, φY (y0)) ∈ IY (MY ),

which is a contradiction because y ∈ MY and we have hypothesis H2). In conclusion,

there is k ∈ N such that φY (y0) =
k∑

j=−1

φX(x+
j ). Therefore,

y = lim
t→0+

σ̃(y0, φY (y0)− t) = lim
t→0+

h(π̃(x, φY (y0)− t)) = h(xk+1) ∈ h(MX)

and the proof is complete.

Remark 4.1. Let K ⊂ X. If h−1(MY ) ⊂ MX then it is not difficult to see that
MY ∩ h(K) = ∅ whenever MX ∩K = ∅.

Proposition 4.1. Let h : X → Y be a homomorphism from the system (X, π;MX , IX) to
(Y, σ;MY , IY ). If A ⊂ X is positively π̃−invariant, then h(A) is positively σ̃−invariant.

Proof. The proof is analogous to the proof of [4, Proposition 3.3].

Lemma 4.2. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY ).
The following statements hold:
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a) h(L̃+
X(K)) ⊂ L̃+

Y (h(K)), for all K ⊂ X;

b) h(ΩX) ⊂ ΩY ;

c) if the set A ⊂ X is compact, then h(D̃+
X(A)) ⊂ D̃+

Y (h(A)) and h(J̃+
X(A)) ⊂ J̃+

Y (h(A));

d) h(D̃+
X(ΩX)) ⊂ D̃+

Y (ΩY ) and h(J̃+
X(ΩX)) ⊂ J̃+

Y (ΩY ) provided that (X, π;MX , IX) is
point k−dissipative;

e) If (X, π;MX , IX) and (Y, σ;MY , IY ) are compact k−dissipative then h(JX) ⊂ JY .

Proof. a) We may assume that L̃+
X(K) 6= ∅. Let y ∈ h(L̃+

X(K)). Then there is z ∈
L̃+
X(K) such that h(z) = y. Thus there are sequences {an}n≥1 ⊂ K and {tn}n≥1 ⊂

R+ such that tn
n→+∞−→ +∞ and π̃(an, tn)

n→+∞−→ z. Since h is continuous, we have

σ̃(h(an), tn) = h(π̃(an, tn))
n→+∞−→ h(z) = y.

Therefore, y ∈ L̃+
Y (h(K)).

b) Let us assume that ΩX 6= ∅. Let x ∈ ΩX . Then there are sequences {wn}n≥1 ⊂ X

and {xn}n≥1 ⊂ X such that xn ∈ L̃+
X(wn), n = 1, 2, . . ., and xn

n→+∞−→ x. By item

a), h(L̃+
X(wn)) ⊂ L̃+

Y (h(wn)) for each n = 1, 2, . . .. Hence, h(xn) ∈ L̃+
Y (h(wn)) ⊂ ΩY

for each n = 1, 2, 3, . . .. Since ΩY is closed it follows that h(xn)
n→+∞−→ h(x) ∈ ΩY .

c) Let x ∈ D̃+
X(A). Since A is compact it follows by [7, Proposition 3.30] that there is

z ∈ A such that x ∈ D̃+
X(z). Then there are sequences {xn}n≥1 ⊂ X and {tn}n≥1 ⊂

R+ such that xn
n→+∞−→ z and π̃(xn, tn)

n→+∞−→ x. Since h is a homomorphism, we

conclude that h(xn)
n→+∞−→ h(z) ∈ h(A) and

σ̃(h(xn), tn)
n→+∞−→ h(x).

Therefore, h(x) ∈ D̃+
Y (h(A)). Using the same ideas above, we show that h(J̃+

X(A)) ⊂
J̃+
Y (h(A)).

d) Since (X, π;MX , IX) is point k−dissipative we have ΩX compact. Therefore, the
result follows by items b) and c).

e) It follows by item d) above and [7, Theorem 3.36].

Next, we present sufficient conditions to obtain the equality of item a) of Lemma 4.2.

Theorem 4.1. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY ).

Let K ∈ Comp(X) be such that π̃+(K) is relatively compact. Then h(L̃+
X(K)) = L̃+

Y (h(K)).
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Proof. It is enough to show that L̃+
Y (h(K)) ⊂ h(L̃+

X(K)), see Lemma 4.2 item a). Given

z ∈ L̃+
Y (h(K)) there are sequences {xn}n≥1 ⊂ K and {tn}n≥1 ⊂ R+ such that tn

n→+∞−→ +∞
and σ̃(h(xn), tn)

n→+∞−→ z, that is,

h(π̃(xn, tn))
n→+∞−→ z. (4.1)

By hypothesis, we may assume without loss of generality that π̃(xn, tn)
n→+∞−→ x ∈ L̃+

X(K).

Using the continuity of h and (4.1) we have z = h(x) ∈ h(L̃+
X(K)) and the result is

proved.

Corollary 4.1. If h : X → Y is a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY )

and (X, π;MX , IX) is point k−dissipative, then h(L̃+
X(x)) = L̃+

Y (h(x)) for all x ∈ X.

Now, we establish sufficient conditions to obtain the equality h(ΩX) = ΩY .

Theorem 4.2. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY ).
If (X, π;MX , IX) is point k−dissipative and h−1(MY ) ⊂MX , then (Y, σ;MY , IY ) is point
k−dissipative and h(ΩX) = ΩY .

Proof. Let ε > 0 and y ∈ Y be given. Then there exists x ∈ X such that h(x) = y.
Since (X, π;MX , IX) is point k−dissipative, there is a nonempty compact set K ⊂ X,
K ∩MX = ∅, such that

lim
t→+∞

ρX(π̃(x, t), K) = 0. (4.2)

Also, we have h(K) ∩MY = ∅ (see Remark 4.1).
We claim that there is a δ = δ(ε) > 0 such that h(BX(K, δ)) ⊂ BY (h(K), ε). Suppose

to the contrary that there are ε0 > 0, δn
n→+∞−→ 0 (δn > 0) and xn ∈ BX(K, δn) such that

ρY (h(xn), h(K)) ≥ ε0 (4.3)

for each n = 1, 2, 3, . . .. By the compactness of K, we may assume (taking a subsequence,

if necessary) that xn
n→+∞−→ x ∈ K. By (4.3) we get h(x) /∈ h(K) and it is a contradiction.

Hence, there is δ = δ(ε) > 0 such that h(BX(K, δ)) ⊂ BY (h(K), ε).
From (4.2) and for the number δ = δ(ε) > 0 chosen above, there exists a positive num-

ber ` = `(ε, x) > 0 such that π̃(x, t) ⊂ BX(K, δ) for all t ≥ `. Since h is a homomorphism,
we conclude that

σ̃(y, t) ⊂ h(BX(K, δ)) ⊂ BY (h(K), ε) for all t ≥ `.

Therefore, (Y, σ;MY , IY ) is point k−dissipative and h(K) is its compact attractor.
Now, let us prove that h(ΩX) = ΩY . By Lemma 4.2 item b) we have h(ΩX) ⊂ ΩY . Let

us show the another set inclusion. Let y ∈ ΩY . Then there are sequences {yn}n≥1 ⊂ Y

and {ỹn}n≥1 ⊂ Y with yn ∈ L̃+
Y (ỹn), n = 1, 2, . . ., such that

yn
n→+∞−→ y. (4.4)
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Since Y = h(X), there exists x̃n ∈ X such that ỹn = h(x̃n) for each n = 1, 2, . . ..

By Corollary 4.1, h(L̃+
X(x̃n)) = L̃+

Y (ỹn). So, there is xn ∈ L̃+
X(x̃n) ⊂ ΩX for which

h(xn) = yn, n = 1, 2, . . .. Again, we may assume that xn
n→+∞−→ x ∈ ΩX since ΩX is

compact (because (X, π;MX , IX) is point k−dissipative). Hence, using equation (4.4) we
have y = h(x) ∈ h(ΩX). Therefore, the proof is complete.

Theorem 4.3 give us sufficient conditions to show that h(JX) = JY .

Theorem 4.3. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY )
such that h−1(MY ) ⊂MX . If h is an open map and (X, π;MX , IX) is compact k−dissipa-
tive, then (Y, σ;MY , IY ) is compact k−dissipative and h(JX) = JY .

Proof. We claim that h(JX) is an attractor for all compact subsets from Y . In fact, since
MX ∩ JX = ∅ we have MY ∩ h(JX) = ∅ (see Remark 4.1). Now, given ε > 0 one can
obtain a δ = δ(ε) > 0 such that h(BX(JX , δ)) ⊂ BY (h(JX), ε). Let A ∈ Comp(Y ). For
each point y ∈ A, there is x ∈ X such that h(x) = y. By [7, Lemma 3.39] there exist
γx = γ(x, ε) > 0 and `(x, ε) > 0 such that π̃(BX(x, γx), t) ⊂ BX(JX , δ) for all t ≥ `(x, ε).
Since h is a homomorphism, we conclude that

σ̃(h(BX(x, γx)), t) ⊂ BY (h(JX), ε) (4.5)

for all t ≥ `(x, ε).

Note that
⋃
y∈A

{h(BX(x, γx)) : x ∈ X∩h−1(y)} is an open covering of A because h is an

open map. By the compactness of A we can obtain a finite sub-covering {h(BX(xi, γxi)) :
i = 1, . . . ,m}, that is,

A ⊂
m⋃
i=1

h(BX(xi, γxi)),

with h(xi) = yi ∈ A, i = 1, 2, . . . ,m. From the last inclusion and (4.5) we get

σ̃(A, t) ⊂ BY (h(JX), ε)

for all t ≥ max{`(xi, ε) : i = 1, . . . ,m}. Then, lim
t→+∞

βY (σ̃(A, t), h(JX)) = 0 and

(Y, σ;MY , IY ) is compact k−dissipative.
Now, we show that h(JX) = JY . Since JY is the least compact positively π̃−invariant

set attracting all compacts from Y (see [7, Theorem 3.21]), we conclude that JY ⊂ h(JX).
The other set inclusion follows by Lemma 4.2 item e). The proof is complete.

If the homomorphism h is an open mapping and h−1(MY ) ⊂ MX then it takes local
k−dissipative systems in local k−dissipative systems, see the next result. Note that
Theorems 4.3 and 4.4 hold when h is an isomorphism.

11



Theorem 4.4. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY )
and assume that h−1(MY ) ⊂ MX . If h is an open map and (X, π;MX , IX) is locally
k−dissipative then (Y, σ;MY , IY ) is locally k−dissipative.

Proof. According to Theorem 4.3 and [7, Lemma 3.12] the system (Y, σ;MY , IY ) is com-
pact k−dissipative and h(JX) = JY . By [7, Theorem 3.48] we need to prove that the
center of Levinson JY of (Y, σ;MY , IY ) is uniformly σ̃−attracting. Given ε > 0 there is
a δ = δ(ε) > 0 such that h(BX(JX , δ)) ⊂ BY (JY , ε). By [7, Theorem 3.48] the center of
Levinson JX is uniformly π̃−attracting, that is, there exists γ > 0 such that

lim
t→+∞

βX(π̃(BX(JX , γ), t), JX) = 0.

Let T = T (ε) > 0 be such that π̃(BX(JX , γ), t) ⊂ BX(JX , δ) for all t ≥ T . Since h is a
homomorphism one can conclude that

σ̃(h(BX(JX , γ)), t) ⊂ BY (JY , ε) (4.6)

for all t ≥ T . Note that V = h(BX(JX , γ)) ⊃ JY is an open set in Y because h is an open
mapping. Thus there is ν > 0 such that BY (JY , ν) ⊂ V . Hence, by (4.6) we conclude
that σ̃(BY (JY , ν), t) ⊂ BY (JY , ε) for all t ≥ T . Therefore, the system (Y, σ;MY , IY ) is
locally k−dissipative.

In the sequel, we define the concept of sections for homomorphisms between the im-
pulsive systems (X, π;MX , IX) and (Y, σ;MY , IY ).

Definition 4.2. A mapping ϕ : Y → X is called a continuous section of the homomor-
phism h from (X, π;MX , IX) to (Y, σ;MY , IY ) if ϕ is continuous and h ◦ ϕ = idY , where
idY : Y → Y is the identity operator.

Definition 4.3. A continuous section ϕ : Y → X of the homomorphism h from
(X, π;MX , IX) to (Y, σ;MY , IY ) is called invariant if ϕ(σ̃(y, t)) = π̃(ϕ(y), t) for all y ∈ Y
and for all t ∈ R+.

Next, we show that point, compact and local k−dissipativity are preserved by homo-
morphisms with invariant continuous section. In Theorem 4.5 we drop out the condition
that h is open as presented in Theorems 4.3 and 4.4.

Theorem 4.5. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY )
such that h−1(MY ) ⊂ MX and ϕ : Y → X be an invariant continuous section of h. The
following statements hold:

a) if (X, π;MX , IX) is point k−dissipative, then (Y, σ;MY , IY ) is point k−dissipative,

h(ΩX) = ΩY and h(D̃+
X(ΩX)) = D̃+

Y (ΩY ) (h(J̃+
X(ΩX)) = J̃+

Y (ΩY ));
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b) if (X, π;MX , IX) is compact k−dissipative, then (Y, σ;MY , IY ) is compact k−dissi-
pative and h(JX) = JY ;

c) if (X, π;MX , IX) is locally k−dissipative, then (Y, σ;MY , IY ) is locally k−dissipative.

Proof. First, note that ϕ : Y → X is a homomorphism because ϕ is continuous and
ϕ(σ̃(y, t)) = π̃(ϕ(y), t) for all y ∈ Y and for all t ∈ R+.

a) By Theorem 4.2 we have (Y, σ;MY , IY ) is point k−dissipative and h(ΩX) = ΩY .

By Lemma 4.2 we have h(D̃+
X(ΩX)) ⊂ D̃+

Y (ΩY ). Let us show the other set inclu-
sion. Since ϕ : Y → X is a homomorphism, then using Lemma 4.2 we obtain
ϕ(D̃+

Y (ΩY )) ⊂ D̃+
X(ΩX). Consequently, D̃+

Y (ΩY ) = h ◦ ϕ(D̃+
Y (ΩY )) ⊂ h(D̃+

X(ΩX)).

The proof of the equality h(J̃+
X(ΩX)) = J̃+

Y (ΩY ) follows in the same way.

b) It follows by item a) that the system (Y, σ;MY , IY ) is point k−dissipative. Ac-

cording to [7, Theorem 3.43] it is enough to show that D̃+
Y (ΩY ) ∩ MY = ∅ and

that σ̃+(A) is relatively compact for all compact A ⊂ Y . Since h−1(MY ) ⊂ MX ,

D̃+
X(ΩX) ∩MX = ∅ (by [7, Theorem 3.42]) and h(D̃+

X(ΩX)) = D̃+
Y (ΩY ), we have

D̃+
Y (ΩY ) ∩MY = ∅. Now, let A ∈ Comp(Y ) and consider a sequence {ỹn}n≥1 ⊂

σ̃+(A). Then there are sequences {yn}n≥1 ⊂ A and {tn}n≥1 ⊂ R+ such that
ỹn = σ̃(yn, tn). In virtue of the invariance of ϕ we have ϕ(σ̃(yn, tn)) = π̃(ϕ(yn), tn)
for each n = 1, 2, . . .. Since ϕ(A) ⊂ X is compact and ϕ(yn) ∈ ϕ(A), n = 1, 2, . . .,
we use the compact k−dissipativity of (X, π;MX , IX) and we obtain

ϕ(σ̃(yn, tn)) = π̃(ϕ(yn), tn)
n→+∞−→ x ∈ X.

Then,

σ̃(yn, tn)
n→+∞−→ h(x),

since h◦ϕ = idY . Therefore, {ỹn}n≥1 is convergent and σ̃+(A) is relatively compact.
Consequently, the system (Y, σ;MY , IY ) is compact k−dissipative by [7, Theorem
3.43]. The equality h(JX) = JY follows by item a) and [7, Theorem 3.36].

c) If we show that the center of Levinson JY = h(JX) is uniformly σ̃−attracting, then
by item b) and [7, Theorem 3.48] we get the result. Let ε > 0 be given. Then there
is δ = δ(ε) > 0 such that h(BX(JX , δ)) ⊂ BY (JY , ε) because JX is compact and h is
continuous. Since (X, π;MX , IX) is locally k−dissipative it follows by [7, Theorem
3.48] that there is γ > 0 such that lim

t→+∞
βX(π̃(BX(JX , γ), t), JX) = 0. Then there

exists T = T (ε) > 0 such that

π̃(BX(JX , γ), t) ⊂ BX(JX , δ) (4.7)

for all t ≥ T .
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Now take ν > 0 such that ϕ(BY (JY , ν)) ⊂ BX(ϕ(JY ), γ). But ϕ(JY ) ⊂ JX as ϕ
is a homomorphism, we have item d) from Lemma 4.2 and Theorem 3.36 from [7].
Then

ϕ(BY (JY , ν)) ⊂ BX(JX , γ). (4.8)

By (4.7) and (4.8), we have π̃(ϕ(BY (JY , ν)), t) ⊂ BX(JX , δ) for all t ≥ T . Hence,

h(π̃(ϕ(BY (JY , ν)), t)) ⊂ BY (JY , ε) (4.9)

for all t ≥ T . Note that h(π̃(ϕ(y), t)) = σ̃(h(ϕ(y)), t) = σ̃(y, t) for all y ∈ Y and for
all t ∈ R+. Thus, from the inclusion (4.9), we conclude that

σ̃(BY (JY , ν), t) ⊂ BY (JY , ε)

for all t ≥ T . Therefore, the system (Y, σ;MY , IY ) is locally k−dissipative.

Definition 4.4. Let h be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY ). A set
A ⊂ X is called uniformly stable in the positive direction with respect to the homomor-
phism h, if for all ε > 0 there exists δ = δ(ε, A) > 0 such that for all x1, x2 ∈ A with
h(x1) = h(x2) the inequality ρX(x1, x2) < δ implies ρX(π̃(x1, t), π̃(x2, t)) < ε for every
t ≥ 0. The impulsive system (X, π;MX , IX) is called uniformly stable (in the positive
direction) with respect to the homomorphism h on compact subsets from X, if every
compact set A ∈ Comp(X) is uniformly stable in the positive direction with respect to h.

Contrary to Theorems 4.2, 4.3 and 4.5, the next result presents conditions for the
system (X, π;MX , IX) to be point (compact) k−dissipative provided (Y, σ;MY , IY ) is
point (compact) k−dissipative.

Theorem 4.6. Let h be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY ) satisfying
the following conditions:

i) h(MX) ⊂MY ;

ii) there is a continuous invariant section ϕ : Y → X of the homomorphism h;

iii) lim
t→+∞

ρX(π̃(x1, t), π̃(x2, t)) = 0 for all x1, x2 ∈ X with h(x1) = h(x2);

iv) the impulsive system (X, π;MX , IX) is uniformly stable in the positive direction with
respect to h on compact subsets from X.

Then the following hold:

a) if (Y, σ;MY , IY ) is point k−dissipative then (X, π;MX , IX) is point k−dissipative.
Moreover, ΩX and ΩY are homeomorphic;
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b) if (Y, σ;MY , IY ) is compactly k−dissipative then (X, π;MX , IX) is also compactly
k−dissipative and, moreover, JX and JY are homeomorphic.

Proof. a) Since (Y, σ;MY , IY ) is point k−dissipative, then ΩY is nonempty and com-
pact. Consequently, ϕ(ΩY ) ⊂ ΩX (see Lemma 4.2) is nonempty and compact. Note
that ϕ(ΩY ) ∩MX = ∅ because ΩY ∩MY = ∅ and h(MX) ⊂MY .

We want to show that ΩX = ϕ(ΩY ) to get the result. Then we need to prove that
ΩX ⊂ ϕ(ΩY ). In fact, let x ∈ X be arbitrary and y = h(x). By condition iii) we
have

lim
t→+∞

ρX(π̃(x, t), π̃(ϕ(y), t)) = 0 (4.10)

as h(x) = y = h(ϕ(y)).

Note that σ̃+(y) is relatively compact since (Y, σ;MY , IY ) is point k−dissipative.
Thus, B = ϕ(σ̃+(y)) is compact and by (4.10) we have

lim
t→+∞

ρX(π̃(x, t), B) = 0 (4.11)

which implies that L̃+
X(x) 6= ∅.

Now, we claim that L̃+
X(x) ⊂ ϕ(ΩY ). In fact, given z ∈ L̃+

X(x) then there is a

sequence {tn}n≥1 ⊂ R+ such that tn
n→+∞−→ +∞ and

π̃(x, tn)
n→+∞−→ z. (4.12)

Since ρX(π̃(ϕ(y), tn), z) ≤ ρX(π̃(ϕ(y), tn), π̃(x, tn)) + ρX(π̃(x, tn), z), it follows by
(4.10) and (4.12) that lim

n→+∞
π̃(ϕ(y), tn) = z. This implies that

lim
n→+∞

ϕ(σ̃(y, tn)) = z.

We may assume that σ̃(y, tn)
n→+∞−→ b ∈ ΩY because (Y, σ;MY , IY ) is point k−dissipa-

tive. Thus z = ϕ(b) ∈ ϕ(ΩY ). Hence, L̃+
X(x) ⊂ ϕ(ΩY ).

As x was taking arbitrary we get L̃+
X(x) ⊂ ϕ(ΩY ) for all x ∈ X. Consequently, we

obtain ΩX ⊂ ϕ(ΩY ). Hence, ΩX = ϕ(ΩY ) is compact in X and ΩX ∩MX = ∅.
Now, we just note that lim

t→+∞
ρX(π̃(x, t),ΩX) = 0 for all x ∈ X. Therefore, the

system (X, π;MX , IX) is point k−dissipative. Since ϕ : ΩY → ΩX is surjective and
h ◦ ϕ = IdY , we have ΩY and ΩX are homeomorphic.

b) Let (Y, σ;MY , IY ) be compact k−dissipative. By item a) the impulsive system
(X, π;MX , IX) is point k−dissipative. Let A = ϕ(JY ). By [7, Corollary 3.37] and

Lemma 4.2 we get A = ϕ(D̃+
Y (ΩY )) ⊂ D̃+

X(ΩX). Observe that A is positively
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π̃−invariant, because JY is σ̃−invariant and ϕ is an invariant section. Moreover,
A ∩MX = ∅ since JY ∩MY = ∅ and h(MX) ⊂MY . Also, we have

ΩX = ϕ(ΩY ) ⊂ ϕ(D̃+
Y (ΩY )) = ϕ(JY ) = A.

In the sequel, we show that the set A is orbitally π̃−stable. In fact, suppose to the

contrary that there are ε0 > 0, xn
n→+∞−→ x0 ∈ A and tn

n→+∞−→ +∞ (tn > 0) (because
A ∩MX = ∅ and A is positively π̃−invariant) such that

ρX(π̃(xn, tn), A) ≥ ε0 (4.13)

for each n = 1, 2, . . .. Note that yn = h(xn)
n→+∞−→ h(x0) = y0 ∈ h(A) = h(ϕ(JY )) =

JY . We may assume that the sequence {σ̃(yn, tn)}n≥1 is convergent because
(Y, σ;MY , IY ) is compact k−dissipative. Let y = lim

t→+∞
σ̃(yn, tn). Then y ∈ JY

and
ϕ(y) = lim

n→+∞
ϕ(σ̃(yn, tn)) = lim

n→+∞
π̃(ϕ(yn), tn). (4.14)

Since ϕ : JY → A = ϕ(JY ) is surjective and h ◦ ϕ = IdY , it follows that ϕ :
JY → A is a homeomorphism and (ϕ ◦ h)(x) = x for all x ∈ A and, consequently,

ϕ(h(xn))
n→+∞−→ ϕ(h(x0)) = x0 ∈ A. But {xn}n≥1 also converges to x0, then

lim
n→+∞

ρX(xn, ϕ(h(xn)) = 0. (4.15)

Let K = A
⋃
{xn}n≥1

⋃
{ϕ(h(xn))}n≥1. Since the system (X, π;MX , IX) is uni-

formly stable in the positive direction with respect to the homomorphism h on
compact subsets, given ε > 0, there exists δ = δ(ε,K) > 0 such that for each
z1, z2 ∈ K with h(z1) = h(z2) and ρX(z1, z2) < δ we have ρX(π̃(z1, t), π̃(z2, t)) <

ε
2

for every t ≥ 0. Now, the equality (4.15) implies that there is n1 ∈ N such that
ρX(xn, ϕ(h(xn))) < δ for all n > n1 and consequently,

ρX(π̃(xn, t), π̃(ϕ(h(xn)), t)) <
ε

2
for all t ≥ 0 and for all n > n1.

In particular,

ρX(π̃(xn, tn), π̃(ϕ(h(xn)), tn)) <
ε

2
for all n > n1. (4.16)

On the other hand, from equality (4.14) one can obtain n2 ∈ N such that

ρX(π̃(ϕ(h(xn)), tn), ϕ(y)) <
ε

2
for all n > n2. (4.17)
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Take n0 = max{n1, n2}. Using (4.16) and (4.17) for n > n0, we get

ρX(π̃(xn, tn), ϕ(y)) ≤ ρX(π̃(xn, tn), π̃(ϕ(h(xn)), tn)) + ρX(π̃(ϕ(h(xn)), tn), ϕ(y))

<
ε

2
+
ε

2
= ε,

that is, lim
n→+∞

π̃(xn, tn) = ϕ(y) ∈ A which contradicts (4.13). Thus A is orbitally

π̃−stable. Then by [7, Theorem 3.41] we conclude that (X, π;MX , IX) is compactly

k−dissipative and JX ⊂ A = ϕ(JY ) ⊂ D̃+
X(ΩX). According to [7, Corollary 3.37]

we have JX = D̃+
X(ΩX), therefore, JX = ϕ(JY ). Thus, ϕ is a homeomorphism from

JY onto JX . The lemma is proved.

4.2 Non-autonomous systems with convergence

In this section we present the concept of non-autonomous systems with convergence
for the impulsive case.

Definition 4.5. The triple 〈(X, π;MX , IX), (Y, σ;MY , IY ), h〉, where h is a homomor-
phism from the system (X, π;MX , IX) to (Y, σ;MY , IY ), is called a non-autonomous im-
pulsive semidynamical system. The impulsive system (Y, σ;MY , IY ) is called a factor of
the impulsive system (X, π;MX , IX) by the homomorphism h.

Let us show how to construct a non-autonomous impulsive system in the sense as
Definition 4.5 from a non-autonomous impulsive differential system. In fact, consider the
following system {

u′ = f(t, u),
I : M → Rn, (4.18)

where f ∈ C(R × Rn,Rn), M ⊂ Rn is an impulsive set and the continuous map I is an
impulse function such that I(M) ∩M = ∅. Along to the system (4.18), we consider its
H−class, that is, the family of systems{

v′ = g(t, v),
I : M → Rn, (4.19)

where g ∈ H(f) = {fτ : τ ∈ R}, fτ (t, u) = f(t + τ, u) for all τ ∈ R and (t, u) ∈ R × Rn

and f is regular, that is, for every equation v′ = g(t, v) (without impulses) and for every
system (4.19) the conditions of existence, uniqueness and extendability on R+ are fulfilled.

Denote by ψ(·, v, g) the solution of the equation v′ = g(t, v) passing through the point
v ∈ Rn at the initial moment t = 0. It is well-known (see [9] for instance) that the
continuous mapping

ψ : R+ × Rn ×H(f)→ Rn,

satisfies the following conditions:
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i) ψ(0, v, g) = v for all v ∈ Rn and for all g ∈ H(f);

ii) ψ(t, ψ(τ, v, g), gτ ) = ψ(t+ τ, v, g) for every v ∈ Rn, g ∈ H(f) and t, τ ∈ R+.

Moreover, the mapping π : Rn ×H(f)× R+ → Rn ×H(f) given by

π(v, g, t) = (ψ(t, v, g), gt), (4.20)

defines a continuous semidynamical system in Rn ×H(f).
Denote Rn ×H(f) by X and define the function φX : X → (0,+∞] by

φX(v, g) =

{
s, if ψ(s, v, g) ∈M and ψ(t, v, g) /∈M for 0 < t < s,

+∞, if ψ(t, v, g) /∈M for all t > 0.

Now, we define MX = M × H(f) and IX : MX → X by IX(v, g) = (I(v), g). Then
(X, π;MX , IX) is an impulsive semidynamical system onX, where the impulsive trajectory
of a point (v, g) ∈ X is an X−valued function π̃(v, g, ·) defined inductively as described
in the following lines.

Let (v, g) ∈ X be given. If φX(v, g) = +∞ then π̃(v, g, t) = π(v, g, t) for all t ∈ R+.
However, if φX(v, g) = s0, that is, ψ(s0, v, g) = v1 ∈M and ψ(t, v, g) /∈M for 0 < t < s0,
then we define π̃(v, g, ·) on [0, s0] by

π̃(v, g, t) =

{
π(v, g, t), 0 ≤ t < s0,

(v+
1 , gs0), t = s0,

where v+
1 = I(v1).

Since s0 < +∞, the process now continues from (v+
1 , gs0) onwards. If φX(v+

1 , gs0) =
+∞ then we define π̃(v, g, t) = π(v+

1 , gs0 , t − s0) for s0 ≤ t < +∞. If φX(v+
1 , gs0) = s1,

that is, ψ(s1, v
+
1 , gs0) = v2 ∈ M and ψ(t − s0, v

+
1 , gs0) /∈ M for s0 < t < s0 + s1, then we

define π̃(v, g, ·) on [s0, s0 + s1] by

π̃(v, g, t) =

{
π(v+

1 , gs0 , t− s0), s0 ≤ t < s0 + s1,

(v+
2 , gs0+s1), t = s0 + s1,

where v+
2 = I(v2), and so on.

Let (H(f), σ) be the continuous semidynamical system on H(f) given by σ(g, t) = gt
for all g ∈ H(f) and for all t ≥ 0. Then

〈(X, π;MX , IX), (H(f), σ), h〉,

where h is the projection on the second coordinate, is a non-autonomous impulsive semi-
dynamical system associated to the system (4.18). We remark that hypotheses H1) and
H2) are not necessary for the system on H(f) since MY = ∅.

Analogous to the continuous case, we define the concepts of dissipativity and center of
Levinson for non-autonomous semidynamical systems with impulses. See the next lines.
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Definition 4.6. The non-autonomous impulsive semidynamical system

〈(X, π;MX , IX), (Y, σ;MY , IY ), h〉 (4.21)

is said to be point (compact, local, bounded) b−dissipative if the autonomous impulsive
semidynamical system (X, π;MX , IX) possesses this property. Analogously, the system
(4.21) is said to be k−dissipative if the system (X, π;MX , IX) is k−dissipative.

Definition 4.7. Let system (4.21) be compact k−dissipative and JX be the center of
Levinson of (X, π;MX , IX). The set JX is said to be the Levinson’s center of the non-
autonomous system (4.21).

Next, we define the concept of convergence for non-autonomous systems with impulses.

Definition 4.8. The non-autonomous system (4.21) is said to be convergent if the fol-
lowing conditions hold:

i) the systems (X, π;MX , IX) and (Y, σ;MY , IY ) are compactly k−dissipative;

ii) the set JX ∩ Xy contains no more than one point for all y ∈ JY , where Xy =
X ∩ h−1(y).

From Theorem 4.6 we have the following result.

Theorem 4.7. Under the conditions of Theorem 4.6, if (Y, σ;MY , IY ) is compact k−dissi-
pative then the system (4.21) is convergent.

Proof. It is enough to note that h : JX → JY is a homeomorphism.

In the sequel, we prove some auxiliary results. These results deal with impulsive
negative semisolutions. Given a continuous semidynamical system (X, π), we say that
a negative semisolution through a point x ∈ X is a continuous function ϕx : Ix → X
defined on an interval Ix ⊂ (−∞, 0] with 0 ∈ Ix satisfying the properties ϕx(0) = x and
π(ϕx(t), s) = ϕx(t + s) for all t ∈ Ix and for all s ∈ R+ such that t + s ∈ Ix. See [3] for
instance.

The theory of impulsive negative semisolutions is constructed in [1]. Given a negative
semisolution ϕx through a point x ∈ X\MX , it is proved in [1] that there is a corresponding
mapping ϕ̃x : Ix → X through the point x ∈ X\MX , defined in some interval Ix ⊂ (−∞, 0]
with 0 ∈ Ix, such that ϕ̃x(0) = x and π̃(ϕ̃x(t), s) = ϕ̃x(t+s) for all t ∈ Ix and s ∈ [0,+∞)
such that t+s ∈ Ix. The mapping ϕ̃x is called an impulsive negative semisolution through
the point x.

An orbit through x ∈ X \MX in (X, π;MX , IX) with respect to an impulsive negative
semisolution ϕ̃x defined on Ix will be given by

π̃ϕx(x) = ϕ̃x(Ix) ∪ π̃+(x).
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Lemma 4.3. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY )
and x ∈ X \ MX . If there exists an impulsive negative semisolution through x then
h(x) /∈MY .

Proof. Let ϕ̃x be an impulsive negative semisolution through x defined on Ix ⊂ (−∞, 0].
Let t ∈ Ix, t 6= 0 and ϕ̃x(t) = x1. Then π̃(x1,−t) = x and

σ̃(h(x1),−t) = h(π̃(x1,−t)) = h(x).

Since IY (MY ) ∩MY = ∅ and t 6= 0, then we have h(x) /∈MY .

Lemma 4.4. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY )
and x ∈ X \MX . If there exists an impulsive negative semisolution through x defined on

(−∞, 0] then there will be an impulsive negative semisolution Γ̃h(x) through h(x) defined
on (−∞, 0].

Proof. Let x ∈ X \MX and h(x) = y. By Lemma 4.3 we have y /∈ MY . By hypothesis,
there is an impulsive negative semisolution ϕ̃x through x defined on (−∞, 0]. Define the

mapping Γ̃y : (−∞, 0]→ Y by Γ̃y(t) = h(ϕ̃x(t)) for all t ≤ 0. Then,

i) Γ̃y(0) = h(ϕ̃x(0)) = h(x) = y;

ii) σ̃(Γ̃y(t), s) = σ̃(h(ϕ̃x(t)), s) = h(π̃(ϕ̃x(t), s)) = h(ϕ̃x(t + s)) = Γ̃y(t + s), for all
t ∈ (−∞, 0] and s ∈ [0,+∞) such that t+ s ≤ 0.

Hence, Γ̃y : (−∞, 0]→ Y is an impulsive negative semisolution through y in (Y, σ;MY , IY )
defined on (−∞, 0].

A mapping ϕ̃ : Ix → X is called a maximal impulsive negative semisolution through
x ∈ X \MX if there is not any impulsive negative semisolution through x, ϕ̃1 : Jx → X,
such that Ix ⊂ Jx, Jx 6= Ix and ϕ̃1|Ix = ϕ̃. Moreover, a point x ∈ X \MX is a called
a point with maximal negative unicity if there is a unique maximal impulsive negative
semisolution through x in X.

Lemma 4.5. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY )
and K ⊂ X \MX be a set such that π̃(K, t) = K for all t ≥ 0. Assume that each point in
h(K)\MY is a point with maximal negative unicity. If x1, x2 ∈ K with h(x1) = h(x2) then
there are impulsive negative semisolutions ϕ̃x1 and ϕ̃x2 through x1 and x2, respectively,
defined on (−∞, 0] such that π̃ϕx1

(x1), π̃ϕx2
(x2) ⊂ K, h(π̃(x1, t)) = h(π̃(x2, t)) for all

t ≥ 0 and h(ϕ̃x1(t)) = h(ϕ̃x2(t)) for all t ≤ 0.

Proof. Let x1, x2 ∈ K with h(x1) = h(x2) = y. Then x1, x2 ∈ π̃(K, 1) and there exist
x1
−1, x

2
−1 ∈ K such that

π̃(x1
−1, 1) = x1 and π̃(x2

−1, 1) = x2.
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Again, since x1
−1, x

2
−1 ∈ K there exist x1

−2, x
2
−2 ∈ K such that π̃(x1

−2, 1) = x1
−1 and

π̃(x2
−2, 1) = x2

−1. Inductively, we can construct sequences {x1
−n}n≥1, {x2

−n}n≥1 in K such
that π̃(xi−n−1, 1) = xi−n for all natural n ≥ 0 with xi0 = xi, i = 1, 2. Note that π̃(xi−n, n) =
xi for all n = 1, 2, . . ., i = 1, 2. Then we can define

ϕ̃xi(t) = π̃(xi−n, t+ n) if t ∈ [−n,−n+ 1], n = 1, 2, . . . ,

which is an impulsive negative semisolution through xi defined on (−∞, 0], i = 1, 2. Thus,
by construction, we have π̃ϕxi

(xi) = ϕ̃xi((−∞, 0]) ∪ π̃+(xi) ⊂ K for each i = 1, 2.
Note that h(x1

−n) = h(x2
−n) for all n = 0, 1, 2, . . ., because if for some n0 ∈ N we have

h(x1
−n0

) 6= h(x2
−n0

) then

σ̃(h(x1
−n0

), n0) = h(π̃(x1
−n0

, n0)) = h(x1) = y = h(x2) = h(π̃(x2
−n0

, n0)) = σ̃(h(x2
−n0

), n0).

But y /∈ MY , see Lemma 4.3, and (Y, σ;MY , IY ) possesses a unique maximal impulsive
negative semisolution through each point in h(K) \MY . We get a contradiction. Hence,
if t ∈ [−n,−n+ 1], n = 1, 2, . . ., we have

h(ϕ̃x1(t)) = h(π̃(x1
−n, t+ n)) = σ̃(h(x1

−n), t+ n)) =

= σ̃(h(x2
−n), t+ n)) = h(π̃(x2

−n, t+ n)) = h(ϕ̃x2(t)).

Thus, h(ϕ̃x1(t)) = h(ϕ̃x2(t)) for all t ≤ 0. On the other hand, since h(x1) = h(x2) it
follows that h(π̃(x1, t)) = h(π̃(x2, t)) for all t ≥ 0.

Given A ⊂ X, define A⊗ A = {(x1, x2) : x1, x2 ∈ A, h(x1) = h(x2)}.

Lemma 4.6. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY )
and K ⊂ X \MX be a set such that π̃(K, t) = K for all t ≥ 0. Assume that each point in
h(K) \MY is a point with maximal negative unicity. If

lim
t→+∞

sup
(a,b)∈K⊗K

ρX(π̃(a, t), π̃(b, t)) = 0 (4.22)

then the set K ∩ h−1(y) contains one single point for all y ∈ h(K).

Proof. Clearly K ∩ h−1(y) 6= ∅ for y ∈ h(K). Also, by the initial part of the proof of
Lemma 4.5 and Lemma 4.3 we have h(K) ∩MY = ∅.

Suppose to the contrary that there are y ∈ h(K) and x1, x2 ∈ K∩h−1(y) with x1 6= x2.
By Lemma 4.5, there are impulsive negative semisolutions ϕ̃x1 and ϕ̃x2 through x1 and
x2, respectively, such that ϕ̃x1((−∞, 0]) ⊂ K, ϕ̃x2((−∞, 0]) ⊂ K and

h(ϕ̃x1(−t)) = h(ϕ̃x2(−t)) for all t ≥ 0.

By (4.22), given 0 < ε <
ρX(x1, x2)

2
one can obtain a number ` = `(ε) > 0 such that

ρX(π̃(a, t), π̃(b, t)) < ε,
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for all t ≥ ` and for all (a, b) ∈ K⊗K. Hence, for t ≥ ` we get

ε < ρX(x1, x2) = ρX(π̃(ϕ̃x1(−t), t), π̃(ϕ̃x2(−t), t)) < ε,

which is a contradiction.

Theorem 4.8 presents sufficient conditions to obtain convergence.

Theorem 4.8. Let (X, π;MX , IX) and (Y, σ;MY , IY ) be compact k−dissipative systems.
Assume that each point in h(JX) is a point with maximal negative unicity. If (4.22) holds
for K = JX then the system (4.21) is convergent.

Proof. The proof follows by Lemma 4.6 and Theorem 3.1.

We have the following result using Theorem 4.5 and Theorem 4.8.

Corollary 4.2. Assume that (4.21) is such that (X, π;MX , IX) is compactly k−dissipative,
each point in h(JX) is a point with maximal negative unicity and h−1(MY ) ⊂ MX . Let
ϕ : Y → X be an invariant continuous section of h. If (4.22) holds for K = JX then the
system (4.21) is convergent.

Next, we define the concept of orbits which are asymptotically stable with respect to
non-autonomous systems. We will show later that convergent systems produce asymp-
totically stable orbits under additional hypotheses.

Definition 4.9. A positive orbit through a point p ∈ X \MX is said to be asymptoti-
cally stable with respect to the system 〈(X, π;MX , IX), (Y, σ;MY , IY ), h〉 if the following
conditions hold:

i) for all ε > 0 there exists a δ(p, ε) > 0 such that if ρX(x, p) < δ with x ∈ X and
h(x) = h(p) then ρX(π̃(x, t), π̃(p, t)) < ε for all t ≥ 0;

ii) there is γ(p) > 0 such that if ρX(x, p) < γ(p) with x ∈ X and h(x) = h(p) then
lim
t→+∞

ρX(π̃(x, t), π̃(p, t)) = 0.

Theorem 4.9 give us sufficient conditions to assure that every positive orbit through
a point in X \MX is asymptotically stable with respect to the system (4.21).

Theorem 4.9. Assume that the system (4.21) is such that (Y, σ;MY , IY ) is compact
k−dissipative and h−1(MY ) = MX . Assume that π̃+(K) is relatively compact for every
K ∈ Comp(X). If the set h−1(JY ) ∩ Xy contains only one point for each y ∈ JY , then
π̃+(x) is asymptotically stable with respect to the system (4.21) for all x ∈ X \MX .
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Proof. First, let us show that condition i) from Definition 4.9 holds. Suppose to the

contrary that there are p0 ∈ X\MX , ε0 > 0, pn
n→+∞−→ p0 ({pn}n≥1 ⊂ X and h(pn) = h(p0))

and {tn}n≥1 ⊂ R+ such that

ρX(π̃(pn, tn), π̃(p0, tn)) ≥ ε0 (4.23)

for each n = 1, 2, 3, . . ..
By hypothesis, we may assume

π̃(pn, tn)
n→+∞−→ a and π̃(p0, tn)

n→+∞−→ b. (4.24)

Case 1: {tn}n≥1 ⊂ R+ admits a convergent subsequence.

Let us assume without loss of generality that tn
n→+∞−→ r for some r ≥ 0.

If r 6=
k∑
j=0

φX((p0)+
j ) for all k ∈ N, then by the proof of [7, Lemma 3.7] we can conclude

that
π̃(p0, tn)

n→+∞−→ π̃(p0, r) = b and π̃(pn, tn)
n→+∞−→ π̃(p0, r) = a,

that is, a = b and it contradicts (4.23) as n→ +∞.

If r =
k∑
j=0

φX((p0)+
j ) for some k ∈ N, then using the proof of [7, Lemma 3.7] again, we

have either b = (p0)k+1 or b = (p0)+
k+1 and either a = (p0)k+1 or a = (p0)+

k+1.

• If either a = b = (p0)k+1 or a = b = (p0)+
k+1, we get a contradiction using (4.23) as

n→ +∞.

• If a = (p0)k+1 ∈ MX and b = (p0)+
k+1 /∈ MX , we also have a contradiction because

h(b) /∈MY and h(a) ∈MY since h−1(MY ) = MX , and

h(a) = lim
t→+∞

σ̃(h(pn), tn) = lim
t→+∞

σ̃(h(p0), tn) = h(b).

• If a = (p0)+
k+1 /∈ MX and b = (p0)k+1 ∈ MX , we have again a contradiction by the

previous case.

Case 2: tn
n→+∞−→ +∞.

From (4.23) and (4.24) we have a 6= b. But, on the other hand,

h(a) = lim
t→+∞

σ̃(h(pn), tn) = lim
t→+∞

σ̃(h(p0), tn) = h(b). (4.25)

Taking y = h(a) = h(b), it follows by (4.25) that y ∈ JY . Then a, b ∈ h−1(JY ) ∩Xy with
a 6= b which contradicts the hypothesis.
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In both cases above we obtain a contradiction. Therefore, item i) from Definition 4.9
holds.

To finish the proof of this result, we need to show that condition ii) from Definition
4.9 holds. Note that we can use the proof of Case 2 above to conclude this part.

Hence, π̃+(x) is asymptotically stable with respect to the system (4.21) for all x ∈
X \MX .

Assume that (X, π;MX , IX) is compact k−dissipative in Theorem 4.9. We may apply
the proof of Theorem 4.9 to show that condition i) from Definition 4.9 holds. We just
note that the existence of the limits in (4.24) follows by the compact k−dissipativity of
(X, π;MX , IX).

In order to see that condition ii) from Definition 4.9 holds, it is enough to use the

proof of Theorem 4.9. In this case, since tn
n→+∞−→ +∞ we observe that b ∈ JX and

a ∈ L̃+
X(K) ⊂ JX , where K = {pn}n≥1 ∪ {p0} and a 6= b. Thus, by the proof of Case

2, we get a, b ∈ JX ∩ Xy. Hence, if (4.21) is convergent then we get a = b, which is a
contradiction. This shows the following result.

Theorem 4.10. If (4.21) is convergent with h−1(MY ) = MX then π̃+(x) is asymptotically
stable with respect to the system (4.21) for all x ∈ X \MX .

Next, we show that the concept of asymptotic stability is uniform on compact fibers.

Theorem 4.11. Let K ∈ Comp(X) be such that K ∩ MX = ∅. Assume that π̃+(p)
is asymptotically stable with respect to the system (4.21) for each p ∈ K. Then given
ε > 0 and y ∈ h(K) there exists a δ = δ(ε,Ky) > 0 such that for x1, x2 ∈ Ky satisfying
ρX(x1, x2) < δ we have ρX(π̃(x1, t), π̃(x2, t)) < ε for all t ≥ 0.

Proof. Let ε > 0 and y ∈ h(K) be given. There are p ∈ K such that h(p) = y
and δp = δ(p, ε) > 0 such that if ρX(x, p) < δp with x ∈ X and h(x) = h(p) then

ρX(π̃(x, t), π̃(p, t)) <
ε

2
for all t ≥ 0. By compactness, there are p1, . . . , pn ∈ Ky such that

Ky ⊂ BX

(
p1,

δp1
2

)
∪ . . . ∪BX

(
pn,

δpn
2

)
,

where δpj = δ(pj, ε) > 0 comes from the asymptotic stability of pj, j = 1, 2, . . . , n. Take
δ = min{δp1 , . . . , δpn}.

Let x1, x2 ∈ Ky be such that ρX(x1, x2) <
δ

2
. Note that there is j ∈ {1, . . . , n}

such that x1 ∈ BX

(
pj,

δpj
2

)
. Then ρX(x2, pj) ≤ ρX(x2, x1) + ρX(x1, pj) < δpj . Hence,

x1, x2 ∈ BX(pj, δpj) with h(x1) = h(x2) = h(pj) = y. Consequently,

ρX(π̃(x1, t), π̃(x2, t)) ≤ ρX(π̃(x1, t), π̃(pj, t)) + ρX(π̃(pj, t), π̃(x2, t)) < ε,

for all t ≥ 0.
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In [8], the concept of minimality is defined in the following way: a set A ⊂ X is
minimal in (X, π;MX , IX) if A \MX 6= ∅, A is closed, A \MX is positively π̃−invariant
and A does not contain any proper subset satisfying these three properties.

Assuming that the center of Levinson JY of (Y, σ;MY , IY ) is minimal, we get the
following result.

Theorem 4.12. Let (4.21) be such that h(MX) = MY and (Y, σ;MY , IY ) be compact
k−dissipative with JY minimal. Assume that π̃+(K) is relatively compact for every K ∈
Comp(X) and h−1(JY )∩Xy has only one point for all y ∈ JY . Then (4.21) is convergent.

Proof. Let K ∈ Comp(X). By Lemma 4.2 and by the compactness of h(K) we have

h(L̃+
X(K)) ⊂ L̃+

Y (h(K)) ⊂ JY .

Thus, h(L̃+
X(K)) ∩MY = ∅. Consequently, L̃+

X(K) ∩MX = ∅ since h(MX) = MY . This

shows that L̃+
X(K) is positively π̃−invariant, and consequently, h(L̃+

X(K)) is positively

σ̃−invariant, see Proposition 4.1. Also, as π̃+(K) is relatively compact, we have L̃+
X(K)

nonempty and compact. Then by minimality of JY we get h(L̃+
X(K)) = JY . By [8,

Theorem 4.6] we can write JY = L̃+
Y (y) for all y ∈ JY . Choose y0 ∈ JY . Then

h(L̃+
X(K)) = L̃+

Y (y0).

Take x0 ∈ X such that h(x0) = y0. By Theorem 4.1 we have h(L̃+
X(x0)) = L̃+

Y (y0) and

then L̃+
X(x0) ⊂ h−1(JY ).

Now, let y ∈ L̃+
Y (y0) = JY . From hypothesis there is only one x ∈ h−1(JY ) ∩ Xy.

It shows that h is injective from h−1(JY ) to L̃+
Y (y0). Since L̃+

X(K) ⊂ h−1(JY ) we con-

clude that L̃+
X(K) = L̃+

X(x0) for all K ∈ Comp(X). Hence, (X, π;MX , IX) is compact
k−dissipative.

Let JX be the center of Levinson of (X, π;MX , IX), y ∈ JY and a, b ∈ JX ∩Xy. Since
JX ⊂ h−1(JY ) we have JX ∩Xy ⊂ h−1(JY ) ∩Xy and we conclude the result.

4.3 Tests for convergence

In this section, we present tests to obtain convergence. We use Lyapunov functions to
achieve the results.

Definition 4.10. A function V : X⊗X → R+ is called ⊗−continuous on X⊗X, if given

a sequence {(x1
n, x

2
n)}n≥1 ⊂ X⊗X such that xin

n→+∞−→ xi (i = 1, 2) then V (x1
n, x

2
n)

n→+∞−→
V (x1, x2).

Lemma 4.7. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY ).
Assume that (X, π;MX , IX) is compact k−dissipative and there exists a ⊗−continuous
function V : X⊗X → R+ satisfying the following properties:
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a) V is positively defined, that is, V (x1, x2) = 0 if and only if x1 = x2;

b) V (π̃(x1, t), π̃(x2, t)) ≤ V (x1, x2) for all t ≥ 0 and (x1, x2) ∈ X⊗X.

Then (X, π;MX , IX) is uniformly stable in the positive direction with respect to the ho-
momorphism h on compact subsets from X.

Proof. Suppose to the contrary that there exist ε0 > 0, K0 ∈ Comp(X), sequences

δn
n→+∞−→ 0, {x1

n}n≥1, {x2
n}n≥1 ⊂ K0 (h(x1

n) = h(x2
n)) and {tn}n≥1 ⊂ R+ such that

ρX(x1
n, x

2
n) < δn and ρX(π̃(x1

n, tn), π̃(x2
n, tn)) ≥ ε0 (4.26)

for each n = 1, 2, . . .. Since the system (X, π;MX , IX) is compact k−dissipative, we
may assume that the sequences {π̃(x1

n, tn)}n≥1 and {π̃(x2
n, tn)}n≥1 are convergent. Let

x̄i = lim
n→+∞

π̃(xin, tn), i = 1, 2. Note that

h(x̄1) = h( lim
n→+∞

π̃(x1
n, tn)) = lim

n→+∞
σ̃(h(x1

n), tn) =

= lim
n→+∞

σ̃(h(x2
n), tn) = h( lim

n→+∞
π̃(x2

n, tn)) = h(x̄2).

From (4.26) we may assume that lim
n→+∞

x1
n = lim

n→+∞
x2
n = x̄ ∈ K0 and

0 ≤ V (x̄1, x̄2) = lim
n→+∞

V (π̃(x1
n, tn), π̃(x2

n, tn)) ≤ lim
n→+∞

V (x1
n, x

2
n) = V (x̄, x̄) = 0,

which implies that x̄1 = x̄2. This contradicts (4.26) as n → +∞. Thus the result is
proved.

Lemma 4.8. Let h : X → Y be a homomorphism from (X, π;MX , IX) to (Y, σ;MY , IY ).
Assume that (X, π;MX , IX) is compact k−dissipative and that there is a ⊗−continuous
function V : X⊗X → R+ satisfying the following properties:

a) V is positively defined;

b) V (π̃(x1, t), π̃(x2, t)) ≤ V (x1, x2) for all t ≥ 0 and (x1, x2) ∈ X⊗X;

c) V (π̃(x1, t), π̃(x2, t)) = V (x1, x2) for all t ≥ 0 if and only if x1 = x2.

Then lim
t→+∞

ρX(π̃(x1, t), π̃(x2, t)) = 0 for all (x1, x2) ∈ X⊗X.

Proof. Suppose to the contrary that there exist y0 ∈ Y, x̄1, x̄2 ∈ Xy0 , ε0 > 0 and tn
n→+∞−→

+∞ (tn > 0) such that

ρX(π̃(x̄1, tn), π̃(x̄2, tn)) ≥ ε0 for each n = 1, 2, . . . . (4.27)
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Define the function ξ : R+ → R+ by ξ(t) = V (π̃(x̄1, t), π̃(x̄2, t)). By condition b) we
get ξ is non-increasing and ξ(t) ≤ V (x̄1, x̄2) for all t ≥ 0. Thus lim

t→+∞
ξ(t) = V0 ≥ 0, that

is,
lim
t→+∞

V (π̃(x̄1, t), π̃(x̄2, t)) = V0. (4.28)

In the other hand, since (X, π;MX , IX) is compact k−dissipative, we have L̃+
X(x) 6= ∅

and L̃+
X(x) ⊂ JX for all x ∈ X. This implies that L̃+

X(x) ∩ MX = ∅ for all x ∈ X
because JX ∩MX = ∅. Moreover, we may assume that the sequences {π̃(x̄1, tn)}n≥1 and
{π̃(x̄2, tn)}n≥1 are convergent. Let lim

n→+∞
π̃(x̄1, tn) = p̄ and lim

n→+∞
π̃(x̄2, tn) = q̄. Since V is

⊗−continuous, we conclude that V (π̃(x̄1, tn), π̃(x̄2, tn))
n→+∞−→ V (p̄, q̄) and V (p̄, q̄) = V0.

Observe that p̄ /∈MX and q̄ /∈MX , because p̄ ∈ L̃+
X(x̄1), q̄ ∈ L̃+

X(x̄2) and L̃+
X(x)∩MX = ∅

for all x ∈ X.
As L̃+

X(x)∩MX = ∅ for all x ∈ X we have L̃+
X(x̄1) and L̃+

X(x̄2) positively π̃−invariant,
see [7, Lemma 3.5]. Using Lemma 3.1, we obtain for each t ≥ 0 the following convergences

π̃(x̄1, tn + t)
n→+∞−→ π̃(p̄, t) = π(p̄, t) and π̃(x̄2, tn + t)

n→+∞−→ π̃(q̄, t) = π(q̄, t). (4.29)

Then V (π̃(x̄1, tn + t), π̃(x̄2, tn + t))
n→+∞−→ V (π̃(p̄, t), π̃(q̄, t)). By (4.28) we have

V (π̃(p̄, t), π̃(q̄, t)) = V0 = V (p̄, q̄) for all t ≥ 0.

Therefore, by condition c) we have p̄ = q̄ which contradicts (4.27) as n→ +∞.

The next result presents sufficient conditions to obtain convergence via Lyapunov
functions.

Theorem 4.13. Let (4.21) be such that (X, π;MX , IX) is compact k−dissipative and
h−1(MY ) = MX . Let ϕ : Y → X be a continuous invariant section of h. Assume that
there is a ⊗−continuous function V : X⊗X → R+ satisfying the following properties:

a) V is positively defined;

b) V (π̃(x1, t), π̃(x2, t)) ≤ V (x1, x2) for all t ≥ 0 and (x1, x2) ∈ X⊗X;

c) V (π̃(x1, t), π̃(x2, t)) = V (x1, x2) for all t ≥ 0 if and only if x1 = x2.

Then system (4.21) is convergent.

Proof. The proof follows by Theorem 4.5, Theorem 4.7, Lemma 4.7 and Lemma 4.8.

Theorem 4.14. Let (4.21) be such that (X, π;MX , IX) is compact k−dissipative and
h−1(MY ) = MX . Let ϕ : Y → X be a continuous invariant section of h. Assume that
there is a ⊗−continuous function V : X⊗X → R+ satisfying the following properties:
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a) V is positively defined;

b) V (π̃(x1, t), π̃(x2, t)) < V (x1, x2) for all t > 0 and (x1, x2) ∈ X⊗X \ ∆X , where
∆X = {(x, x) : x ∈ X}.

Then the system (4.21) is convergent.

Proof. The proof of this theorem is an immediate consequence of Theorem 4.13. It is
sufficient to note that the item b) of this theorem implies items b) and c) of Theorem
4.13.

Another sufficient condition for convergence is given in the next theorem.

Theorem 4.15. Let (4.21) be such that (X, π;MX , IX) and (Y, σ;MY , IY ) are compact
k−dissipative. Assume that each point in h(JX) is a point with maximal negative unicity.
Let V : X⊗X → R+ be a ⊗−continuous function on JX⊗JX satisfying the following
properties:

a) V is positively defined;

b) V (π̃(x1, t), π̃(x2, t)) ≤ ω(V (x1, x2), t) for all t ≥ 0 and (x1, x2) ∈ JX⊗JX , where
ω : R+×R+ → R+ is a non-decreasing function in the first variable and ω(x, t)→ 0,
as t→ +∞, for every x ∈ R+.

Then the system (4.21) is convergent.

Proof. By Theorem 4.8, it is sufficient to show that

lim
t→+∞

sup
(x1,x2)∈JX⊗JX

ρX(π̃(x1, t), π̃(x2, t)) = 0. (4.30)

In order to do that, we claim that

lim
t→+∞

sup
(x1,x2)∈JX⊗JX

V (π̃(x1, t), π̃(x2, t)) = 0. (4.31)

Indeed, since V is ⊗−continuous on the compact set JX⊗JX , then there are α > 0
and (x̄1, x̄2) ∈ JX⊗JX such that V (x1, x2) ≤ V (x̄1, x̄2) = α for all (x1, x2) ∈ JX⊗JX .
Consequently,

V (π̃(x1, t), π̃(x2, t)) ≤ ω(V (x1, x2), t) ≤ ω(α, t) (4.32)

for all t ≥ 0. Since ω(α, t)→ 0 as t→ +∞ then inequality (4.32) implies (4.31).
Now, we show that (4.31) implies (4.30). Suppose to the contrary that there exist

ε0 > 0, {x1
n}n≥1, {x1

n}n≥2 ⊂ JX with h(x1
n) = h(x2

n) and tn
n→+∞−→ +∞ such that

ρX(π̃(x1
n, tn), π̃(x2

n, tn)) ≥ ε0, (4.33)
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for each n = 1, 2, . . .. We may assume that the sequences {π̃(x1
n, tn)}n≥1 and {π̃(x2

n, tn)}n≥1

are convergent because (X, π;MX , IX) is compact k−dissipative. Let x̄i = lim
n→+∞

π̃(xin, tn),

i = 1, 2. From the inequality (4.33), we have x̄1 6= x̄2.
On the other hand, by the inequality (4.32) we have

lim
n→+∞

V (π̃(x1
n, tn), π̃(x2

n, tn)) ≤ lim
n→+∞

ω(α, tn) = 0.

Since JX is positively π̃−invariant (see Theorem 3.1) and V is continuous on JX⊗JX , we
have V (x̄1, x̄2) = lim

n→+∞
V (π̃(x1

n, tn), π̃(x2
n, tn)) = 0, that is, x̄1 = x̄2 which is a contradic-

tion. Therefore, the result follows by Theorem 4.8.

Now, we present a converse result. We give sufficient conditions to obtain a Lyapunov
function for convergent non-autonomous systems with impulses.

Theorem 4.16. Let system (4.21) be convergent and assume that

lim
t→+∞

ρX(π̃(x1, t), π̃(x2, t)) = 0 for all (x1, x2) ∈ X⊗X.

Assume there is β > 0 such that φX(x) ≥ β for all x ∈ IX(MX). Then there is a function
V : X⊗X → R+ ⊗−continuous at every point (x1, x2) ∈ X⊗X such that x1, x2 /∈ MX

which satisfies the following conditions:

a) V is positively defined;

b) V (π̃(x1, t), π̃(x2, t)) ≤ V (x1, x2) for all t ≥ 0 and (x1, x2) ∈ X⊗X;

c) V (π̃(x1, t), π̃(x2, t)) = V (x1, x2) for all t ≥ 0 if and only if x1 = x2.

Proof. Define the mapping V : X⊗X → R+ by

V (x1, x2) = sup{ρX(π̃(x1, t), π̃(x2, t)) : t ≥ 0}, (x1, x2) ∈ X⊗X. (4.34)

It is clear that V is positively defined. Let (x1, x2) ∈ X⊗X and t ≥ 0, then

V (π̃(x1, t), π̃(x2, t)) = sup{ρX(π̃(x1, t+ s), π̃(x2, t+ s)) : s ≥ 0} =

= sup{ρX(π̃(x1, s), π̃(x2, s)) : s ≥ t} ≤ sup{ρX(π̃(x1, s), π̃(x2, s)) : s ≥ 0} = V (x1, x2).

For item c) it is enough to justify the sufficient condition. Suppose that
V (π̃(x1, t), π̃(x2, t)) = V (x1, x2) for all t ≥ 0 and x1 6= x2. Take δ = V (x1, x2) > 0.
By hypothesis, there exists t0 = t0(δ) > 0 such that ρX(π̃(x1, t), π̃(x2, t)) <

δ
2

for all
t ≥ t0. Hence,

V (π̃(x1, t0), π̃(x2, t0)) = sup{ρX(π̃(x1, t), π̃(x2, t)) : t ≥ t0} ≤
δ

2
< V (x1, x2),
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which is a contradiction. Hence, V satisfies the conditions a), b) and c).
Now, we need to prove the ⊗−continuity of V .
First, we claim that for every compact K ⊂ X

lim
t→+∞

sup
(x1,x2)∈K⊗K

ρX(π̃(x1, t), π̃(x2, t)) = 0. (4.35)

In fact, suppose to the contrary that there are ε0 > 0, K0 ∈ Comp(X), tn
n→+∞−→ +∞ and

sequences {x1
n}n≥1, {x2

n}n≥1 ⊂ K0 with h(x1
n) = h(x2

n) such that

ρX(π̃(x1
n, tn), π̃(x2

n, tn)) ≥ ε0 for each n = 1, 2, . . . . (4.36)

Since K0 is compact and (X, π;MX , IX) is compact k−dissipative, we may assume
without loss of generality that the sequences {π̃(x1

n, tn)}n≥1 and {π̃(x2
n, tn)}n≥1 are con-

vergent. Let x̄i = lim
n→+∞

π̃(xin, tn) for i = 1, 2. Note that x̄1, x̄2 ∈ L̃+
X(K0) ⊂ JX ,

h(x̄1) = h(x̄2) ∈ JY (see Lemma 4.2) and x̄1 = x̄2 which contradicts (4.36) as n → +∞.
Thus the equality (4.35) is proved.

Let x1, x2 ∈ X \MX and {(x1
n, x

2
n)}n≥1 ⊂ X⊗X be a sequence such that xin

n→+∞−→ xi
(i = 1, 2). First, we assume that x1 6= x2. Set ε = 1

2
ρX(x1, x2) > 0 and K = {x1

n, x
2
n}n≥1∪

{x1, x2}. By (4.35) there is T = T (K, ε) > 0 such that ρX(π̃(a, t), π̃(b, t)) < ε for all
a, b ∈ K, h(a) = h(b), and for all t ≥ T .

Given x ∈ X and j ∈ N, we define

D(x+
j ) =

{
[0, φX(x+

j )], if φX(x+
j ) < +∞,

[0,+∞), if φX(x+
j ) = +∞.

Since φX(x) ≥ β for all x ∈ IX(MX), the impulsive semitrajectory of xi admits a
finite number of discontinuities in [0, T ], we say mi jumps, i = 1, 2. Thus there are
ki = ki(xi) ∈ {0, 1, 2, . . . ,mi} and τi ∈ D((xi)

+
ki

) ∩ [0, T ], i = 1, 2, such that

V (x1, x2) = ρX(π((x1)+
k1
, τ1), π((x2)+

k2
, τ2)).

By the convergence xin
n→+∞−→ xi we may assume that xin admits the same number of

discontinuities of xi in [0, T ], for each n ∈ N, i = 1, 2. Thus, there are `in ∈ {0, 1, 2, . . . ,mi}
and τ in ∈ D((xin)+

`in
) ∩ [0, T ] such that

V (x1
n, x

2
n) = ρX(π((x1

n)+
`1n
, τ 1
n), π((x2

n)+
`2n
, τ 2
n))

for all integers n ≥ 1. Consequently, for each i = 1, 2, there is a natural ni0 such that we
can decompose the sequence {xin}n≥ni

0
in the following manner

{xin}n≥ni
0

= {xin1j
}j≥1 ∪ . . . ∪ {xinrj

}j≥1,
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where {xinlj
}j≥1 is a subsequence of {xin}n≥ni

0
, `inlj

= `inl
∈ {0, 1, 2, . . . ,mi} for all integers

j ≥ 1, 1 ≤ l ≤ r and 1 ≤ r ≤ mi + 1.
Consider an arbitrary subsequence {xinlj

}j≥1, where l ∈ {1, 2, . . . , r} and 1 ≤ r ≤
mi + 1, i = 1, 2. For convenience, we denote {xinlj

}j≥1 by {xinj
}j≥1 and `inlj

= `i. Then

V (x1
nj
, x2

nj
) = ρX(π((x1

nj
)+
`1
, τ 1
nj

), π((x2
nj

)+
`2
, τ 2
nj

))

for all integers j ≥ 1. Now, we may assume without loss of generality that τ inj

j→+∞−→ νi ∈
D((xi)

+
`i

) ∩ [0, T ]. Note that

V (x1
nj
, x2

nj
)
j→+∞−→ ρX(π((x1)+

`1
, ν1), π((x2)+

`2
, ν2)).

Let us show that V (x1, x2) = ρX(π((x1)+
`1
, ν1), π((x2)+

`2
, ν2). In fact, we can choose a

sequence {βim}m≥1 such that βim ∈ D((xi)
+
ki

) ∩ [0, T ], m ≥ 1, βim
m→+∞−→ τi and βim is not

an impulsive point for xi, i = 1, 2. By definition of V we get

V (x1
nj
, x2

nj
) = ρX(π((x1

nj
)+
`1
, τ 1
nj

), π((x2
nj

)+
`2
, τ 2
nj

)) ≥ ρX(π̃(x1
nj
, t), π̃(x2

nj
, t))

for all t ≥ 0. Let tm =

k1−1∑
j=−1

φ((x1)+
j ) + β1

m =

k2−1∑
j=−1

φ((x2)+
j ) + β2

m, where φ((x1)+
−1) =

φ((x2)+
−1) = 0. As βim ∈ D((xi)

+
ki

) ∩ [0, T ] is not an impulsive point of xi for each
m = 1, 2, . . ., then it follows by Lemma 3.1 that

ρX(π̃(x1
nj
, tm), π̃(x2

nj
, tm))

j→+∞−→ ρX(π̃(x1, tm), π̃(x2, tm)) = ρX(π((x1)+
k1
, β1

m), π((x2)+
k2
, β2

m)).

Thus lim
j→+∞

V (x1
nj
, x2

nj
) ≥ ρX(π((x1)+

k1
, β1

m), π((x2)+
k2
, β2

m)), that is,

ρX(π((x1)+
`1
, ν1), π((x2)+

`2
, ν2)) ≥ ρX(π((x1)+

k1
, β1

m), π((x2)+
k2
, β2

m))

for each m = 1, 2, . . .. When m→ +∞ we obtain,

ρX(π((x1)+
`1
, ν1), π((x2)+

`2
, ν2)) ≥ ρX(π((x1)+

k1
, τ1), π((x2)+

k2
, τ2)) = V (x1, x2).

But V (x1, x2) ≥ ρX(π((x1)+
`1
, ν1), π((x2)+

`2
, ν2). Then,

V (x1, x2) = ρX(π((x1)+
`1
, ν1), π((x2)+

`2
, ν2).

Hence, V (x1
nlj
, x2

nlj
)
j→+∞−→ V (x1, x2) for all l = 1, 2, . . . , r, and consequently

V (x1
n, x

2
n)

n→+∞−→ V (x1, x2).

Now, suppose that x1 = x2 = x. Note that V (x, x) = 0. If {(x1
n, x

2
n)}n≥1 ⊂ X⊗X is a

sequence such that xin
n→+∞−→ x (i = 1, 2), we need to note that

V (x1
n, x

2
n) = ρX(π((x1

n)+
`1n
, τ 1
n), π((x2

n)+
`2n
, τ 2
n))

with `1
n = `2

n and τ 1
n = τ 2

n, n = 1, 2, . . .. It shows that V (x1
n, x

2
n)

n→+∞−→ 0 = V (x, x).
Therefore, V is ⊗−continuous on (X \MX)⊗(X \MX).
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E-mail: manzulji@gmail.com

33


