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Universidade Federal de São Carlos (alexcrezende@dm.ufscar.br)

Dana Schlomiuk
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Abstract

In this article we study the whole class QSE of non-degenerate planar quadratic differential

systems possessing at least one invariant ellipse. We classify this family of systems according

to their geometric properties encoded in the configurations of invariant ellipses and invariant

straight lines which these systems could possess. The classification, which is taken modulo the

action of the group of real affine transformations and time rescaling, is given in terms of algebraic

geometric invariants and also in terms of invariant polynomials and it yields a total of 35 distinct

such configurations. This classification is also an algorithm which makes it possible to verify for

any given real quadratic differential system if it has invariant ellipses or not and to specify its

configuration of invariant ellipses and straight lines.

Key-words: quadratic differential systems, configuration, invariant ellipses and lines, affine in-

variant polynomials, group action
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1 Introduction and statement of the main results

We consider planar polynomial differential systems which are systems of the form

dx/dt = p(x, y), dy/dt = q(x, y) (1)
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where p(x, y), q(x, y) are polynomials in x, y with real coefficients (p, q ∈ R[x, y]) and their associated

vector fields

X = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y
. (2)

We call degree of such a system the number max{deg(p), deg(q)}. In the case where the polynomials

p and q are coprime we say that (1) is non-degenerate.

A real quadratic differential system is a polynomial differential system of degree 2, i.e.

dx/dt = p0 + p1(ã, x, y) + p2(ã, x, y) ≡ p(ã, x, y),

dy/dt = q0 + q1(ã, x, y) + q2(ã, x, y) ≡ q(ã, x, y),
(3)

with max{deg(p), deg(q)} = 2 and

p0 = a, p1(ã, x, y) = cx+ dy, p2(ã, x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(ã, x, y) = ex+ fy, q2(ã, x, y) = lx2 + 2mxy + ny2.

Here we denote by ã = (a, b, c, d, e, f, g, h, k, l,m, n) the 12-tuple of the coefficients of system (3).

Thus a quadratic system can be identified with a point ã in R
12.

We denote the class of all quadratic differential systems with QS.

Planar polynomial differential systems occur very often in various branches of applied mathematics,

in modeling natural phenomena, for example, modeling the time evolution of interacting species in

biology and in chemical reactions and economics [15, 31], in astrophysics [7], in the equations of

continuity describing the interactions of ions, electrons and neutral species in plasma physics [21].

Polynomial systems appear also in shock waves, in neural networks, etc. Such differential systems

have also theoretical importance. Several problems on polynomial differential systems, which were

stated more than one hundred years ago, are still open: the second part of Hilbert’s 16th problem

stated by Hilbert in 1900 [11], the problem of algebraic integrability stated by Poincaré in 1891

[19, 20], the problem of the center stated by Poincaré in 1885 [18], and problems on integrability

resulting from the work of Darboux [9] published in 1878. With the exception of the problem of the

center, which was solved only for quadratic differential systems, all the other problems mentioned

above, are still unsolved even in the quadratic case.

Definition 1 (Darboux). An algebraic curve f(x, y) = 0, where f ∈ C[x, y], is an invariant curve

of the planar polynomial system (1) if and only if there exists a polynomial k(x, y) ∈ C[x, y] such

that

p(x, y)
∂f

∂x
+ q(x, y)

∂f

∂y
= k(x, y)f(x, y).

Definition 2 (Darboux). We call algebraic solution of a planar polynomial system an invariant

algebraic curve over C which is irreducible.

One of our motivations in this article comes from integrability problems related to the work of

Darboux [9].

Theorem 1 (Darboux). Suppose that a polynomial system (1) has m invariant algebraic curves

fi(x, y) = 0, i ≤ m, with fi ∈ C[x, y] and with m > n(n+ 1)/2, where n is the degree of the system.

Then there exist complex numbers λ1, . . . , λm such that fλ1

1 . . . fλm

m is a first integral of the system.
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The condition in Darboux’s theorem is only sufficient for Darboux integrability (integrability in

terms of invariant algebraic curves) and it is not also necessary. Thus the lower bound on the number

of invariant curves sufficient for Darboux integrability stated in the theorem of Darboux is larger

than necessary. Darboux’s theory has been improved by including for example the multiplicities of

the curves ([14]). Also, the number of invariant algebraic curves needed was reduced but by adding

some conditions, in particular the condition that any two of the curves be transversal. But a deeper

understanding about Darboux integrability is still lacking. Algebraic integrability, which intervenes

in the open problem stated by Poincaré in 1891 ([19] and [20]), and which means the existence of a

rational first integral for the system, is a particular case of Darboux integrability.

Theorem 2 (Jouanolou [12]). Suppose that a polynomial system (1), defined by polynomials p(x, y),

q(x, y) ∈ C[x, y], has m invariant algebraic curves fi(x, y) = 0, i ≤ m, with fi ∈ C[x, y] and with

m ≥ n(n+1)/2+2, where n is the degree of the system. Then the system has a rational first integral

h(x, y)/g(x, y) where h(x, y), g(x, y) ∈ C[x, y].

To advance knowledge on algebraic or more generally Darboux integrability it is necessary to have a

large number of examples to analyze. In the literature, scattered isolated examples were analyzed but

a more systematic approach was still needed. Schlomiuk and Vulpe initiated a systematic program

to construct such a data base for quadratic differential systems. Since the simplest case is of systems

with invariant straight lines, their first works involved only invariant lines for quadratic systems

(see [23, 25, 26, 28, 29]). In this work we study a class of quadratic systems with invariant conics,

namely the class QSE of non-degenerate (i.e. p and q are relatively prime) quadratic differential

systems having an invariant ellipse. Such systems could also have some invariant lines and in many

cases the presence of these invariant curves turns them into Darboux integrable systems. We always

assume here that systems (3) are non-degenerate because otherwise doing a time rescaling, they can

be reduced to linear or constant systems. Under this assumption all the systems in QSE have a

finite number of finite singularities.

The irreducible affine conics over the field R are the hyperbolas, ellipses and parabolas. One way

to distinguish them is to consider their points at infinity (see [1]). The term hyperbola is used for a

real irreducible affine conic which has two real points at infinity. This distinguishes it from the other

two irreducible real conics: the parabola has just one real point at infinity at which the multiplicity

of intersection of the conic with the line at infinity is two, and the ellipse which has two complex

points at infinity.

In the theory of Darboux the invariant algebraic curves are considered (and rightly so) over the

complex field C. We may extend the notion of hyperbola (parabola or ellipse) for conics over C.

A hyperbola (respectively parabola or ellipse) is an algebraic curve C in C
2, C : f(x, y) = 0 with

f ∈ C[x, y], deg(f) = 2 which is irreducible and which has two real points at infinity (respectively

one real point at infinity with intersection multiplicity two, or two complex (non-real) points at

infinity).

Remark 1. We draw attention to the fact that if we have a curve C : f(x, y) = 0 over C it

could happen that multiplying the equation by a number λ ∈ C
∗ = C\{0}, the coefficients of the

new equation become real. In this case, to the equation f(x, y) = 0 we can associate two curves:

one real {(x, y) ∈ R
2|λf(x, y) = 0} and one complex {(x, y) ∈ C

2|f(x, y) = 0}. In particular, if
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f(x, y) ∈ R[x, y] then we could talk about two curves, one in the real and the other in the complex

plane. If the coefficients of an algebraic curve C : f(x, y) = 0 cannot be made real by multiplication

with a constant, then clearly to the equation f(x, y) = 0 we can associate just one curve, namely the

complex curve {(x, y) ∈ C
2|f(x, y) = 0}.

In this paper we consider real polynomial differential equations. To each such system of equations

there corresponds the complex system with the same coefficients to which we can apply the theory of

Darboux using complex invariant algebraic curves. Some of these curves may turn out to be with real

coefficients in which case they also yield, as in the remark above, invariant algebraic curves in R
2 of

the real differential system. It is one way, but not the only way, in which the theory of Darboux yields

applications to real systems. It is by juggling both with complex and real systems and their invariant

complex or real algebraic curves that we get a full understanding of the classification problem we

consider here.

Let us suppose that a polynomial differential system has an algebraic solution f(x, y) = 0 where

f(x, y) ∈ C[x, y] is of degree n, f(x, y) = a00 + a10x + a01y + · · · + an0x
n + an−1,1x

n−1y + · · · +
a0ny

n with â = (a00, . . . , a0n) ∈ C
N where N = (n + 1)(n + 2)/2. We note that the equation

λf(x, y) = 0 where λ ∈ C
∗ = C\{0} yields the same locus of complex points in the plane as the

locus induced by f(x, y) = 0. So, a curve of degree n defined by â can be identified with a point

[â] = [a00 : a10 : · · · : a0n] in PN−1(C). We say that a sequence of curves fi(x, y) = 0 of degree n

converges to a curve f(x, y) = 0 if and only if the sequence of points [ai] = [ai00 : ai10 : · · · : ai0n]
converges to [â] = [a00 : a10 : · · · : a0n] in the topology of PN−1(C).

On the class QS acts the group of real affine transformations and time rescaling and because of

this, modulo this group action quadratic systems ultimately depend on five parameters. In particular,

restricting this group action on QSE, modulo this action the QSE is a union of 1-dimensional, 2-

dimensional and 3-dimensional families of systems as it can be seen from the normal forms obtained

in [16] for this family.

We observe that if we rescale the time t′ = λt by a positive constant λ the geometry of the systems

(1) does not change. So, for our purposes we can identify a system (1) of degree n with a point

[a00, a10, . . . , a0n, b00, . . . , b0n] in S
N−1(R), with N = (n+ 1)(n+ 2).

We compactify the space of all the polynomial differential systems of degree n on S
N−1 with

N = (n+ 1)(n+ 2) by multiplying the coefficients of each systems with 1/(
∑

(a2ij + b2ij))
1/2.

Definition 3. (1) We say that an invariant curve L : f(x, y) = 0, f ∈ C[x, y], for a polynomial

system (S) of degree n has multiplicity m if there exists a sequence of real polynomial systems (Sk)

of degree n converging to (S) in the topology of SN−1, N = (n+1)(n+2), such that each (Sk) has m

distinct invariant curves L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm,k(x, y) = 0 over C, deg(f) = deg(fi,k) =

r, converging to L as k → ∞, in the topology of PR−1(C), with R = (r + 1)(r + 2)/2 and this does

not occur for m+ 1.

(2) We say that the line at infinity L∞ : Z = 0 of a polynomial system (S) of degree n has

multiplicity m if there exists a sequence of real polynomial systems (Sk) of degree n converging to

(S) in the topology of SN−1, N = (n + 1)(n + 2), such that each (Sk) has m − 1 distinct invariant

lines L1,k : f1,k(x, y) = 0, . . . ,Lm−1,k : fm−1,k(x, y) = 0 over C, converging to the line at infinity L∞

as k → ∞, in the topology of P2(C) and this does not occur for m.
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Remark 2. (a) In order to describe the various kinds of multiplicities for infinite singularities we

use the concepts and notations introduced in [23]. Thus we denote by “(a, b)” the maximum

number a (respectively b) of infinite (respectively finite) singularities which can be obtained by

perturbation of a multiple infinite singularity.

(b) In Diagram 3 we draw the multiple curves with bold lines and we place a number without

parentheses next to the curve which corresponds to its multiplicity (see for example Config. E.24).

However, there exist two configurations in which we draw the invariant ellipse with thicker line

(without a number next to it) in order to indicate that it is a limit cycle (see Config. E.5 and

Config. E.9).

An important ingredient in this work is the notion of configuration of algebraic solutions of a

polynomial differential system. This notion appeared for the first time in [23].

Definition 4. Consider a planar polynomial system which has a finite number of algebraic solutions

and a finite number of singularities, finite or infinite. By configuration of algebraic solutions of this

system we mean the set of algebraic solutions over C of the system, each one of these curves endowed

with its own multiplicity and together with all the real singularities of this system located on these

curves, each one of these singularities endowed with its own multiplicity.

We may have two distinct systems which may be non-equivalent modulo the action of the group

but which may have “the same configuration” of invariant ellipses and straight lines. We need to say

when two configurations are “the same” or equivalent.

Definition 5. Suppose we have two systems (S1) and (S2) in QSE with a finite number of sin-

gularities, finite or infinite, a finite set of invariant ellipses Ei : ei(x, y) = 0, i = 1, . . . , k, of (S1)

(respectively E ′
i : e′i(x, y) = 0, i = 1, . . . , k, of (S2)) and a finite set (which could also be empty)

of invariant straight lines Lj : fj(x, y) = 0, j = 1, 2, . . . , k′, of (S1) (respectively L′
j : f ′j(x, y) = 0,

j = 1, 2, . . . , k′, of (S2)). We say that the two configurations C1 and C2 of ellipses and lines of these

systems are equivalent if there is a one-to-one correspondence φe between the ellipses of C1 and C2

and a one-to-one correspondence φl between the lines of C1 and C2 such that:

(i) the correspondences conserve the multiplicities of the ellipses and lines and also send a real

invariant curve to a real invariant curve and a complex invariant curve to a complex invariant curve;

(ii) for each ellipse E : e(x, y) = 0 of C1 (respectively each line L : f(x, y) = 0) we have a one-to-

one correspondence between the real singularities on E (respectively on L) and the real singularities

on φe(E) (respectively φl(L)) conserving their multiplicities and their location;

(iii) furthermore, consider the total curves F :
∏
Ei(X,Y,X)

∏
Fj(X,Y, Z)Z = 0 (respectively

F ′ :
∏
E′

i(X,Y,X)
∏
F ′
j(X,Y, Z)Z = 0 where Ei(X,Y,X) = 0 and Fj(X,Y,X) = 0 (respectively

E′
i(X,Y,X) = 0 and F ′

j(X,Y,X) = 0) are the projective completions of Ei and Lj (respectively E ′
i and

L′
j). Then, there is a correspondence ψ between the singularities of the curves F and F ′ conserving

their multiplicities as singularities of the total curves.

In the family QSE we also have cases where we have an infinite number of ellipses. Thus, according

to the theorem of Jouanolou (Theorem 2), we have a rational first integral. In this case the multiplicity

of an ellipse in the family is either considered to be undefined or we may say that this multiplicity
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is infinite. Such situations occur either when we have (i) a finite number of singularities, finite or

infinite, or (ii) an infinite number of singularities which could only be at infinity (recall that the

systems in QSE are non-degenerate). In both cases however we show that we have a finite number of

invariant affine straight lines with finite multiplicities. In fact it was proved in [27] that all quadratic

systems which have the line at infinity filled up with singularities have invariant affine straight lines

of total multiplicity three. Furthermore, the multiplicities of singularities of the systems are finite in

the case (i) and this is also true in the case (ii) if we only take into consideration the affine lines.

We therefore can talk about the configuration of invariant affine lines associated to the system. Two

such configurations of invariant affine lines C1L and C2L associated to systems (S1) and (S2) are

said to be equivalent if and only if there is a one-to-one correspondence φl between the lines of C1L

and C2L such that:

(i) the correspondence conserves the multiplicities of lines and also sends a real invariant line to

a real invariant line and a complex invariant line to a complex invariant line;

(ii) for each line L : f(x, y) = 0 we have a one-to-one correspondence between the real singularities

on L and the real singularities on φl(L) conserving their multiplicities and their order on the

lines.

We use this to extend our previous definition further above to cover these cases.

Definition 6. Suppose we have two systems (S1) and (S2) in QSE, each one with a finite number

of finite singularities and an infinite number of invariant ellipses. Suppose we have a non-empty

finite set of invariant affine straight lines Lj : fj(x, y) = 0, j = 1, 2, . . . , k, of (S1) (respectively

L′
j : f ′j(x, y) = 0, j = 1, 2, . . . , k, of (S2)). We now consider only the two configurations C1L and

C2L of invariant affine lines of (S1) and (S2) associated to the systems, respectively. We say that

the two configurations C1L and C2L are equivalent with respect to the ellipses of the systems if

and only if (i) they are equivalent as configurations of invariant lines and in addition the following

property (ii) is satisfied: we take any ellipse E : e(x, y) = 0 of (S1) and any ellipse E ′ : e′(x, y) =

0 of (S2). Then, we must have a one-to-one correspondence between the real singularities of the

system (S1) located on E and of real singularities of the system (S2) located on E ′, conserving their

multiplicities and their location. Furthermore, consider the curves F :
∏
e(x, y)

∏
fj(x, y) = 0 and

F ′ :
∏
e′(x, y)

∏
f ′j(x, y) = 0. Then we have a one-to-one correspondence between the singularities of

the curve F with those of the curve F ′ conserving their multiplicities as singularities of these curves.

It can be easily shown that the definition above is independent of the choice of the two ellipses

E : e(x, y) = 0 of (S1) and E ′ : e′(x, y) = 0 of (S2).

In this work we are interested in systems possessing an invariant ellipse. The conics f(x, y) = 0

with f(x, y) ∈ R[x, y] are classified via the group action of real affine transformation. The conics for

which f(x, y) is an irreducible polynomial over C can be brought by a real affine transformation to

one of the following four forms: 1) x2 + y2 − 1 = 0 (ellipses); 2) x2 − y2 − 1 = 0 (hyperbolas); 3)

y − x2 = 0 (parabolas); 4) x2 + y2 + 1 = 0, these are empty in R
2 with points only in C

2. Some

authors call these conics complex ellipses (see [6], for instance). These complex ellipses will play a

helpful role in our classification problem.
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Definition 7. By an ellipse we will mean a conic f(x, y) = 0 with real coefficients which can be

brought by a real affine transformation to an equation x2 + y2 + a = 0 with a = −1 (a real ellipse)

or a = 1 (a complex ellipse).

Remark 3. In the family QSE we can have cases of systems which possess simultaneously an

infinite number of real ellipses as well as an infinite number of complex ellipses. For such sys-

tems we present the respective configurations containing only real ellipses (besides, of course, the

corresponding invariant lines, if there are any).

In [16] the authors provide necessary and sufficient affine invariant conditions for a non-degenerate

quadratic differential system to have at least one invariant ellipse and these conditions are expressed

in terms of the coefficients of the systems. In this paper we denote by QSE(η<0) the family of

non-degenerate quadratic systems in QSE possessing two complex singularities at infinity and by

QSE(C2=0) the systems in QSE possessing the line at infinity filled up with singularities. We classify

these families of systems, modulo the action of the group of real affine transformations and time

rescaling, according to their geometric properties encoded in the configurations of invariant ellipses

and/or invariant straight lines which these systems possess.

As we want this classification to be intrinsic, independent of the normal form given to the systems,

we use here geometric invariants and invariant polynomials for the classification. For example, it

is clear that the configuration of algebraic solutions of a system in QSE is an affine invariant.

The classification is done according to the configurations of invariant ellipses and straight lines

encountered in systems belonging to QSE. We put in the same equivalence class systems which

have equivalent configurations of invariant ellipses and lines (in the sense of Definitions 5 and 6).

In particular the notion of multiplicity in Definition 3 is invariant under the group action, i.e. if a

quadratic system S has an invariant curve L = 0 of multiplicity m, then each system S′ in the orbit

of S under the group action has a corresponding invariant line L′ = 0 of the same multiplicity m.

To distinguish configurations of algebraic solutions we need some geometric invariants, and we also

use invariant polynomials both of which are introduced in our Section 2.

Main Theorem. Consider the class QSE of all non-degenerate quadratic differential systems (3)

possessing an invariant ellipse.

(A) This family is classified according to the configurations of invariant ellipses and of invariant

straight lines of the systems, yielding 35 distinct such configurations, 30 of which belong to the

class QSE(η<0) and 5 to QSE(C2=0). This geometric classification is described in Theorems 5.

(B) Using invariant polynomials, we obtain the bifurcation diagram in the space R
12 of the coeffi-

cients of systems in QS according to their configurations of invariant ellipses and invariant

straight lines (this diagram is presented in part (B) of Theorem 5). Moreover, this diagram

gives an algorithm to compute the configuration of a system with an invariant ellipse for any

quadratic differential system, presented in any normal form.

This paper is organized as follows: In Section 2 we define all the geometric and algebraic invariants

used in the paper and we introduce the basic auxiliary results we need for the proof of our theo-

rems. In Section 3 we consider the class QSE(η<0) (respectively QSE(C2=0)) of all non-degenerate
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quadratic differential systems (3) possessing exactly one real singularity at infinity (respectively all

non-degenerate quadratic differential systems (3) possessing an invariant ellipse and the line at infin-

ity filled up with singularities) and we classify this family according to the geometric configurations

of invariant ellipses and invariant straight lines which they possess. We also give their bifurcation

diagram in the 12-dimensional space R12 of the coefficients of quadratic systems, in terms of invariant

polynomials. In section 4 we give some concluding comments, stressing the fact that the bifurcation

diagrams in R
12 give us an algorithm to compute the configuration of a system with an invariant

ellipse for any system presented in any normal form.

2 Basic concepts and auxiliary results

In this section we define all the geometric invariants we use in the Main Theorem and we state some

auxiliary results. A quadratic system possessing an invariant ellipse could also possesses invariant

lines. We classify the systems possessing an invariant ellipse in terms of their configurations of

invariant ellipses and invariant lines. Each one of these invariant curves has a multiplicity in the

sense of Definition 3 (see also [8]). We encode this picture in the multiplicity divisor of invariant

ellipses and lines. We first recall the algebraic-geometric definition of an r-cycle on an irreducible

algebraic variety of dimension n.

Definition 8. Let V be an irreducible algebraic variety of dimension n over a field K. A cycle of

dimension r or r-cycle on V is a formal sum ΣWnWW , where W is a subvariety of V of dimension

r which is not contained in the singular locus of V , nW ∈ Z, and only a finite number of nW ’s are

non-zero. We call degree of an r-cycle the sum ΣnW . An (n−1)-cycle is called a divisor. We denote

by Max(C) the maximum value of the coefficients nW in C. For every m ≤ Max(C) let s(m) be

the number of the coefficients nW in C which are equal to m. We call type of the cycle C the set of

ordered couples (s(m),m), where 1 ≤ m ≤Max(C).

Now we define the geometrical invariants needed for distinguishing the configurations given by the

Main Theorem.

Definition 9. We denote the number of invariant ellipses by Nε, which assumes the value 1 if the

systems possess only one invariant ellipse or ∞ if they possess a family of invariant ellipses (real or

complex ones).

Definition 10. 1. Suppose that a real quadratic system has a finite number of invariant ellipses

Ei : fi(x, y) = 0 and a finite number of invariant affine lines Lj. We denote the line at infinity

L∞ : Z = 0. Let us assume that on the line at infinity we have a finite number of singularities.

The divisor of invariant ellipses and invariant lines on the complex projective plane of the

system is the following:

ICD = n1E1 + · · ·+ nkEk +m1L1 + · · ·+mkLk +m∞L∞,

where nj (respectively mi) is the multiplicity of the ellipse Ej (respectively of the line Li),

and m∞ is the multiplicity of L∞. We also mark the complex (non-real) invariant ellipses

(respectively lines) denoting them by EC
i (respectively LC

i ). We denote by ILD the invariant

lines divisor, i.e.

ILD = m∞L∞ +m1L1 + · · ·+mkLk.
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2. The zero-cycle on the real projective plane, of real singularities of a system (3) located on the

configuration of invariant lines and invariant ellipses, is given by:

MS0C = l1U1 + · · ·+ lkUk +m1s1 + · · ·+mnsn,

where Ui (respectively sj) are all the real infinite (respectively finite) such singularities of the

system and li (respectively mj) are their corresponding multiplicities.

The zero-cycle on the real affine plane, of real singularities of a quadratic system located on

the configuration of invariant lines and invariant ellipses, is given by:

MSAf
0C = m1s1 + · · ·+mnsn,

where sj are all the real finite such singularities of the system and mj are their corresponding

multiplicities.

In case we have a real finite singularity located on invariant curves we denote it by
j
sr, where

j ∈ {e, l, el, ll, . . .}. Here e (respectively l, el, ll, . . .) means that the singular point sr is located on an

ellipse (respectively located on a line, on the intersection of an ellipse and a line, on the intersection

of two lines, etc.).

A few more definitions and results which play an important role in the proof of the part (B) of

the Main Theorem are needed. We do not prove these results here but we indicate where they can

be found.

Consider the differential operator L = x · L2 − y · L1 constructed in [4] and acting on the ring

R[ã, x, y], where

L1 =2a00
∂

∂a10
+ a10

∂

∂a20
+

1

2
a01

∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1

2
b01

∂

∂b11
,

L2 =2a00
∂

∂a01
+ a01

∂

∂a02
+

1

2
a10

∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1

2
b10

∂

∂b11
.

Using this operator and the affine invariant µ0 = Resx
(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct the

following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, . . . , 4,

where L(i)(µ0) = L(L(i−1)(µ0)) and L(0)(µ0) = µ0.

These polynomials are in fact comitants of systems (3), invariant with respect to the groupGL(2,R)

(see [4]). Their geometrical meaning is revealed in the next lemma.

Lemma 1 ([3, 4]). Assume that a quadratic system (S) with coefficients ã belongs to the family (3).

Then:

(i) Let λ be an integer such that λ ≤ 4. The total multiplicity of all finite singularities of this

system equals 4 − λ if and only if for every i ∈ {0, 1, . . . , λ − 1} we have µi(ã, x, y) = 0 in the ring

R[x, y] and µλ(ã, x, y) 6= 0. In this case, the factorization µλ(ã, x, y) =
∏λ

i=1(uix− viy) 6= 0 over C

indicates the coordinates [vi : ui : 0] of points at infinity which coalesced with finite singularities of

the system (S). Moreover, the number of distinct factors in this factorization is less than or equal to

three (the maximum number of infinite singularities of a quadratic system in the projective plane)
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and the multiplicity of each one of the factors uix−viy gives us the number of the finite singularities

of the system (S) which have coalesced with the infinite singularity [vi : ui : 0].

(ii) System (S) is degenerate (i.e. gcd(P,Q) 6= const) if and only if µi(ã, x, y) = 0 in R[x, y] for

every i = 0, 1, 2, 3, 4.

The following zero-cycle on the complex plane was introduced in [13] based on previous work in

[22].

Definition 11. For a polynomial system (S) we define DC2(S) =
∑

s∈C2 nss where ns is the inter-

section multiplicity at s of the curves p(x, y) = 0 and q(x, y) = 0, with p and q being the polynomials

defining the equations (1).

According to [32] (see also [2]) we have the following proposition.

Proposition 1. The form of the zero-cycle DC2(S) for non-degenerate quadratic systems (3) is

determined by the corresponding conditions indicated in Table 1, where we write p + q + rc + sc if

two of the finite points, i.e. rc, sc, are complex but not real, and

D =
[
3
(
(µ3, µ3)

(2), µ2
)(2) −

(
6µ0µ4 − 3µ1µ3 + µ22, µ4)

(4)
]
/48,

P = 12µ0µ4 − 3µ1µ3 + µ22,

R = 3µ21 − 8µ0µ2,

S = R2 − 16µ20P,

T = 18µ20(3µ
2
3 − 8µ2µ4) + 2µ0(2µ

3
2 − 9µ1µ2µ3 + 27µ21µ4)−PR,

U = µ23 − 4µ2µ4,

V = µ4.

(4)

Table 1: Number and multiplicity of the finite singularities of QS

No.
Zero–cycle

DC2(S)

Invariant

criteria
No.

Zero–cycle

DC2(S)

Invariant

criteria

1 p+ q + r + s
µ0 6= 0,D < 0,

R > 0,S > 0
10 p+ q + r µ0 = 0,D < 0,R 6= 0

2 p+ q + rc + sc µ0 6= 0,D > 0 11 p+ qc + rc µ0 = 0,D > 0,R 6= 0

3 p c + qc + rc + sc
µ0 6= 0,D < 0,R ≤ 0

12 2p+ q µ0 = D = 0,PR 6= 0
µ0 6= 0,D < 0,S ≤ 0

4 2p+ q + r µ0 6= 0,D = 0,T < 0 13 3p µ0 = D = P = 0,R 6= 0

5 2p+ qc + rc µ0 6= 0,D = 0,T > 0 14 p+ q
µ0 = R = 0,P 6= 0,

U > 0

6 2p+ 2q
µ0 6= 0,D = T = 0,

PR > 0
15 p c + qc

µ0 = R = 0,P 6= 0,
U < 0

7 2p c + 2qc
µ0 6= 0,D = T = 0,

PR < 0
16 2p

µ0 = R = 0,P 6= 0,
U = 0

8 3p+ q
µ0 6= 0,D = T = 0,

P = 0,R 6= 0
17 p

µ0 = R = P = 0,
U 6= 0

9 4p
µ0 6= 0,D = T = 0,

P = R = 0
18 0

µ0 = R = P = 0,
U = 0,V 6= 0

10



The next result, stated in [16], gives us for non-degenerate quadratic systems (3) the necessary and

sufficient conditions for the existence of at least one invariant ellipse. The invariant polynomials which

appear in the statement of the next theorem and in the corresponding diagrams are constructed in

[16] and we present them further below.

Theorem 3 ([16]). Consider a non-degenerate quadratic system.

(A) The conditions γ̂1 = γ̂2 = 0 and either η < 0 or C2 = 0 are necessary for this system to

possess at least one invariant ellipse. Assume that the condition γ̂1 = γ̂2 = 0 is satisfied for

this system.

(A1) If η < 0 and Ñ 6= 0, then the system could possesses at most one invariant ellipse.

Moreover, the necessary and sufficient conditions for the existence of such an ellipse are

given in Diagram 1.

(A2) If η < 0 and Ñ = 0, then the system either has no invariant ellipse or it has an infinite

family of invariant ellipses. Moreover, the necessary and sufficient conditions for the

existence of a family of invariant ellipses are given in Diagram 1.

(A3) If C2 = 0, then the system either has no invariant ellipse or it has an infinite family of

invariant ellipses. Moreover, the necessary and sufficient conditions for the existence of a

family of invariant ellipses are given in Diagram 2.

(B) A non-degenerate quadratic system possesses an algebraic limit cycle, which is an ellipse, if

and only if γ̂1 = γ̂2 = 0, η < 0, T3F < 0, β̂1β̂2 6= 0, and one of the following sets of conditions

is satisfied:

(B1) θ 6= 0, β̂3 6= 0, R̂1 < 0;

(B2) θ 6= 0, β̂3 = 0, γ̂3 = 0, R̂1 < 0;

(B3) θ = 0, γ̂6 = 0, R̂5 < 0.

(C) The Diagrams 1 and 2 actually contain the global “bifurcation” diagram in the 12-dimensional

space of parameters of non-degenerate systems which possess at least one invariant ellipse. The

corresponding conditions are given in terms of 37 invariant polynomials with respect to the

group of affine transformations and time rescaling.

Remark 4. An invariant ellipse is denoted by Er if it is real and by Ec if it is complex. In the case

of an Er when the drawing is done with thicker line it means that this ellipse is a limit cycle (see

Remark 2 (b)).

The following result is included in [16] as a corollary of Theorem 3.

Corollary 1 ([16]). Consider a non-degenerate quadratic system with the coefficients corresponding

to a point ã ∈ R
12. According to [16] this system could possess an invariant ellipse only if the

conditions γ̂1(ã) = γ̂2(ã) = 0 and either η(ã) < 0 or C2(ã, x, y) = 0 in the ring R[x, y] are satisfied.
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Diagram 1: The existence of invariant ellipse: the case η < 0

So we define the following two affine invariant subsets in R
12, which must contain all quadratic

systems (1) possessing an invariant ellipse:

B ={ã ∈ R
12
∣∣ γ̂1(ã) = γ̂2(ã) = 0, η(ã) < 0};

C ={ã ∈ R
12
∣∣ γ̂1(ã) = γ̂2(ã) = 0, C2(ã, x, y) = 0}.

Next, following Diagrams 1 and 2 we split the invariant sets B and C into affine invariant subsets

12



Diagram 1: (Cont.) The existence of invariant ellipse: the case η < 0

Diagram 2: The existence of invariant ellipse: the case C2 = 0

Bi and Cj (defined below):

B =
12⋃

i=1

Bi, Bi

⋂

i 6=j

Bj = ∅; C =
2⋃

j=1

Cj , C1

⋂
C2 = ∅,

and we define the corresponding invariant subsets B̃i (i = 1, 2, . . . , 12) and C̃j (j = 1, 2):

13



(B1) : θ 6= 0, β̂1 6= 0, β̂2 6= 0, β̂3 6= 0; (B̃1) : R̂1 6= 0;

(B2) : θ 6= 0, β̂1 6= 0, β̂2 6= 0, β̂3 = 0, (B̃2) : γ̂3 = 0, R̂1 6= 0;

(B3) : θ 6= 0, β̂1 6= 0, β̂2 = 0, β̂5 6= 0, (B̃3) : R̂2 6= 0;

(B4) : θ 6= 0, β̂1 6= 0, β̂2 = 0, β̂5 = 0, (B̃4) : γ̂3 = 0, R̂2 6= 0;

(B5) : θ 6= 0, β̂1 = 0, β̂6 6= 0, β̂2 6= 0, (B̃5) : β̂
2
7 + β̂28 6= 0, γ̂4 = 0, R̂3 6= 0;

(B6) : θ 6= 0, β̂1 = 0, β̂6 6= 0, β̂2 = 0, (B̃6) : γ̂5 = 0, R̂2 6= 0;

(B7) : θ 6= 0, β̂1 = 0, β̂6 = 0, β̂2 6= 0, (B̃7) : γ̂
2
4 + γ̂28 = 0, R̂3 6= 0;

(B8) : θ 6= 0, β̂1 = 0, β̂6 = 0, β̂2 = 0, (B̃8) : γ̂
2
4 + γ̂29 = 0, R̂4 6= 0;

(B9) : θ = 0, Ñ 6= 0, β̂1 6= 0, β̂2 6= 0, (B̃9) : γ̂6 = 0, R̂5 6= 0;

(B10) : θ = 0, Ñ 6= 0, β̂1 6= 0, β̂2 = 0, (B̃10) : γ̂6 = 0, R̂6 6= 0;

(B11) : θ = 0, Ñ 6= 0, β̂1 = 0, (B̃11) : γ̂
2
6 + γ̂27 = 0, R̂3 6= 0;

(B12) : θ = 0, Ñ = 0, (B̃12) : β̂
2
1 + γ̂25 = 0;

(C1) : C2 = 0, H10 6= 0, (C̃1) : N7 = 0;

(C2) : C2 = 0, H10 = 0, (C̃2) : H12 6= 0, H2 = 0.

Then according to Diagrams 1 and 2, a quadratic system, corresponding to a point ã ∈ R
12,

possesses:

• an invariant ellipse which is unique if and only if ã ∈ Bi ∩ B̃i (i = 1, 2, . . . , 11); moreover

this ellipse is real (respectively complex) if the corresponding invariant polynomial R̂s 6= 0,

(s = 1, . . . , 6), which belongs to the set of polynomials defining B̃i (i = 1, 2, . . . , 11), is negative

(respectively positive);

• an infinite number of invariant ellipses if and only if either ã ∈ B12 ∩ B̃12 or ã ∈ Cj ∩ C̃j

(j = 1, 2). The ellipses could be real or/and complex.

Following [16] here we present the invariant polynomials which according to Diagrams 1 and 2 are

responsible for the existence and the number of invariant ellipses which systems (3) could possess.

First we single out the following five polynomials, basic ingredients in constructing invariant poly-

nomials for systems (3):

Ci(ã, x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, 2,

Di(ã, x, y) =
∂pi
∂x

+
∂qi
∂y

, i = 1, 2.
(5)

As it was shown in [30], these polynomials of degree one in the coefficients of systems (3), are

GL-comitants of these systems. Let f, g ∈ R[ã, x, y] and

(f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

The polynomial (f, g)(k) ∈ R[ã, x, y] is called the transvectant of index k of (f, g) (cf. [10, 17]).

Theorem 4 (see [33]). Any GL-comitant of systems (3) can be constructed from the elements (5)

by using the operations: +, −, ×, and by applying the differential operation (∗, ∗)(k).

Remark 5. We point out that the elements (5) generate the whole set of GL-comitants and hence

also the set of affine comitants as well as the set of T -comitants and CT -comitants (see [23] for

detailed definitions).
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We construct the following GL-comitants of the second degree with respect to the coefficients of

the initial systems:

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0, D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2, D2)
(1) .

(6)

Using these GL-comitants as well as the polynomials (5) we construct additional invariant poly-

nomials. To be able to directly calculate the values of the invariant polynomials which we need, we

define here for every canonical system a family of T -comitants expressed through Ci (i = 0, 1, 2) and

Dj (j = 1, 2):

Â = (C1, T8 − 2T9 +D2
2)

(2)/144,

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1)

+ 6D1C1D2 − T5)− 9D2
1C2

]
/36,

Ê = [D1(2T9 − T8)− 3(C1, T9)
(1) −D2(3T7 +D1D2)]/72,

F̂ = [6D2
1(D

2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0(D2, T9)

(1)

− 9D2
2T4 + 288D1Ê − 24(C2, D̂)(2) + 120(D2, D̂)(1)

− 36C1(D2, T7)
(1) + 8D1(D2, T5)

(1)]/144,

B̂ =
{
16D1(D2, T8)

(1)(3C1D1 − 2C0D2 + 4T2) + 32C0(D2, T9)
(1)(3D1D2 − 5T6 + 9T7)

+ 2(D2, T9)
(1)(27C1T4 − 18C1D

2
1 − 32D1T2 + 32(C0, T5)

(1)
)

+ 6(D2, T7)
(1)
[
8C0(T8 − 12T9)− 12C1(D1D2 + T7) +D1(26C2D1 + 32T5)

+ C2(9T4 + 96T3)
]
+ 6(D2, T6)

(1)
[
32C0T9 − C1(12T7 + 52D1D2)− 32C2D

2
1

]

+ 48D2(D2, T1)
(1)(2D2

2 − T8)− 32D1T8(D2, T2)
(1) + 9D2

2T4(T6 − 2T7)

− 16D1(C2, T8)
(1)(D2

1 + 4T3) + 12D1(C1, T8)
(2)(C1D2 − 2C2D1)

+ 6D1D2T4(T8 − 7D2
2 − 42T9) + 12D1(C1, T8)

(1)(T7 + 2D1D2) + 96D2
2[D1(C1, T6)

(1)

+D2(C0, T6)
(1)]− 16D1D2T3(2D

2
2 + 3T8)− 4D3

1D2(D
2
2 + 3T8 + 6T9)

+ 6D2
1D

2
2(7T6 + 2T7)252D1D2T4T9

}
/(2833),

K̂ = (T8 + 4T9 + 4D2
2)/72, Ĥ = (8T9 − T8 + 2D2

2)/72.

In addition to (5) and (6) these polynomials will serve as bricks in constructing affine invariant

polynomials for systems (3).

In paper [5] it was proved that the minimal polynomial basis of affine invariants up to degree 12

contains 42 elements, denoted by A1, . . . , A42. Here, using the above bricks, we present some of these

basic elements which are necessary for the construction of the invariant polynomials we need.
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A1 = Â, A2 = (C2, D̂)(3)/12, A3 =
[[
C2, D2)

(1), D2

)(1)
, D2

)(1)
/48,

A4 = (Ĥ, Ĥ)(2), A5 = (Ĥ, K̂)(2)/2, A6 = (Ê, Ĥ)(2)/2,

A7 =
[[
C2, Ê)(2), D2

)(1)
/8, A8 =

[[
D̂, Ĥ)(2), D2

)(1)
/48, A9 =

[[
D̂,D2)

(1), D2

)(1)
,

A10 =
[[
D̂, K̂)(2), D2

)(1)
/8, A11 = (F̂ , K̂)(2)/4, A12 = (F̂ , Ĥ)(2)/4,

A13 =
[[
C2, Ĥ)(1), Ĥ

)(2)
, D2

)(1)
/24, A14 = (B̂, C2)

(3)/36, A15 = (Ê, F̂ )(2)/4,

A17 =
[[
D̂, D̂)(2), D2

)(1)
, D2

)(1)
/64, A18 =

[[
D̂, F̂ )(2), D2

)(1)
/16,

A19 =
[[
D̂, D̂)(2), Ĥ

)(2)
/16, A20 =

[[
C2, D̂)(2), F̂

)(2)
/16, A21 =

[[
D̂, D̂)(2), K̂

)(2)
/16,

A22 =
1

1152

[[
C2, D̂)(1), D2

)(1)
, D2

)(1)
, D2

)(1)
D2

)(1)
, A23 =

[[
F̂ , Ĥ)(1), K̂

)(2)
/8,

A24 =
[[
C2, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/32, A31 =
[[
D̂, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/64,

A32 =
[[
D̂, D̂)(2), D2

)(1)
, Ĥ
)(1)

, D2

)(1)
/64, A33 =

[[
D̂,D2)

(1), F̂
)(1)

, D2

)(1)
, D2

)(1)
/128,

A34 =
[[
D̂, D̂)(2), D2

)(1)
, K̂
)(1)

, D2

)(1)
/64, A38 =

[[
C2, D̂)(2), D̂

)(2)
, D̂
)(1)

, Ĥ
)(2)

/64,

A39 =
[[
D̂, D̂)(2), F̂

)(1)
, Ĥ
)(2)

/64, A41 =
[[
C2, D̂)(2), D̂

)(2)
, F̂
)(1)

, D2

)(1)
/64,

A42 =
[[
D̂, F̂ )(2), F̂

)(1)
, D2

)(1)
/16.

In the above list the bracket “
[[
” means a succession of two or up to five parentheses “(” depending

on the row it appears.

Using the elements of the minimal polynomial basis given above we construct the affine invariant

polynomials:

γ̂1(ã) = A2
1(3A6 + 2A7)− 2A6(A8 +A12),

γ̂2(ã) = 9A2
1A2(23252A3 + 23689A4)− 1440A2A5(3A10 + 13A11)

− 1280A13(2A17 +A18 + 23A19 − 4A20)− 320A24(50A8 + 3A10

+ 45A11 − 18A12) + 120A1A6(6718A8 + 4033A9 + 3542A11

+ 2786A12) + 30A1A15(14980A3 − 2029A4 − 48266A5)

− 30A1A7(76626A
2
1 − 15173A8 + 11797A10 + 16427A11 − 30153A12)

+ 8A2A7(75515A6 − 32954A7) + 2A2A3(33057A8 − 98759A12)

− 60480A2
1A24 +A2A4(68605A8 − 131816A9 + 131073A10 + 129953A11)

− 2A2(141267A
2
6 − 208741A5A12 + 3200A2A13),

γ̂3(ã) = 843696A5A6A10 +A1(−27(689078A8 + 419172A9 − 2907149A10

− 2621619A11)A13 − 26(21057A3A23 + 49005A4A23 − 166774A3A24

+ 115641A4A24)),
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γ̂4(ã) = −488A3
2A4 +A2(12(4468A

2
8 + 32A2

9 − 915A2
10 + 320A9A11 − 3898A10A11

− 3331A2
11 + 2A8(78A9 + 199A10 + 2433A11)) + 2A5(25488A18

− 60259A19 − 16824A21) + 779A4A21) + 4(7380A10A31

− 24(A10 + 41A11)A33 +A8(33453A31 + 19588A32 − 468A33 − 19120A34)

+ 96A9(−A33 +A34) + 556A4A41 −A5(27773A38 + 41538A39

− 2304A41 + 5544A42)),

γ̂5(ã) = A22,

γ̂6(ã) = A1(64A3 − 541A4)A7 + 86A8A13 + 128A9A13 − 54A10A13

− 128A3A22 + 256A5A22 + 101A3A24 − 27A4A24,

γ̂7(ã) = A2

[
2A3(A8 − 11A10)− 18A2

7 − 9A4(2A9 +A10) + 22A8A22 + 26A10A22,

γ̂8(ã) = A6,

γ̂9(ã) = 12A2
1 + 12A8 + 5A10 + 17A11,

β̂1(ã) = 3A2
1 − 2A8 − 2A12,

β̂2(ã) = 2A13,

β̂3(ã) = 8A3 + 27A4 − 54A5,

β̂4(ã) = A4,

β̂5(ã) = 8A5 − 5A4,

β̂6(ã) = A3,

β̂7(ã) = 24A3 + 11A4 + 20A5,

β̂8(ã) = 41A8 + 44A9 + 32A10,

R̂1(ã) = θA6

[
5A6(A10 +A11)− 2A7(12A

2
1 +A8 +A12)− 2A1(A23 −A24)

+ 2A5(A14 +A15) +A6(9A8 + 7A12)
]
,

R̂2(ã) = β̂4β̂6(2A10 −A8 −A9),

R̂3(ã) = β̂2
[
A2(80A3 − 3A4 − 54A5)− 80A22 + 708A23 − 324A24

]
,

R̂4(ã) = T11,

R̂5(ã) = 12A2
1 + 12A8 + 5A10 + 17A11,

R̂6(ã) = 2A10 −A8 −A9,

R̂7(ã) = 4A8 − 3A9,

ν1 = −A6

(
A1A2 − 2A15

)(
3A2

1 − 2A8 − 2A12

)
,

ν2 = A1(−461A2A4 + 183A2A5 − 296A22 + 122A24

)
+A4(467A14 + 922A15

)

+ 2A6

(
553A8 + 183A9 − 100A10 − 39A11 + 144A12

)

+A7

(
5790A2

1 − 1531A8 − 140A9 + 177A10 + 947A11 − 2791A12

)
,

ν3 = A4

(
18A2

1 − 5A8 +A10 + 3A11 − 9A12

)
,
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Ñ(ã, x, y) = (D2
2 + T8 − 2T9)/9,

θ(ã) = 2A5 −A4 ≡ Discrim[Ñ , x]/(16y2),

F(ã) = A7,

T3(ã) = 8A15 − 4A1A2,

H2(ã, x, y) =
(
C1,−8Ĥ − Ñ

)(1) − 2D1Ñ ,

H9(ã) = −
[[
D̂, D̂)(2), D̂

)(1)
, D̂
)(3)

,

H10(ã) =
[[
D̂, Ñ)(2), D2

)(1)
,

H11(ã, x, y) = −32Ĥ
[(
C2, D̂)(2) + 8

(
D̂,D2

)(1)]
+ 3
[(
C1,−8Ĥ − Ñ

)(1) − 2D1Ñ
]2
,

H12(ã, x, y) =
(
D̂, D̂

)(2)
,

N7(ã) = 12D1

(
C0, D2

)(1)
+ 2D3

1 + 9D1

(
C1, C2

)(2)
+ 36

[[
C0, C1

)(1)
, D2

)(1)
.

We remark that the last six invariant polynomials H2, H9 to H12, and N7 are constructed in [27],

whereas F and T3 are defined in [32].

Next we construct the following T -comitants (for the definition of T -comitants see [24]) which are

responsible for the existence of invariant straight lines of systems (3):

B3(ã, x, y) = (C2, D̂)(1) = Jacob(C2, D̂),

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, D̂)(3),

B1(ã) = Resx

(
C2, D̂

)
/y9 = −2−93−8 (B2, B3)

(4) .

(7)

Lemma 2 (see [23]). For the existence of invariant straight lines in one (respectively 2; 3 distinct)

directions in the affine plane it is necessary that B1 = 0 (respectively B2 = 0; B3 = 0).

At the moment we only have necessary and not necessary and sufficient conditions for the existence

of an invariant straight line or for invariant lines in two or three directions.

Let us apply the translation x = x′ + x0, y = y′ + y0 to the polynomials p(ã, x, y) and q(ã, x, y).

Then we obtain p̂(â(a, x0, y0), x
′, y′) = p(ã, x′+x0, y

′+y0), q̂(â(a, x0, y0), x
′, y′) = q(ã, x′+x0, y

′+y0).

Let us construct the following polynomials

Γi(ã, x0, y0) ≡ Resx′

(
Ci

(
â(ã, x0, y0), x

′, y′
)
, C0

(
â(ã, x0, y0), x

′, y′
))
/(y′)i+1,

Γi(ã, x0, y0) ∈ R[ã, x0, y0], i = 1, 2.

We denote

Ẽi(ã, x, y) = Γi(ã, x0, y0)
∣∣
{x0=x, y0=y}

∈ R[ã, x, y], i = 1, 2.

Remark 6. We note that the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) are affine comitants of systems

(3) and they are homogeneous polynomials in the coefficients a, b, c, d, e, f, g, h, k, l,m, n and non-

homogeneous in x, y and degãẼ1 = 3, deg (x,y)Ẽ1 = 5, degãẼ2 = 4, deg (x,y)Ẽ2 = 6.
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Let Ei(ã, X, Y, Z), i = 1, 2, be the homogenization of Ẽi(ã, x, y), i.e.

E1(ã, X, Y, Z) = Z5Ẽ1(ã, X/Z, Y/Z), E2(ã, X, Y, Z) = Z6Ẽ1(ã, X/Z, Y/Z)

The geometrical meaning of these affine comitants is given by the following lemma (see [23]):

Lemma 3 (see [23]). (1) The straight line L(x, y) ≡ ux+ vy +w = 0, u, v, w ∈ C, (u, v) 6= (0, 0) is

an invariant line for a quadratic system (3) if and only if the polynomial L(x, y) is a common factor

of the polynomials Ẽ1(ã, x, y) and Ẽ2(ã, x, y) over C, i.e.

Ẽi(ã, x, y) = (ux+ vy + w)W̃i(x, y), i = 1, 2,

where W̃i(x, y) ∈ C[x, y].

(2) If L(x, y) = 0 is an invariant straight line of multiplicity λ for a quadratic system (3), then

[L(x, y)]λ | gcd(Ẽ1, Ẽ2) in C[x, y], i.e. there exist Wi(ã, x, y) ∈ C[x, y], i = 1, 2, such that

Ẽi(ã, x, y) = (ux+ vy + w)λWi((a), x, y), i = 1, 2.

(3) If the line l∞ : Z = 0 is of multiplicity λ > 1, then Zλ−1 | gcd(E1, E2).

The invariant polynomials Ñ(ã, x, y) and θ(ã), defined on page 18, are responsible for detecting

parallel invariant lines as we can see in the following lemma.

Lemma 4 (see [23]). A necessary condition for the existence of one couple (respectively two couples)

of parallel invariant straight lines of a system (3) corresponding to ã ∈ R
12 is the condition θ(ã) = 0

(respectively Ñ(ã, x, y) = 0).

Now we introduce some important GL-comitants in the study of the invariant conics. Considering

C2(ã, x, y) = yp2(ã, x, y)− xq2(ã, x, y) as a cubic binary form of x and y we calculate

η(ã) = Discrim[C2, ξ], M(ã, x, y) = Hessian[C2],

where ξ = y/x or ξ = x/y.

Lemma 5 ([29]). The number of infinite singularities (real and complex) of a quadratic system in

QS is determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M 6= 0;

(iv) 1 real if η =M = 0 and C2 6= 0;

(v) ∞ if η =M = C2 = 0.
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Moreover, for each one of these cases the quadratic systems (3) can be brought via a linear transfor-

mation to one of the following 5 canonical systems:

{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SIV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

3 Configurations of invariant ellipses for the classes QSE(η<0) and

QSE(C2=0)

Theorem 5. Consider the classes QSE(η<0) and QSE(C2=0) of all non-degenerate quadratic dif-

ferential systems (3) possessing one real and two complex singularities at infinity, and the quadratic

differential systems possessing the line at infinity filled up with singularities, respectively.

(A) These families are classified according to the configurations of invariant ellipses and of in-

variant straight lines of the systems, yielding 30 distinct such configurations for the class QSE(η<0)

and 5 for the class QSE(C2=0). This geometric classification appears in Diagrams 3 and 4. More

precisely:

(A1) For the class QSE(η<0), there exist exactly 3 configurations of systems possessing an infinite

number of ellipses. More precisely two of them contain only real ellipses and the third one

contains simultaneously an infinite number of real and an infinite number of complex ellipses.

The remaining 27 configurations possess exactly one invariant ellipse, (real for 21 of them) or

complex (for another 6).

(A2) For the class QSE(C2=0) all the 5 configurations of systems possess an infinite number of

ellipses (four of them with three simple invariant lines and one of them with a triple invariant

line). More precisely three of the configurations contain only real ellipses, one contains only

complex ones and the remaining configuration contains simultaneously an infinite number of

real and an infinite number of complex ellipses.

(B) The bifurcation diagrams for systems in QSE(η<0) and QSE(C2=0) done in the coefficient

space R
12 in terms of invariant polynomials appear in Diagrams 5 to 7. In these diagrams we have

necessary and sufficient conditions for the realization of each one of the configurations.
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Diagram 3: Configurations with one invariant ellipse

Remark 7. We note that on the expressions of the divisors ICD and ILD as well of the zero-cycles

MS0C and MSAf
0C appearing in Diagrams 3 and 4, we can read their types help in this classification

and furthermore they are affinely invariant.
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Diagram 3: (Cont.) Configurations with one invariant ellipse

Proof of part (A). We prove part (A) under the assumption that part (B) is already proved. Later

we prove part (B).
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Diagram 4: Configurations with a family of invariant ellipses

We first need to make sure that the concepts introduced above gave us a sufficient number of

invariants under the action of the affine group and time rescaling so as to be able to classify geo-

metrically the classes QSE(η<0) and QSE(C2=0) according to their configurations of their invariant

ellipses and lines.

Fixing the values of Nε and using the types of the divisors ICD in Diagram 3 (respectively ILD

in Diagram 4) we split all the corresponding configurations in 8 (respectively in 5) groups. We

observe that some groups have only one configuration. For the groups which possess more than one

configuration we use the types of zero-cycles MS0C and MSAf
0C , correspondingly. This suffices for

distinguishing all the configurations.

As a result we obtain the 35 geometric configurations displayed in Diagrams 3 and 4. This proves

statement (A) of this theorem.

Proof of part (B). According to [16] a quadratic system could have an invariant ellipse only if

γ̂1 = γ̂2 = 0 and either η < 0 or C2 = 0. We examine the cases η < 0 and C2 = 0 separately.
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Diagram 5: Bifurcation diagram in R
12 of the configurations: Case η < 0, θ 6= 0

24



Diagram 5: (Cont.) Bifurcation diagram in R
12 of the configurations: Case η < 0, θ 6= 0

3.1 The case η < 0

According to Lemma 5 a quadratic system with the condition η < 0 could be brought via an affine

transformation and time rescaling to the following canonical form:

ẋ =a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,
(8)

with C2 = x(x2 + y2), i.e. this system possesses at infinity one real and two complex infinity singu-

larities. Following Diagram 1 (see also [16]) we discuss two subcases: θ 6= 0 and θ = 0.
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Diagram 6: Bifurcation diagram in R
12 of the configurations: Case η < 0, θ = 0

Diagram 7: Bifurcation diagram in R
12 of the configurations: Case C2 = 0

3.1.1 The subcase θ 6= 0

We examine step by step each one of the possibilities presented in Corollary 1.

3.1.1.1 The possibility (B1): β̂1β̂2β̂3 6= 0. As it was proved in [16] in this case by an affine

transformation and time rescaling, systems (8) could be brought to the canonical form

ẋ = a+ dy + gx2 + (h+ 1)xy,

ẏ =
ah

g
− dx− x2 + gxy + hy2, g 6= 0,

(9)
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which possesses an invariant conic

Φ(x, y) =
a

g
+ x2 + y2 = 0. (10)

This conic is irreducible if and only if a 6= 0. For the above systems we calculate

θ = (h+ 1)
[
g2 + (h− 1)2

]
/2, β̂1 = −d2

[
g2 + (h− 1)2

][
9g2 + (3h+ 1)2

]
/16,

β̂2 = −g
[
9g2 + (3h+ 1)2

]
/2, β̂3 = (3h− 1)

[
9g2 + (3h+ 5)2

]
/2,

(11)

and therefore we conclude that for the above systems the condition θβ̂1β̂2β̂3R̂1 6= 0 is equivalent to

the condition

adg(h+ 1)(3h− 1) 6= 0. (12)

We observe that

R̂1 = 3agd2(1 + h)2
[
g2 + (h− 1)2

]4[
9g2 + (3h+ 1)2

]
/128 ⇒ sign (ag) = sign (R̂1).

3.1.1.1.1 The case R̂1 < 0. Then ag < 0 and clearly the ellipse (10) is real.

Taking into account Lemma 2 we examine if systems (9) could possess at least one invariant line.

Calculations yield

B1 = −a
2

g2
(g2 + h2)

[
g2 + (h− 1)2

]2[
a(h+ 1)2 + d2g

]
, (13)

and we consider two subcases: B1 6= 0 and B1 = 0.

1) The subcase B1 6= 0. Then by Lemma 2 systems (9) could not possess invariant lines. For these

systems we calculate µ0 = −h
[
g2 + (h+ 1)2

]
and we examine two possibilities: µ0 6= 0 and µ0 = 0.

a) The possibility µ0 6= 0. Then by Lemma 1 the systems have finite singularities of total multi-

plicity 4. We detect that two of these singularities are located on the ellipse (10), more exactly such

singularities are M1,2

(
x1,2, y1,2

)
with

x1,2 = −d(h+ 1)±√
Z1

g2 + (h+ 1)2
, y1,2 =

dg2 ∓ (h+ 1)
√
Z1

g
[
g2 + (h+ 1)2

] , Z1 = −g
[
a
[
g2 + (1 + h)2

]
+ d2g

]
. (14)

Other two singularities of systems (9) are M3,4

(
x3,4, y3,4

)
(generically located outside the ellipse)

with

x3,4 = −dg ±
√
Z2

2g
, y3,4 =

dg ±√
Z2

2h
, Z2 = g(d2g + 4ah). (15)

On the other hand for systems (9) we calculate

ν1 = −d4
[
g2 + (h− 1)2

]2[
9g2 + (3h+ 1)2

]
Z1/256. (16)

We observe that

sign (ν1) = −sign (Z1),

and this means that this invariant polynomial is responsible for what kind of singularities are M1,2:

are they real or complex, distinct or coinciding.
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a.1) The case ν1 < 0. Then Z1 > 0 and we obtain that the singularities M1,2 located on the

invariant ellipse are real. We need to determine the conditions when at least one of the singularities

M3,4 will also lie on the ellipse. For this, considering (10), we calculate

Φ(x, y)|{x=x3,4, y=y3,4} =
d2g

(
g2 + h2

)
± d

(
g2 + h2

)√
g (4ah+ d2g) + 2ah

(
g2 + h2 + h

)

2gh2

≡ Ω3,4(a, g, h).

It is clear that at least one of the singularities M3(x3, y3) or M4(x4, y4) belongs to the ellipse (10) if

and only if

Ω3Ω4 =
aZ3

g2h2
= 0, Z3 = d2g

(
g2 + h2

)
+ a

(
g2 + h2 + h

)2
.

On the other hand for systems (9) we have

ν2 = −105d
[
9g2 + (3h+ 1)2

]
Z3, (17)

and clearly by (12) the condition ν2 = 0 is equivalent to Z3 = 0. So we conclude that the following

remark is valid:

Remark 8. Assume that for systems (9) the conditions (12) and h 6= 0 (i.e. µ0 6= 0) hold. Then at

least one of the singularities M3,M4 belongs to the ellipse if and only if ν2 = 0.

Next we examine two subcases: ν2 6= 0 and ν2 = 0.

α) The subcase ν2 6= 0. In this case we have Config. E.1 since another singularity belongs to ellipse

if and only if ν2 = 0 (example: a = 1, d = −1, g = −1, h = −2).

β) The subcase ν2 = 0. In this case we have Z3 = 0, i.e. at least one of the two other singular

points will also lie on the ellipse. Moreover g2+h2+h 6= 0 otherwise we obtain a contradiction with

the conditions stated at (12). So the condition Z3 = 0 implies a = − d2g
(
g2 + h2

)

(g2 + h2 + h)2
. In this case

two singularities coalesce, namely M4 ≡ M2 and considering the coordinates of Mi, i = 1, 2, 3, 4, we

obtain three singularities

(x1, y1) =

(
− d[h+ (2 + h)(g2 + h2)]

(g2 + h2 + h)[g2 + (h+ 1)2]
,

dg
(
g2 + h2 − 1

)

(g2 + h2 + h) [g2 + (h+ 1)2]

)

and

(x2, y2) =

(
− dh

g2 + h2 + h
,

dg

g2 + h2 + h

)
, (x3, y3) =

(
− d

(
g2 + h2

)

g2 + h2 + h
,

dg
(
g2 + h2

)

h (g2 + h2 + h)

)
.

Therefore we have located on the ellipse a double singularity M2 and a simple singularity M1. On

the other hand we have

Φ(x, y)|{x=x3,y=y3} =
d2(g2 + h2)(g2 + h2 − h)

h2(g2 + h+ h2)
≡ d2(g2 + h2)Z ′

3

h2(g2 + h+ h2)
.

Thus we conclude that the singularityM3 will belong to the ellipse if and only if Z ′
3 = 0. Now taking

into consideration Proposition 1 (see Table 1), for systems (9) in this case we calculate

D = 0, T =
12d6g2 (Z ′

3)
2

− (g2 + h2 + h)4
(gy − hx− x)2(gx+ hy)2

[
gx
(
g2 + h2 + 1

)
+ hy

(
g2 + h2 − 1

)]2
,
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and due to (12) the condition T = 0 is equivalent to Z ′
3 = 0, i.e. the invariant polynomial T indicates

if the third singularity belongs to the ellipse or not. We discuss two possibilities:

β.1) The possibility T 6= 0. In this case we obtain Config. E.2 (example: a = 5/9, d = −1, g =

−1, h = −2).

β.2) The possibility T = 0. In this case we have Z ′
3 = 0, i.e. g2 + h2 = h. Substituting this

expression in the coordinates (x3, y3) we obtain that M3 coincides with M2. So we deduce that we

have one triple and one simple singularities located on the ellipse. As a result we arrive at Config. E.3

(example: a = −1, d = −1, g = 4/17, h = 1/17).

a.2) The case ν1 = 0. In this case we have Z1 = 0 (see (14)), i.e. the two singularities which

belong to the ellipse coalesce. On the other hand the two singularities which are located outside the

ellipse remains outside the ellipse because the condition Z1 = 0 implies a = − d2g

g2 + (h+ 1)2
and for

this value of the parameter a we obtain Z3 =
d2g3

g2 + (h+ 1)2
6= 0. In such a way we get Config. E.4

(example: a = 1/2, d = −1, g = −1, h = −2).

a.3) The case ν1 > 0. Then Z1 < 0, i.e. the two singularities which belong to the ellipse are

complex. We note that the condition Z1 < 0 implies Z3 6= 0, because if Z3 = 0 we found Z1 =
d2g4

(g2+h2+h)2
> 0. This leads to Config. E.5 (example: a = 1/4, d = −1, g = −1, h = −2).

We claim that in this configuration the invariant ellipse is a limit cycle drown in diagram in

boldface (see Remark 2 (b)). Indeed taking into consideration Theorem 3 (see statement (B1)) we

conclude that in the case under examination for the existence of limit cycles the following conditions

must be satisfied:

η < 0, θβ̂1β̂2β̂3 6= 0, γ̂1 = γ̂2 = 0, R̂1 < 0, T3F < 0. (18)

Clearly all the conditions are satisfied except the last one. So it remains to verify that T3F < 0 is

fulfilled, too. For systems (9) we calculate

T3F =− 1

8
d2g

[
(9g2 + (3h+ 1)2

]2 (
ag2 + ah2 + 2ah+ a+ d2g

)
,

ν1 =
1

256
d4g

[
(g2 + (h− 1)2

]2 [
(9g2 + (3h+ 1)2

]2 (
ag2 + ah2 + 2ah+ a+ d2g

)
,

and evidently the condition ν1 > 0 implies T3F < 0. This completes the proof of our claim.

b) The possibility µ0 = 0. This condition implies h = 0 and the condition (12) becomes adg 6= 0.

In this case we obtain µ1 = dg(g2 + 1)x 6= 0. According to Lemma 1 we conclude that exactly one

of the four finite singularities has gone to infinity and coalesced with the real infinity singularity. So

we obtain one real infinite singularity of multiplicity two which is of type (1, 1) (i.e. one finite and

one infinity singularities coalesced, see Remark 2).

For h = 0 considering the coordinates of M1,2

(
x1,2, y1,2

)
(see (14)) we obtain that these two

singularities remain located on the ellipse (10). On the other hand from (15) it is not so difficult to

determine that the singularity M3 has gone to infinity and a straightforward calculation gives us the

coordinates of the fourth singularity: M4

(
0,−a

d

)
.

Again we consider the value of ν1 and we examine three cases:
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b.1) The case ν1 < 0. Then we have Z1 > 0 and this implies the existence of two real distinct

singularities located on the ellipse. On the other hand considering (10) we have

Φ(x, y)|{x=x4,y=y4} =
a
(
d2 + ag

)

d2g
,

and since a 6= 0 the singularity M4 belongs to the ellipse if and only if d2 + ag = 0. Calculating

ν2 = −105dg3
(
9g2 + 1

) (
d2 + ag

)
we conclude that the singularity M4 will belong to the ellipse if

and only if ν2 = 0. So we discuss two subcases: ν2 6= 0 and ν2 = 0.

α) The subcase ν2 6= 0. Then the singularity M4 remains outside the ellipse and we arrive at

Config. E.6 (example: a = 5/8, d = −1, g = −1).

β) The subcase ν2 = 0. This implies a = −d
2

g
and we obtain that the singularity M4 coincides

with M2. As a result we arrive at Config. E.7 (example: a = −1, d = −1, g = 1).

b.2) The case ν1 = 0. In this case we have Z1 = 0, i.e. a = − d2g

g2 + 1
(see (14)) and there-

fore the two singularities which belong to the ellipse coalesce. On the other hand we calculate

ν2 = −105d3g3
(
9g2 + 1

)

g2 + 1
6= 0 and this means that M4 remains outside the ellipse. So we arrive at

Config. E.8 (example: a = 1/2, d = −1, g = −1).

b.3) The case ν1 > 0. In this case we have Z1 < 0, i.e. the two singularities which belong to the

ellipse are complex. On the other hand this fact implies that ν2 6= 0. Therefore we have Config. E.9

(example: a = 1/4, d = −1, g = −1).

We claim that in this configuration the invariant ellipse is a limit cycle, too (see Remark 2 (b)).

For this it is sufficient to show that the conditions (18) are satisfied in this particular case, when

µ0 = 0 (i.e. h = 0). Indeed, for systems (9) with h = 0 we obtain

T3F =− 1

8
d2g

(
9g2 + 1

)2 (
ag2 + a+ d2g

)
,

ν1 =
1

256
d4g

(
g2 + 1

)2 (
9g2 + 1

)2 (
ag2 + a+ d2g

)

and clearly the condition ν1 > 0 implies T3F < 0, i.e. our claim is proved.

2) The subcase B1 = 0. Considering the condition (12) we obtain that B1 = 0 (see (13)) is

equivalent to a = − d2g

(h+ 1)2
which implies the existence of the invariant line

L(x, y) = (h+ 1)x+ d = 0. (19)

On the other hand for this value of the parameter a we obtain

B2 = −648d4
[
g2 + (h− 1)2

]2 (
g2 + h2

)
x4

(h+ 1)4
,

which is nonzero due to condition (12). It follows from Lemma 2 and Lemma 4 that the conditions

B1 = 0, B2 6= 0 and θ 6= 0 implies that there exists at most one simple invariant straight line of

systems (9). On the other hand for these systems we have µ0 = −h
[
g2 + (h+ 1)2

]
and we examine

two possibilities: µ0 6= 0 and µ0 = 0.
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a) The possibility µ0 6= 0. Then the condition µ0 = −h
[
g2 + (h + 1)2

]
6= 0 gives h 6= 0 and

considering condition (12) by Lemma 1 the systems (9) have finite singularities of total multiplicity

4. Taking into account the coordinates of the singularitiesMi,j(xi,j , yi,j) (i = j = 1, 2, 3, 4) mentioned

earlier (see page 27) in this particular case these singularities have the following real coordinates

(x1, y1) =

(
− d

h+ 1
, 0

)
, (x2, y2) =

(
d
[
g2 − (h+ 1)2

]

(h+ 1) [g2 + (h+ 1)2]
,

2dg

g2 + (h+ 1)2

)
,

(x3, y3) =

(
− dh

h+ 1
,
dg

h+ 1

)
, (x4, y4) =

(
− d

h+ 1
,

dg

h(h+ 1)

)
.

(20)

We observe that due to a = − d2g

(h+ 1)2
the invariant ellipse for systems (9) becomes

Φ(x, y) = x2 + y2 − d2

(h+ 1)2
.

As it was shown earlier, the singularities M1,2

(
x1,2, y1,2

)
are located on the ellipse and the sin-

gularities M3,4

(
x3,4, y3,4

)
are generically located outside the ellipse. We also determine that the

singularities M1 and M4 are located on the invariant line. On the other hand in generic case the

singularities M2 and M3 could not belong to the line since calculations yield

L(x2, y2) =
2dg2

g2 + (h+ 1)2
, L(x3, y3) = d(1− h).

Due to the condition (12) we get L(x2, y2) 6= 0, i.e. the ellipse and the invariant line have M1 as the

unique common point at which a line is tangent to the ellipse.

Considering Remark 8 we conclude that one of the singularities M3 or M4 belongs to the ellipse if

and only if ν2 = 0. So, in what follows we discuss two cases: ν2 6= 0 and ν2 = 0.

a.1) The case ν2 6= 0. Then according to Remark 8 neither the singularity M3 nor M4 could

belong to the ellipse. On the other hand the singularity M4 is located on the invariant line whereas

the singularity M3 belongs to the invariant line if and only if L(x3, y3) = d(1 − h) = 0. Due to

d 6= 0 we obtain the condition h = 1. We observe that this condition is governed by the invariant

polynomial D because for systems (9) in the case a = − d2g

(h+ 1)2
we calculate

ν2 =
105d3g3

(
g2 + h2 − 1

) [
9g2 + (3h+ 1)2

]

(h+ 1)2
, D = −192d8g6(h− 1)2

(
g2 + h2 − 1

)2

(h+ 1)8
, (21)

and due to the condition ν2 6= 0 we obtain that the condition D = 0 is equivalent to h = 1. We

examine two subcases: D 6= 0 and D = 0.

α) The subcase D 6= 0. Then h 6= 1, i.e. the singularity M3 remains outside the invariant curves

and this leads to Config. E.10 (example: d = −1, g = 1, h = −2).

β) The subcase D = 0. In this case we have h = 1 and considering (15) we obtain that M3

coalesces with M4 which is located on the invariant line and we arrive at Config. E.11 (example:

d = 1, g = 1, h = 1).
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a.2) The case ν2 = 0. Due to (12), from (21) we obtain that the condition ν2 = 0 gives g2+h2−1 =

0. This implies D = 0, and moreover we have h 6= 1 due to g 6= 0. We observe that setting g2 = 1−h2
in the expressions of the coordinates of (x2, y2) from (20) we obtain that (x2, y2) = (x3, y3). So on the

ellipse we get a double singularity and this leads to Config. E.12 (example: d = −1, g =
√
3/2, h =

−1/2).

b) The possibility µ0 = 0. Then the condition µ0 = −h
[
g2 + (h + 1)2

]
= 0 implies h = 0 and we

obtain µ1 = dg(g2 + 1)x 6= 0. According to Lemma 1 we conclude that exactly one of the four finite

singularities has gone to infinity and coalesced with the real infinite singularity. So we obtain one

real infinite singularity of multiplicity two which is of type (1, 1) (see Remark 2). Considering the

coordinates of the finite singularities given in (20) we observe that M4 has gone to infinity along the

invariant line L = 0 and the remaining real finite singularities are

(x1, y1) = (−d, 0), (x2, y2) =

(
d
(
g2 − 1

)

g2 + 1
,

2dg

g2 + 1

)
, (x3, y3) = (0, dg). (22)

In order to determine the position of the singularity M3 we calculate

L(x3, y3) = d, Φ(x3, y3) = d2(g2 − 1).

Due to the condition (12) we obtain L(x3, y3) 6= 0, i.e. M3 could not belong to the invariant line.

On the other hand Φ(x3, y3) = 0 if and only if g2 − 1 = 0. We observe that systems (9) in the case

under examination (i.e. h = 0 and a = −d2g) become

ẋ = −d2g + dy + gx2 + xy, ẏ = −dx+ gxy − x2. (23)

We determine that the condition g2 − 1 = 0 is equivalent to ν2 = 0 because for the above systems

we have

ν2 = 105d3g3
(
9g2 + 1

) (
g2 − 1

)
.

So we discuss two cases: ν2 6= 0 and ν2 = 0.

b.1) The case ν2 6= 0. In this case the singularity M3 remains outside the invariant curves and this

leads to Config. E.13 (example: d = −1, g = −2, h = 0).

b.2) The case ν2 = 0. This implies g = ±1. However we can consider g = 1 due to the rescaling

(x, y, t) 7→ (x,−y,−t) in systems (23) which changes the sign of the parameter g. In this case

considering (22) we obtain (x3, y3) = (x2, y2) and as a result we get Config. E.14 (example: d =

−1, g = 1, h = 0).

3.1.1.1.2 The case R̂1 > 0. This condition implies ag > 0 and clearly the ellipse (10) is

complex. On the other hand considering (13) we observe that for systems (9) the conditions (12)

and ag > 0 imply B1 6= 0. Then by Lemma 2 systems (9) could not possess invariant lines.

For these systems we calculate µ0 = −h
[
g2 + (h+ 1)2

]
and we examine two subcases: µ0 6= 0 and

µ0 = 0.

1) The subcase µ0 6= 0. Then by Lemma 1, systems (9) have finite singularities of total multiplicity

4 and their coordinates are given in (14). We observe that the condition ag > 0 implies Z1 < 0, i.e.
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the singularities M1,2

(
x1,2, y1,2

)
are complex and as it was proved earlier they belong to the complex

ellipse.

On the other hand the condition ag > 0 implies Z3 = d2g
(
g2 + h2

)
+ a

(
g2 + h2 + h

)2 6= 0. This

fact implies that the singularities M3,4

(
x3,4, y3,4

)
remain outside the complex ellipse. Therefore the

unique possible configuration is Config. E.15 (example: a = −1, d = −1, g = −1, h = −2).

2) The subcase µ0 = 0. This condition implies h = 0. In this case we obtain µ1 = dg(g2 + 1)x 6= 0

and by Lemma 1 only one finite singularity coalesced with the real infinite singularity which has

multiplicity (1, 1) (see Remark 2). Therefore we arrive at Config. E.16 (example: a = −1, d = −1, g =

−1).

Thus, we have all the configurations indicated in Diagram 5 in the block corresponding to the

possibility (B1).

3.1.1.2 The possibility (B2) : β̂1β̂2 6= 0, β̂3 = 0. According to [16] in this case by an affine

transformation and time rescaling systems (8) could be brought to the canonical form (9) with

h = 1/3, i.e. we get a subfamily of (9) which was investigated in the previous subsection. As it was

shown, for h 6= 1/3 systems (9) possess 16 configurations Config. E.1 - Config. E.16. Moreover it

is necessary to highlight that the value h = 1/3 is not a bifurcation value for distinguishing these

configurations.

It remains to find out which conditions defining each one of the configurations are compatible in

this case. We claim that the configurations (i) Config. E.6 - Config. E.9, Config. E.13, Config. E.14,

Config. E.16 and (ii) Config. E.11, could not be realizable for systems (9) with h = 1/3.

Indeed, for each one of the configuration from the group (i) condition µ0 = 0 is necessary. However,

for h = 1/3 we have µ0 = −
(
9g2 + 16

)
/27 6= 0, i.e. the configurations from the group (i) could not

be realized for h = 1/3.

Secondly, as it was shown in the previous subsection, a system (9) possesses the configuration

Config. E.11 if and only if the following conditions hold:

B1 = 0, µ0 6= 0, ν2 6= 0, D = 0.

However, in the case h = 1/3 the condition B1 = 0 yields a = −
(
9d2g

)
/16 and then we calculate

ν2 =
105d3g3

(
9g2 − 8

) (
9g2 + 4

)

16
, D = −−27d8g6

(
9g2 − 8

)2

256
.

Evidently, the condition ν2 6= 0 implies D 6= 0, and this completes the proof of our claim.

Therefore in this case (i.e. for h = 1/3) we have Config. E.1 (example: a = 1, d = −1, g = −1),

Config. E.2 (example: a = 90/169, d = −1, g = −1), Config. E.3 (example: a =
√
2/4, d = −1, g =

−
√
2/3), Config. E.4 (example: a = 9/25, d = −1, g = −1), Config. E.5 (example: a = 1/4, d =

−1, g = −1), Config. E.10 (example: a = −1, d = −1, g = 1/2), Config. E.12 (example: a = −1, d =

−1, g = 2
√
2/3) and Config. E.15 (example: a = −1, d = −1, g = −1).

Next we discuss the existence of limit cycle for this subfamily of systems (9) defined by h = 1/3.

We observe that due to β̂3 = 0 the conditions (18) are not satisfied. On the other hand according to

Theorem 3, statement (B2) we have the following necessary and sufficient conditions for existence
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of limit cycles:

η < 0, θβ̂1β̂2 6= 0, β̂3 = γ̂1 = γ̂2 = γ̂3 = 0, R̂1 < 0, T3F < 0. (24)

Since for the configuration Config. E.5 the conditions R̂1 < 0 and ν1 > 0 hold, considering Remark

1 we deduce that so far for systems (9) with h = 1/3 all the above conditions with the exeption of

T3F < 0 are fulfilled. We now calculate

T3F =− 1

72
d2g

(
9g2 + 4

)2 (
9ag2 + 16a+ 9d2g

)
,

ν1 =
d4g

(
9g2 + 4

)4 (
9ag2 + 16a+ 9d2g

)

186624
,

and evidently the condition ν1 > 0 implies T3F < 0. So the conditions (24) are satisfied and the

ellipse from Config. E.5 is a limit cycle.

It is not too difficult to determine that for the remaining configurations (i.e. excluding the con-

figurations of the groups (i) and (ii) defined above) all the corresponding conditions are compatible

and this is confirmed by the examples presented above.

Thus, for all the realizable configurations for systems (9) with h = 1/3 we obtain the conditions

presented in Diagram 5 in the block corresponding to the possibility (B2).

3.1.1.3 The possibility (B3): β̂1 6= 0, β̂2 = 0, β̂5 6= 0. As it was proved in [16], in this case by

an affine transformation and time rescaling systems (8) could be brought to the canonical form

ẋ = dy + (h+ 1)xy, ẏ = b− dx− x2 + hy2, (25)

which possesses an invariant conic

Φ(x, y) =
b

h
+ x2 + y2 = 0, h 6= 0. (26)

This conic is irreducible if and only if b 6= 0. For the above systems we calculate

θ = (h+ 1)(h− 1)2/2, β̂1 = −d2(h− 1)2(3h+ 1)2/16,

β̂5 = −2(h+ 1)(3h− 1), R̂2 = bh(h+ 1)2(h− 1)2(3h+ 1)4/8,
(27)

and therefore we conclude that for the above systems the condition θβ̂1β̂5R̂2 6= 0 is equivalent to

the condition

bdh(h− 1)(h+ 1)(3h− 1)(3h+ 1) 6= 0. (28)

On the other hand we have

R̂2 = bh(h+ 1)2(h− 1)2(3h+ 1)4/8 ⇒ sign (bh) = sign (R̂2).

3.1.1.3.1 The case R̂2 < 0. Then bh < 0 and clearly the ellipse (26) is real.

We observe that systems (25) possess the invariant line

L(x, y) = (h+ 1)x+ d = 0. (29)
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Then by Lemma 2 the condition B1 = 0 is satisfied. Moreover, since θ 6= 0, by Lemmas 2 and 4

systems (25) could possess another invariant straight line only if B2 = 0. We calculate

B2 = −648b2(h− 1)4x4, (30)

and due to condition (28) we have B2 6= 0. So systems (25) possess exactly one invariant straight

line L(x, y) = 0.

For these systems we calculate µ0 = −h(h + 1)2 and due to condition (28) we have µ0 6= 0.

Considering Lemma 1 the systems (25) have finite singularities of total multiplicity 4. We observe

that two of these singularities are located on the ellipse (26) as well as on the invariant line (29).

More precisely these are the singularities M1,2

(
x1,2, y1,2

)
with

x1,2 = − d

h+ 1
, y1,2 = ±

√
Z ′
1

h+ 1
, Z ′

1 = −
[
d2 +

b

h
(h+ 1)2

]
. (31)

Other two singularities of systems (25) areM3,4

(
x3,4, y3,4

)
(generically located outside both invariant

curves) with

x3,4 =
−d±

√
Z ′
2

2
, y3,4 = 0, Z ′

2 = 4b+ d2. (32)

On the other hand for systems (25) we calculate

ν3 = −2h2(h+ 1)2(3h+ 1)2Z ′
1. (33)

We observe that

sign (ν3) = −sign (Z ′
1),

and this means that the invariant polynomial ν3 determines if the singularities M1,2 are either real

or complex, distinct or coinciding.

1) The subcase ν3 < 0. Then Z ′
1 > 0 and the singularities M1,2 are real. We need to determine the

conditions when at least one of the singularities M3,4 located outside the invariant curves coincides

with one of their points. In this sense considering (26) and (29) we calculate

Φ(x, y)|{x=x3,4, y=y3,4} =
2bh+ 2b+ d2h∓ dh

√
Z ′
2

2h
≡ Ω′

3,4(b, d, h),

L(x, y)|{x=x3,4, y=y3,4} =
d(1− h)± (h+ 1)

√
Z ′
2

2
≡ L′

3,4(b, d, h).

It is clear that at least one of the singularities M3(x3, y3) or M4(x4, y4) belongs to the ellipse (26)

or to the line (29) if and only if the conditions

Ω′
3Ω

′
4 =

b
[
b(h+ 1)2 + d2h

]

h2
=

−bZ ′
1

h2
= 0 or L′

3L′
4 = −

[
d2h+ b(h+ 1)2

]
= Z ′

1 = 0, (34)

are satisfied, respectively.

We observe that the conditions Z ′
1 6= 0 and (28) imply Ω′

3Ω
′
4L′

3L′
4 6= 0. Therefore none of the

points M3,4 could belong to the ellipse or to the line. So we arrive at Config. E.17 (example: b =

−1, d = −1, h = 1/4).
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2) The subcase ν3 = 0. Then Z ′
1 = 0 which implies b = − d2h

(h+ 1)2
and therefore the singularities

M1 and M2 coalesce. It is clear that in this case the invariant line and the ellipse have a unique

common point at which they are tangent and this point is a double singularity. However according

to (34) in this case we have Ω′
3Ω

′
4 = 0 and L′

3L′
4 = 0, and this imply that the singularity M3 also

belongs to both curves. More exactly we obtain M3 = M2 = M1 which leads to a triple singularity.

On the other hand due to the condition (28) we obtain

Φ(x, y)|{x=x4, y=y4} =
d2(h− 1)

h+ 1
6= 0, L(x, y)|{x=x4, y=y4} = d(1− h) 6= 0,

i.e. the singularity M4 remains outside both invariant curves. So the only possible configuration is

Config. E.18 (example: b = 2, d = −1, h = −2).

3) The subcase ν3 > 0. Then Z ′
1 < 0 and this implies that the singularities M1 and M2 located

at the intersections of the invariant ellipse with the invariant line are complex. On the other hand

we observe that due to conditions (28) and (34) we have Ω′
3Ω

′
4L′

3L′
4 6= 0 and therefore none of the

points M3,4 could belong to the ellipse or to the line. It is not difficult to convince ourselves that in

the case under examination we obtain Config. E.19 (example: b = −1/8, d = −1, h = 1/4).

We claim that in this configuration the invariant ellipse is not a limit cycle. Indeed since for systems

(25) we have T3F = 0, by Theorem 3 (see statement (B)) we conclude that our claim is valid.

3.1.1.3.2 The case R̂2 > 0. Then bh > 0 and in this case the ellipse (26) is complex. According

to (31) the condition bh > 0 implies Z ′
1 < 0, i.e. evidently the singularitiesM1,2 located on the ellipse

also are complex. Therefore we arrive at Config. E.20 (example: b = 1, d = −1, h = 1/6).

Thus we have all the configurations indicated in Diagram 5 in the block corresponding to the

possibility (B3).

3.1.1.4 The possibility (B4): β̂1 6= 0, β̂2 = β̂5 = 0. According to [16] in this case by an affine

transformation and time rescaling systems (8) could be brought to the canonical form (25) with

h = 1/3, i.e. we get a subfamily of (25) which was investigated in the previous subsection. As it

was shown, for h 6= 1/3 systems (25) possess four configurations, namely Config. E.17, Config. E.18,

Config. E.19 and Config. E.20. Moreover it is necessary to point out that the value h = 1/3 is not a

bifurcation value for the corresponding configurations.

It is not too difficult to determine that all the configurations are realizable in the case h = 1/3, too.

In fact, for Config. E.17 we take b = −11/16 and d = −1, for Config. E.18 we put b = −3/16 and

d = −1, for Config. E.19 we write b = −3/32 and d = −1 and finally for Config. E.20 we consider

b = 1 and d = −1.

So we obtain the condition presented in Diagram 5 in the block corresponding to the possibility

(B4).

3.1.1.5 The possibility (B5) : β̂1 = 0, β̂6 6= 0, β̂2 6= 0. As it was proved in [16] in this case by

an affine transformation and time rescaling systems (8) could be brought to the canonical form

ẋ = a+ gx2 + (h+ 1)xy, ẏ =
ah

g
− x2 + gxy + hy2, (35)
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which possesses an invariant conic (of the elliptic type)

Φ(x, y) =
a

g
+ x2 + y2 = 0, g 6= 0. (36)

This conic is irreducible if and only if a 6= 0. For the above systems we calculate

θ =
1

2
(h+ 1)

[
g2 + (h− 1)2

]
, β̂6 = (3h+ 1)

[
9g2 + (3h+ 1)2

]
/8,

β̂2 = −g
[
g2 + (3h+ 1)2

]
/2, R̂3 = 160ag

(
g2 + h2

) [
g2 + (3h+ 1)2

]
,

(37)

and therefore we conclude that for the above systems the condition θβ̂2β̂6R̂3 6= 0 is equivalent to

the condition

ag(h+ 1)(3h+ 1) 6= 0. (38)

Taking into account Lemma 2 we examine if systems (35) could possess at least one invariant line.

Calculations yield

B1 = −a
3(h+ 1)2

[
g2 + (h− 1)2

]2 (
g2 + h2

)

g2
, (39)

and due to condition (38) we obtain B1 6= 0. In this case by Lemma 2 we can conclude that systems

(35) could not possess invariant lines.

On the other hand we have

R̂3 = 160ag
(
g2 + h2

) [
g2 + (3h+ 1)2

]
⇒ sign (ag) = sign (R̂3).

3.1.1.5.1 The case R̂3 < 0. Then ag < 0 and clearly the ellipse (36) is real.

For systems (35) we calculate µ0 = −h
[
g2 + (h + 1)2

]
and we examine two subcases: µ0 6= 0 and

µ0 = 0.

1) The subcase µ0 6= 0. Then by Lemma 1 the systems have finite singularities of total multiplic-

ity 4. We detect that two of these singularities are located on the ellipse (36), more exactly such

singularities are M1,2

(
x1,2, y1,2

)
with

x1,2 = ±
√
Z1

g2 + (h+ 1)2
, y1,2 = ± (h+ 1)

√
Z1

g
[
g2 + (h+ 1)2

] , Z1 = −ag
[
g2 + (h+ 1)2

]
. (40)

Other two singularities of systems (35) are M3,4

(
x3,4, y3,4

)
(generically located outside the ellipse)

with

x3,4 = ±
√
Z2

g
, y3,4 = ∓

√
Z2

h
, Z2 = agh. (41)

Since sign (R̂3) = −sign (Z1), the condition R̂3 < 0 implies Z1 > 0. In this case we have two real

distinct singularities on the ellipse, namely M1,2.

We need to determine the conditions when at least one of the singularities M3,4 located outside

the ellipse coincide with its points. In this order considering (36) we calculate

Φ(x, y)|{x=x3,4, y=y3,4} =
aZ3

gh
, Z3 = g2 + h(h+ 1).
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It is clear that at least one of the singularities M3(x3, y3) or M4(x4, y4) belongs to the ellipse (36) if

and only if Z3 = 0.

On the other hand for systems (35) we have

D =
768a4h

[
g2 + (h+ 1)2

]
Z4
3

g4
,

and clearly due to the conditions (38) and µ0 6= 0 the condition D = 0 is equivalent to Z3 = 0.

a) The possibility D 6= 0. Then Z3 6= 0 and the singularities M3,4 remain outside the ellipse and

we have Config. E.1 (example: a = 1, g = −3/2, h = −2).

b) The possibility D = 0. Then Z3 = 0, i.e. g2 + h(h+ 1) = 0. In order to use this relation, due to

h 6= 0 we apply the following parametrization: g = g1h and then h = −1/(g21 + 1). Considering the

coordinates (40) and (41) we obtain

x1,2 = ±
√
ag1

g1
, y1,2 = ∓√

ag1 ; x3,4 = ∓
√
ag1

g1
, y3,4 = ±√

ag1,

and we observe that M3 coincides with M2 and M4 coincides with M1. As a result we arrive at

Config. E.21 (example: a = −1, g = 1/4, h = −(2 +
√
3)/4).

2) The subcase µ0 = 0. In this subcase we get h = 0 and this implies µ1 = 0 and µ2 =

ag
(
g2 + 1

)
x2 6= 0 due to the condition (38). Therefore by Lemma 1 exactly two finite singulari-

ties have gone to infinity. More exactly according to the factorization of µ2 by the same lemma

we deduce that both points coalesced with the infinite singularity [0 : 1 : 0]. So we obtain a triple

singularity at infinity of the type (1, 2) (see Remark 2), and this leads to Config. E.22 (example:

a = 1, g = −1).

3.1.1.5.2 The case R̂3 > 0. This condition implies ag > 0 and clearly the ellipse (36) is

complex. For systems (35) we have µ0 = −h
[
g2 + (h + 1)2

]
and we examine two subcases: µ0 6= 0

and µ0 = 0.

1) The subcase µ0 6= 0. Then by Lemma 1 the systems (35) have finite singularities of total

multiplicity 4 and their coordinates are given in (40). We observe that the condition ag > 0 implies

Z1 < 0, i.e. the singularities M1,2

(
x1,2, y1,2

)
are complex and as it was proved earlier they belong to

a complex ellipse.

It is not to difficult to determine that the condition Z3 = 0 in this case implies h < 0 and due

to ag > 0 we obtain that the singularities M3,4 are also complex. Moreover the condition Z3 = 0

forces them to coalesce with the two complex singularities on the ellipse. Therefore on the complex

ellipse we get two double complex singularities. This is however irrelevant in view of the definition

of a configuration (see Definition 4).

Thus we conclude that in both cases Z3 6= 0 and Z3 = 0 we arrive at the same configuration,

namely Config. E.15 (examples: a = −1, g = −3/2, h = −2 and a = −1, g = −249/512, h =

−(256 +
√
3535)/512, respectively).

2) The subcase µ0 = 0. In this case we have h = 0 and as it was shown in the case R̂3 < 0 we

get at infinity a triple singularity of the type (1, 2) (see Remark 2), and this leads to Config. E.23

(example: a = −1, g = −1).
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In this way we have all the configurations indicated in Diagram 5 in the block corresponding to

the possibility (B5).

3.1.1.6 The possibility (B6) : β̂1 = 0, β̂6 6= 0, β̂2 = 0. As it was proved in [16] in this case by

an affine transformation and time rescaling systems (8) could be brought to the canonical form

ẋ = (h+ 1)xy, ẏ = b− x2 + hy2, (42)

which possesses an invariant conic (of the elliptic type)

Φ(x, y) =
b

h
+ x2 + y2 = 0, h 6= 0. (43)

This conic is irreducible if and only if b 6= 0. For the above systems we calculate

θ = (h+ 1)(h− 1)2/2, β̂6 = (3h+ 1)3/8, R̂2 = bh(3h+ 1)4
(
h2 − 1

)2
/8, (44)

and therefore we conclude that for the above systems the condition θβ̂6R̂2 6= 0 is equivalent to the

condition

bh(h+ 1)(h− 1)(3h+ 1) 6= 0. (45)

On the other hand we have

sign (bh) = sign (R̂2).

3.1.1.6.1 The case R̂2 < 0. This condition implies bh < 0 and clearly the ellipse (43) is real.

Taking into account Lemma 2 we examine if systems (42) could possess at least one invariant line.

Calculations yield B1 = 0 and B2 = −648b2(h − 1)4x4 which is nonzero due to condition (45). It

follows from Lemma 2 and Lemma 4 that the conditions B1 = 0, B2 6= 0 and θ 6= 0 imply that there

exists exactly one simple invariant straight line of systems (42), namely

L(x, y) = x = 0. (46)

Moreover for these systems we have µ0 = −h(h+1)2 which is nonzero due to condition (45). Therefore

in this case the coordinates of the finite singularities for the systems (42) could be obtained from

the coordinates described in (31) and (32) setting d = 0:

x1,2 = 0, y1,2 = ±
√
Z1, Z1 = − b

h
,

x3,4 = ±
√
Z2, y3,4 = 0, Z2 = b.

(47)

We observe that the singularities M1,2 belong to the ellipse as well as to the invariant line, and the

singularities M3,4 are generically located outside both invariant curves.

Since sign (R̂2) = −sign (Z1), the condition R̂2 < 0 implies Z1 > 0. In this case the singularities

M1,2 are real and distinct.

We need to determine the conditions when at least one of the singularitiesM3,4, in general located

outside the invariant curves, will lie on these curves. In this order considering (43), (46) and (47) we

calculate

Φ(x, y)|{x=x3,4, y=y3,4} =
b(h+ 1)

h
≡ Ω, L(x, y)|{x=x3,4, y=y3,4} = ±

√
b ≡ L3,4.
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It is clear that at least one of the singularitiesM3 or M4 belongs to the ellipse (43) and the invariant

line (46) if and only if Ω = 0 or L3L4 = 0, respectively. Due to conditions (45) none of these

conditions could hold. As a result we arrive at Config. E.17 (example: b = 1, h = −2).

3.1.1.6.2 The case R̂2 > 0. This condition implies bh > 0 and clearly the ellipse (43) is

complex. According to (47) the condition bh > 0 implies Z1 < 0, i.e. evidently the singularities M1,2

located on the ellipse are also complex. Thus we arrive at Config. E.20 (example: b = 1, h = 1/2).

So we have all the configurations indicated in Diagram 5 in the block corresponding to the

possibility (B6).

3.1.1.7 The possibility (B7) : β̂1 = β̂6 = 0, β̂2 6= 0. As it was proved in [16] in this case by an

affine transformation and time rescaling systems (8) could be brought to the canonical form

ẋ = a+ gx2 +
2xy

3
, ẏ = − a

3g
− x2 − y2

3
+ gxy, (48)

which possesses an invariant conic (of the elliptic type)

Φ(x, y) =
a

g
+ x2 + y2 = 0, g 6= 0. (49)

This conic is irreducible if and only if a 6= 0. For the above systems we calculate

θ =
(
9g2 + 16

)
/27, β̂2 = −g3/2, R̂3 = 160ag3

(
9g2 + 1

)
/9,

and therefore we conclude that for the above systems the condition θβ̂2R̂3 6= 0 is equivalent to the

condition ag 6= 0. Moreover we clearly have sign (ag) = sign (R̂3).

On the other hand for systems (48) we calculate

B1 = −4a3
(
9g2 + 1

) (
9g2 + 16

)2

6561g2
6= 0, (50)

due to ag 6= 0. Therefore by Lemma 2 we conclude that systems (48) could not possess invariant

lines.

3.1.1.7.1 The case R̂3 < 0. Then ag < 0 and clearly the ellipse (49) is real.

For systems (48) we calculate µ0 =
(
9g2 + 4

)
/27 6= 0. Then by Lemma 1 the systems have finite

singularities of total multiplicity 4. We detect that two of these singularities are located on the ellipse

(49), more exactly such singularities are M1,2

(
x1,2, y1,2

)
with

x1,2 = ± 3
√
Z1

9g2 + 4
, y1,2 = ± 2

√
Z1

g
(
9g2 + 4

) , Z1 = −ag
(
9g2 + 4

)
. (51)

Other two singularities of systems (48) are M3,4

(
x3,4, y3,4

)
(generically located outside the ellipse)

with

x3,4 = ±
√−3ag

3g
, y3,4 = ±

√
−3ag. (52)
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Since sign (R̂3) = −sign (Z1), the condition R̂3 < 0 implies Z1 > 0. In this case we have two real

distinct singularities on the ellipse, namely M1,2.

We need to determine the conditions when at least one of the singularitiesM3,4, in general located

outside the ellipse, will lie on the ellipse. In this order considering (49) we calculate

Φ(x, y)|{x=x3,4, y=y3,4} = aZ3, Z3 = −9g2 − 2

3g
.

It is clear that at least one of the singularities M3(x3, y3) or M4(x4, y4) belongs to the ellipse (49)

if and only if Z3 = 0. We observe that the invariant polynomial D is responsible for this condition

because for systems (48) we have

D = −256a4
(
9g2 + 4

)
Z4
3

59049g4
, ag 6= 0.

1) The subcase D 6= 0. Then Z3 6= 0 and the singularities M3,4 remain outside the ellipse and we

have Config. E.1 (example: a = −1, g = 1/4).

2) The subcase D = 0. Then Z3 = 0, i.e. 9g2 − 2 = 0. In this case we have g = ±
√
2/3. Without

loss of generality we can assume g =
√
2/3 since the rescaling (x, y, t) → (−x, y, t) simultaneously

change the signs of the parameters a and g of the systems (48). So g =
√
2/3 and for the coordinates

of the singularities M1,2 and M3,4 of these systems we have

x1,2 = ±
√−a

4
√
2

= x3,4, y1,2 = ± 4
√
2
√
−a = y3,4.

So we obtain that the singularity M3 (respectively M4) coalesces with M1 (respectively M2). As a

result we have two double singularities located on the ellipse which leads to Config. E.21 (example:

a = −75, g =
√
2/3).

3.1.1.7.2 The case R̂3 > 0. This condition implies ag > 0 and clearly the ellipse (49) is

complex. Since for systems (48) we have µ0 6= 0, by Lemma 1 these systems have finite singularities

of total multiplicity 4 and their coordinates are given in (51) and (52). We observe that the condition

ag > 0 implies Z1 < 0, i.e. the singularities M1,2

(
x1,2, y1,2

)
are complex and as it was proved earlier

they belong to the complex ellipse.

It is not to difficult to determine that the singularities M3,4 are also complex. Moreover the

condition D = 0 forces them to coalesce with the two complex singularities on the ellipse as we

discussed in the case R̂3 < 0. So we get two double complex singularities located on the complex

ellipse.

Thus considering Definition 4 we conclude that in both cases, i.e. D 6= 0 and D = 0, we arrive

at the same configuration, namely Config. E.15 (examples: a = −1, g = −1 and a = 27, g =
√
2/3,

respectively).

Therefore we have all the configurations indicated in Diagram 5 in the block corresponding to

the possibility (B7).
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3.1.1.8 The possibility (B8) : β̂1 = β̂6 = β̂2 = 0. As it was proved in [16] in this case by an

affine transformation and time rescaling, systems (8) could be brought to the canonical form

ẋ = 2xy/3, ẏ = b− x2 − y2/3, (53)

which possesses an invariant conic

Φ(x, y) = −3b+ x2 + y2 = 0. (54)

This conic is irreducible if and only if b 6= 0. For the above systems we calculate

θ = 16/27, R̂4 = −32b
(
3x2 + y2

)
/9, (55)

and therefore we conclude that for systems (53) the condition R̂4 6= 0 is equivalent to the condition

b 6= 0. On the other hand we have sign (b) = −sign (R̂4).

3.1.1.8.1 The case R̂4 < 0. This condition implies b > 0 and clearly the ellipse (54) is real.

We observe that systems (53) possess the invariant line x = 0. Then by Lemma 2 the condition

B1 = 0 is satisfied. Moreover by this lemma systems (53) could not possess another invariant line

because B2 = −2048b2x4 6= 0 due to the condition b 6= 0. So systems (53) possess exactly one

invariant line x = 0. For these systems we have µ0 = 4/27 6= 0.

On the other hand in this case the coordinates of the finite singularities for the systems (53) could

be obtained from the coordinates described in (47) setting h = −1/3:

x1,2 = 0, y1,2 = ±
√
3b ; x3,4 = ±

√
b , y3,4 = 0. (56)

We detect that the singularitiesM1,2 belong to the ellipse as well as to the invariant line x = 0. Since

b > 0 all four singularities are real and M3,4 are located outside the invariant curves. As a result we

arrive at Config. E.17 (example: b = 1).

3.1.1.8.2 The case R̂4 > 0. This condition implies b < 0 and clearly the ellipse (54) is

complex. According to (56) the condition b < 0 implies that the singularities M1,2 located on the

ellipse also are complex. Thus we arrive at Config. E.20 (example: b = −1).

Then we have all the configurations indicated in Diagram 5 in the block corresponding to the

possibility (B8).

3.1.2 The subcase θ = 0

We examine step by step each one of the possibilities presented in Corollary 1 and corresponding to

this case.

3.1.2.1 The possibility (B9) : Ñ 6= 0, β̂1 6= 0, β̂2 6= 0. As it was proved in [16] in this case by

an affine transformation and time rescaling systems (8) could be brought to the canonical form

ẋ = a+ dy + gx2,

ẏ = −a
g
− dx− x2 + gxy − y2, g 6= 0,

(57)
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which possesses an invariant conic

Φ(x, y) =
a

g
+ x2 + y2 = 0. (58)

This conic is irreducible if and only if a 6= 0. For the above systems we calculate

Ñ =
(
g2 + 4

)
x2, β̂1 = −d2

(
g2 + 4

) (
9g2 + 4

)
/16,

β̂2 = −g
(
g2 + 4

)
/2, R̂5 = 12ag

(
g2 + 4

)
,

(59)

and therefore we conclude that for systems (57) the condition Ñ β̂1β̂2R̂5 6= 0 is equivalent to the

condition adg 6= 0. On the other hand we observe that sign (ag) = sign (R̂5).

Taking into account Lemma 2 we calculate

B1 = −a
2d2
(
g2 + 1

) (
g2 + 4

)2

g
6= 0, (60)

due to condition adg 6= 0, and we conclude that systems (57) could not possess invariant lines.

3.1.2.1.1 The case R̂5 < 0. Then ag < 0 and clearly the ellipse (58) is real.

For systems (57) we calculate µ0 = g2 6= 0 and therefore by Lemma 1 the systems have finite

singularities of total multiplicity 4.

We detect that two of these singularities are located on the ellipse (58), more exactly the singu-

larities M1,2

(
x1,2, y1,2

)
, with

x1,2 = ±
√
Z1

g
, y1,2 =

d

g
, Z1 = −(ag + d2). (61)

Other two singularities of systems (57) areM3,4

(
x3,4, y3,4

)
(generically located outside the ellipse),

with

x3,4 = −dg ±
√
Z2

2g
, y3,4 = −1

2

(
dg ±

√
Z2

)
, Z2 = g

(
d2g − 4a

)
. (62)

On the other hand for systems (57) we calculate

ν1 = −d4g2
(
g2 + 4

)2 (
9g2 + 4

)2
Z1/256. (63)

We observe that

sign (ν1) = −sign (Z1),

and this means that the singularities M1,2 are real (respectively, complex; coinciding) if ν1 < 0

(respectively, ν1 > 0 and ν1 = 0).

1) The subcase ν1 < 0. Then the singularities M1,2 located on the invariant ellipse are real. We

need to determine the conditions when at least one of the singularities M3,4 located outside the

ellipse lies on the ellipse. For this, considering (58) and (62), we calculate

Φ(x, y)|{x=x3,4, y=y3,4} =
d2
(
g3 + g

)
− 2ag2 ± d

(
g2 + 1

)√
g (d2g − 4a)

2g
≡ Ω3,4(a, d, g).
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It is clear that at least one of the singularities M3(x3, y3) or M4(x4, y4) belongs to the ellipse (58) if

and only if

Ω3Ω4 =
aZ3

g
= 0, Z3 = ag3 + d2

(
g2 + 1

)
.

On the other hand for systems (57) we have

ν2 = −105dg
(
9g2 + 4

)
Z3,

and clearly since adg 6= 0 the condition ν2 = 0 is equivalent to Z3 = 0.

Next we examine two possibilities: ν2 6= 0 and ν2 = 0.

a) The possibility ν2 6= 0. In this case we have Config. E.1 since other singularities could belong

to ellipse if and only if ν2 = 0 (example: a = 5/4, d = 1, g = −1).

b) The possibility ν2 = 0. In this case we have Z3 = 0 and since g 6= 0 this condition gives

a = −d
2
(
g2 + 1

)

g3
. Therefore we obtain the following coordinates of the singularitiesMi, i = 1, 2, 3, 4:

(x1, y1) =

(
d

g2
,
d

g

)
, (x2, y2) =

(
− d

g2
,
d

g

)
,

(x3, y3) =

(
−d
(
g2 + 1

)

g2
,−d

(
g2 + 1

)

g

)
, (x4, y4) =

(
d

g2
,
d

g

)
.

As we can observe, the singularity M4 coalesced with M1. Therefore on the ellipse we have a double

singularity M1 and a simple singularity M2. On the other hand we have

Φ(x, y)|{x=x3,y=y3} =
d2
(
g4 + 3g2 + 2

)

g2
6= 0,

due to d 6= 0. Hence the singularity M3 remains outside the ellipse and we arrive at Config. E.2

(example: a = −1, d =
√
2/2, g = 1).

2) The subcase ν1 = 0. In this case we have Z1 = 0, i.e. a = −d2g and this implies Z3 = d2 6= 0.

Therefore the two singularities which belong to the ellipse coalesce, whereas other two singularities

remain outside the ellipse. In this way we get Config. E.4 (example: a = 1, d = 1, g = −1).

3) The subcase ν1 > 0. Then we have Z1 < 0, i.e. the two singularities which belong to the

ellipse are complex. We note that the condition Z1 < 0 implies Z3 6= 0, because if Z3 = 0 we found

Z1 = d2/g2 > 0. This leads to Config. E.5 (example: a = 1/2, d = 1, g = −1).

We claim that in this configuration the invariant ellipse is a limit cycle. Indeed, taking into con-

sideration Theorem 3 (see statement (B3)) we conclude that in the case under examination, for the

existence of limit cycles the following conditions must be satisfied:

η < 0, θ = γ̂1 = γ̂2 = γ̂6 = 0, β̂1β̂2 6= 0, R̂5 < 0, T3F < 0.

Clearly all the conditions are satisfied except the last one. So it remains to verify that T3F < 0 is

fulfilled, too. For systems (57) we calculate

ν1 =
1

256
d4g2

(
g2 + 4

)2 (
9g2 + 4

)2 (
ag + d2

)
, T3F =− 1

8
d2g2

(
9g2 + 4

)2 (
ag + d2

)
,

and evidently the condition ν1 > 0 implies T3F < 0. This completes the proof of our claim.
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3.1.2.1.2 The case R̂5 > 0. This condition implies ag > 0 and clearly the ellipse (58) is

complex.

As we discuss on the case R̂5 < 0 for these systems we have µ0 6= 0. Then by Lemma 1, systems

(57) have finite singularities of total multiplicity 4 and the coordinates are given in (61) and (62). We

observe that the condition ag > 0 implies Z1 < 0, i.e. the singularities M1,2

(
x1,2, y1,2

)
are complex

and as it was proved earlier they belong to the complex ellipse.

On the other hand the condition ag > 0 yields Z3 = ag3 + d2
(
g2 + 1

)
6= 0. This fact implies that

the singularities M3,4

(
x3,4, y3,4

)
remain outside the complex ellipse. Therefore the unique possible

configuration is Config. E.15, detected before (example: a = −1, d = 1, g = −1).

Thus, we have all the configurations indicated in Diagram 6 in the block corresponding to the

possibility (B9).

3.1.2.2 The possibility (B10) : Ñ 6= 0, β̂1 6= 0, β̂2 = 0. As it was proved in [16] in this case by

an affine transformation and time rescaling systems (8) could be brought to the 2-parameter family

of systems

ẋ = dy, ẏ = b− dx− x2 − y2, d 6= 0, (64)

which is a subfamily of (25) defined by the condition h = −1. Clearly these systems possess the

same invariant ellipse (26) which in this particular case takes the form

Φ(x, y) = −b+ x2 + y2 = 0. (65)

This conic is irreducible if and only if b 6= 0.

We claim that the infinite invariant line Z = 0 for systems (64) is of multiplicity 2. Indeed

considering Lemma 3 for these systems we calculate:

gcd(E1, E2) = dZ,

and by Lemma 3, statement (3), the line Z = 0 is a double one. This completes the proof of our

claim.

For the above systems we calculate

Ñ = 16bd2x2, β̂1 = −d2, R̂6 = −4b, (66)

and therefore we conclude that for these systems the condition Ñ β̂1R̂6 6= 0 is equivalent to the

condition bd 6= 0. On the other hand we have sign (b) = −sign (R̂6).

3.1.2.2.1 The case R̂6 < 0. Then b > 0 and clearly the ellipse (65) is real.

Considering Lemma 2 we examine if systems (64) could possess at least one invariant affine line.

Calculations yield B1 = 0, however we claim that this condition is implied by the existence of the

double line at the infinity. Indeed, the coefficients of systems (64) could be perturbed with a small

parameter 0 < ε≪ 1 as follows:

ẋ = (d+ εx)y, ẏ = b− dx− x2 − y2.
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Evidently, these systems possess the invariant line d+εx = 0 and hence by Lemma 2 we have B1 = 0

(this could also be checked directly).

On the other hand, by Lemma 2, systems (64) could not possess any finite invariant lines because

B2 = −10368b2x4 6= 0, due to condition bd 6= 0.

For these systems we calculate µ0 = µ1 = 0 and µ2 = d2(x2 + y2) 6= 0. According to Lemma 1,

two finite singularities coalesced with infinite singularities, namely with the complex singularities

[±i : 1 : 0].

Therefore on the line Z = 0 we get two double complex infinite singularities. This is however

irrelevant in view of the definition of a configuration (see Definition 4). So the unique real singularity

at infinity is of multiplicity one.

On the other hand, by Lemma 1, the systems (64) have finite singularities of total multiplicity 2.

We detect that these singularities are located outside the ellipse (65) and their coordinates are

M1,2

(
x1,2, y1,2

)
, with

x1,2 = −d±
√
4b+ d2

2
, y1,2 = 0. (67)

For these singularities we calculate

Φ(x, y)|{x=x1,2, y=y1,2} =
d(d±

√
4b+ d2)

2
≡ Ω1,2(b, d), Ω1Ω2 = −bd2 6= 0.

We conclude that neitherM1 norM2 could belong to the ellipse. As a result we arrive at Config. E.24

(example: b = 1, d = −1).

3.1.2.2.2 The case R̂6 > 0. Then b < 0 and clearly the ellipse (65) is complex. Since none of

the singularities M1,2 could be on the ellipse, we obtain Config. E.25 (example: b = −1, d = −1).

So we have all the configurations indicated in Diagram 6 in the block corresponding to the

possibility (B10).

3.1.2.3 The possibility (B11) : Ñ 6= 0, β̂1 = 0. As it was proved in [16] in this case by an

affine transformation and time rescaling, systems (8) could be brought to the canonical form (9)

with h = −1 and d = 0. So we consider the following systems

ẋ = a+ gx2, ẏ = −a
g
− x2 + gxy − y2, g 6= 0, (68)

which possess the invariant ellipse (10), i.e.

Φ(x, y) =
a

g
+ x2 + y2 = 0, (69)

which is irreducible if and only if a 6= 0.

We observe that systems (68) possess the invariant lines L1,2(x, y) = a+ gx2 = 0, i.e.

L1(x, y) = x−
√−ag
g

= 0, L2(x, y) = x+

√−ag
g

= 0. (70)
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Then by Lemma 2 the condition B1 = 0 is satisfied. Moreover by this lemma the systems (68)

could possess an invariant line in another direction only if B2 = 0. However, for these systems we

have

B2 = −648a2
(
g2 + 1

) (
g2 + 4

)2
x4

g2
6= 0. (71)

So we conclude that systems (68) possess exactly two invariant lines (70), which are distinct due to

ag 6= 0 and they could be real or complex, depending on sign (ag).

For the above systems we calculate

Ñ =
(
g2 + 4

)
x2, R̂3 = 160ag

(
g2 + 1

) (
g2 + 4

)
, (72)

and therefore we conclude that sign (ag) = sign (R̂3).

3.1.2.3.1 The case R̂3 < 0. Then ag < 0 which implies that the ellipse (69) as well as the

invariant lines (70) are real.

For systems (68) we calculate µ0 = g2 6= 0 due to the condition g 6= 0. Then by Lemma 1 the

systems have finite singularities of total multiplicity 4.

We detect that two of these singularities are located on the ellipse (69), more exactly such singu-

larities are M1,2

(
x1,2, y1,2

)
, with

x1,2 = ±
√−ag
g

, y1,2 = 0. (73)

Other two singularities of systems (68) areM3,4

(
x3,4, y3,4

)
(generically located outside the ellipse),

with

x3,4 = ±
√−ag
g

, y3,4 = ±√−ag. (74)

We also detect that the singularities M1,3 (respectively, M2,4) belong to the line L1(x, y) = 0

(respectively L2(x, y) = 0).

For the singularities M3,4 we calculate

Φ(x, y)|{x=x3,4, y=y3,4} = −ag 6= 0,

and we conclude that neither M3(x3, y3) nor M4(x4, y4) belong to the ellipse (69). According to (74)

we observe that y3 > 0 and y4 < 0, which leads to Config. E.26 (example: a = 1, g = −1).

3.1.2.3.2 The case R̂3 > 0. Then ag > 0 and this implies that the ellipse (69) as well as

the invariant lines (70) and the four singularities of systems (68) are complex. Therefore we obtain

Config. E.27 (example: a = −1, g = −1).

Therefore we have all the configurations indicated in Diagram 6 in the block corresponding to

the possibility (B11).
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3.1.2.4 The possibility (B12) : Ñ = 0. As it was proved in [16] in this case by an affine

transformation and time rescaling systems (8) could be brought to the systems

ẋ = 2xy, ẏ = b− x2 + y2, (75)

which possess the family of invariant ellipses

Φ(x, y) = b+ qx+ x2 + y2 = 0, q ∈ R, (76)

depending on the parameter q and having the corresponding determinant ∆ = (4b − q2)/4. So for

any fixed value of the parameter q, the ellipses from the family (76) are irreducible if and only if

∆ 6= 0.

Since for systems (75) we have B1 = B2 = B3 = 0, by Lemma 2 these systems could possess

invariant lines in three different directions. We verify that these systems indeed possess the following

five invariant lines:

L1(x, y) = x = 0, L2,4(x, y) = (x− iy)2 − b = 0, L3,5(x, y) = (x+ iy)2 − b = 0. (77)

Since µ0 = −4 6= 0 the above systems possess finite singularities of total multiplicity four and their

coordinates are

x1,2 = 0, y1,2 = ±
√
−b, x3,4 = ±

√
b, y3,4 = 0.

We observe that if b 6= 0 systems (75) have two real and two complex singularities. Moreover we

have that the real singularities are located on the real invariant line L1(x, y) = 0 if b < 0 (namely

M1,2) and outside this invariant line if b > 0 (in this case the real singularities are M3 and M4). In

the case b = 0 all four singularities coincide and we have one real singularity of multiplicity four.

On the other hand for systems (75) we calculate R̂7 = 32b, which implies sign (b) = sign (R̂7). It

is clear that if R̂7 ≤ 0 the invariant ellipses from the family (76) are real and if R̂7 > 0 they could

be real or complex, depending on the parameter q in (76). So, if R̂7 < 0 we arrive at Config. E.28

(example: b = −75, q ∈ R) and if R̂7 = 0 the complex invariant lines (77) become double and we

obtain Config. E.29 (example: b = 0, q 6= 0). In the case R̂7 > 0 we observe that for any fixed value

of parameter b, any ellipse from the family (76) is invariant for systems (75). In other words, for any

b > 0 we have that such systems possess simultaneously an infinite number of real ellipses as well as

an infinite number of complex ellipses. Therefore, taking into consideration Remark 3 we arrive at

Config. E.30 (example: b = 1/8, |q| >
√
2/2).

Thus, we have all the configurations indicated in Diagram 6 in the block corresponding to the

possibility (B12).

3.2 The case C2 = 0

According to Lemma 5 a quadratic system with the condition C2 = 0 could be brought via an affine

transformation and time rescaling to the following canonical form:

ẋ = a+ cx+ dy + x2, ẏ = b+ ex+ fy + xy, (78)

with C2 ≡ 0, i.e. the line at infinity of this system is filled up with singularities. Following [16] (see

Diagram 1) and Corollary 1 we discuss two possibilities.
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3.2.1 The possibility (C1) : H10 6= 0.

As it was proved in [16] in this case we have the systems

ẋ = a+ y + x2, ẏ = xy, (79)

which possess the family of invariant ellipses

Φ(x, y) = a+ 2y + x2 +m2y2 = 0, m 6= 0. (80)

We observe that for any fixed value of the parameter a, the ellipses from the family (80) are

irreducible if and only if ∆ = am2 − 1 6= 0.

Since for systems (79) we have B1 = B2 = B3 = 0, by Lemma 2 these systems could possess

invariant lines in three different directions. We verify that these systems indeed possess the following

three invariant lines:

L1(x, y) = y = 0, L2,3(x, y) = y ±
√
−a x+ a = 0. (81)

It is clear that the invariant lines L2(x, y) and L3(x, y) are real, coinciding or complex if a < 0, a = 0

or a > 0, respectively.

Since µ0 = 0 and µ1 = x 6= 0, Lemma 1 tells us that there exist exactly three finite singularities.

Their coordinates are given by

x1,2 = ±
√
−a, y1,2 = 0, x3 = 0, y3 = −a.

For each fixed value of the parameter a we observe that if a < 0 (respectively, a > 0) the singularities

M1,2 are real (respectively, complex) and they verify the equalities

Φ(x1, y1) = L1(x1, y1) = L2(x1, y1) = 0, Φ(x2, y2) = L1(x2, y2) = L3(x2, y2) = 0,

respectively. Moreover we detect that the singularity M3 belongs to the invariant lines L2(x, y) and

L3(x, y) and this singularity belongs to the irreducible invariant ellipse Φ(x, y) = 0 if and only if

a = 0. In such a case (i.e. when a = 0) all three singularities coincide (as well the three invariant lines

L1, L2 and L3) and we have one real singularity of multiplicity three located on a triple invariant

line.

On the other hand for systems (79) we calculate H9 = 2304a3, which implies sign (a) = sign (H9).

It is clear that if H9 ≤ 0 then the irreducible conics from the family (80) are real and if H9 > 0

they could be real or complex, depending on the parameter m in (80). So, if H9 < 0 we arrive

at Config. E.31 (example: a = −75,m ∈ R\{0}) and if H9 = 0 we obtain Config. E.32 (example:

a = 0,m ∈ R\{0}). In the case H9 > 0, as we discussed earlier, for any fixed value of the parameter

a, systems (79) possess simultaneously an infinite number of real ellipses as well as an infinite number

of complex ellipses. Then, based on Remark 3 we obtain Config. E.33 (example: a = 1/2, |m| <
√
2).

Thus, we have all the configurations indicated in Diagram 7 in the block corresponding to the

possibility (C1).
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3.2.2 The possibility (C2) : H10 = 0.

As it was proved in [16] in this case we have the systems

ẋ = a+ x2, ẏ = xy, a 6= 0, (82)

which possess the family of invariant ellipses

Φ(x, y) = a+ x2 +m2y2 = 0, m ∈ R\{0}. (83)

Since for this family of ellipses we have ∆ = am2 6= 0 due to am 6= 0, we deduce that the family

(83) cannot contain any reducible conic.

For systems (82) we calculate B1 = B2 = B3 = 0 and hence, by Lemma 2, these systems could

possess invariant lines in three different directions. We verify that these systems possess the following

three invariant lines:

L1(x, y) = y = 0, L2,3(x, y) = x∓
√
−a = 0. (84)

It is clear that the invariant lines L2(x, y) and L3(x, y) are real if a < 0 and complex if a > 0.

Since µ0 = µ1 = 0 and µ2 = ax2 6= 0, Lemma 1 tells us that there exist exactly two finite

singularities. Their coordinates are

x1,2 = ±
√
−a, y1,2 = 0.

We observe that if a < 0 (respectively a > 0) the singularities M1,2 are real (respectively complex)

and they are located on each one of the invariant ellipse of the family Φ(x, y) = 0 from (83). Moreover

we observe that

L1(x1, y1) = L2(x1, y1) = 0, L1(x2, y2) = L3(x2, y2) = 0.

On the other hand for systems (82) we calculate H11 = −192ax4, which implies sign (a) =

−sign (H11). So, we arrive at Config. E.34 if H11 < 0 (example: a = 27,m ∈ R) and Config. E.35 if

H11 > 0 (example: a = −75,m ∈ R).

Thus, we have all the configurations indicated in Diagram 7 in the block corresponding to the

possibility (C2).

Since all the affine invariant subsets in R
12 defined in Corollary 1 are examined, we conclude that

Theorem 5 is proved.

4 Concluding comments

Now we present some coonclusions about the 35 configurations obtained and their realization. Di-

agrams 5, 6 and 7 give an algorithm to compute for any system possessing an invariant ellipse,

presented in any normal form, its configuration. Moreover Diagrams 5, 6 and 7 are the bifurcation

diagrams of the configurations of such systems, done in the 12-parameter space of the coefficients of

these systems.
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4.1 Concluding comments for η < 0

According to Theorem 5, each non-degenerate quadratic system in the class QSE(η<0) possesses

either exactly one invariant ellipse or a family of invariant ellipses. This class yields 30 distinct

configurations which can be split into the following cases according to their geometry:

α1) Fourteen configurations with exactly one ellipse and no invariant lines other that a line at

infinity, which is simple. Among these we only have three cases where the ellipse is complex. The

configurations are split into subsets by the total multiplicity of the real singularities located on them,

whose maximum is 5 in the case of real ellipses and 3 in the case of complex ellipses.

We point out that in this class we have the only two configurations with limit cycles occurring

in the family QSE. In both configurations we only have one real singular point located on the

configuration, on the line of infinity. The two configurations whit the ellipse as a limit cycle are

distinguished by the multiplicity of this singularity which could be one or two.

α2) Eleven configurations with exactly one ellipse and invariant lines of total multiplicity 2, in-

cluding the line at infinity. Among these we only have two configurations with complex ellipses,

distinguished by the number of invariant lines, which could be 2 or 1. The remaining configurations

are distinguished by the number of invariant lines (1 or 2) and by the geometry of the positions of

the invariant lines with respect to the ellipses as well as the multiplicities of the real singularities

located on the configurations.

α3) Two configurations of systems possessing exactly one invariant ellipse (real or complex) and

three simple invariant lines, including the line at infinity, the two affine lines being real or complex.

α4) Three configurations, each one of them possessing an infinite family of invariant ellipses. Two

of them possess only real ellipses (Config. E.28 and Config. E.29 ) and one of them (Config. E.30 )

possesses simultaneously an infinity of real ellipses and an infinity of complex ellipses (according

to Remark 3 we only placed the real ellipses on the drawing of this configuration). All three con-

figurations possess invariant lines of total multiplicity 6, including the line at infinity and they are

distinguished by the number of singular points located on the real invariant lines of the configura-

tions.

4.2 Concluding comments for C2 = 0

According to Theorem 5, each non-degenerate quadratic system in the class QSE(C2=0) possesses an

infinite family of invariant ellipses and in addition its line at infinity is filled up with singularities.

This class yields five distinct configurations which can be split into the following cases according to

their geometry:

β1) Three configurations possessing an infinity of real ellipses (Config. E.31, Config. E.33 and

Config. E.35 ), have affine invariant lines (real) of total multiplicity 3. These configurations are dis-

tinguished by the number of singular points located on the these invariant lines.

β2) One configuration (Config. E.34 ) has an infinity of only complex ellipses and three invariant

lines two of them complex parallel lines.

β3) One configuration (Config. E.33 ) possesses simultaneously an infinity of real ellipses and an

infinity of complex ellipses (according to Remark 3 we only placed the real ellipses on the drawing
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of this configuration). This configuration also possesses three invariant lines, two of them complex

intersecting at a real singular point.
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