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Abstract

We introduce a generalization of formal local cohomology module,
which we call a formal local cohomology module with respect to a pair
of ideals and study its various properties. We analyze their structure,
the upper and lower vanishing and non-vanishing. There are various
exact sequences concerning the formal cohomology modules. Among
them a MayerVietoris sequence for two ideals with respect to pairs
ideals. We also give another proof the generalized version of the local
duality theorem.

1 Introduction

Throughout this paper R is a commutative Noetherian (non-zero identity)
ring and a, b, I, J be ideals of R. For an R-module M , its well known, for
i ∈ N, H i

a(M) denote the i-th local cohomology module of M with respect
to a (see [3], [8] for more details).
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When (R,m, k) be a local ring and M an R-module, Schenzel in [15],
defined an object of study as follows. Let x = x1, . . . , xr a system of ele-
ments of R and b = Rad(xR) and Čx denote the Čech complex of R with
respect to x. The projective system of R-modules {M/anM}n∈N induces a
projective system of R-complexes {Čx ⊗M/anM}. Consider the projective
limit lim

←−
(Čx ⊗M/anM).

For an integer i ∈ Z, the cohomology module H i(lim
←−

(Čx ⊗M/anM)) is

called the i-th a-formal cohomology with respect to b, denoted by F̌ia,b(M).
In the case of b = m we speak simply about the ith a-formal cohomology.

Now, consider the family of local cohomology modules {H i
b(M/anM)}n∈N.

For every n, there is a natural homomorphismH i
b(M/an+1M)→ H i

b(M/anM)
such that the family forms a projective system. Their projective limit
lim
←−

H i
b(M/anM) is called the i-th formal local of M with respect to b de-

noted by Fia,b(M). In [15] too, when b = m, Schenzel has proved the following

isomorphism F̌ia,m(M) ∼= Fia,m(M), showing the relation between formal local
cohomology and projective limits of some local cohomology modules.

In [18], Takahashi, Yoshino and Yoshizawa introduced a generalization
of the notion of local cohomology module, call a local cohomology module
with respect to a pair of ideals (I, J), and obtained various results, important
for our purpose. More accurately, for R-module M (not necessarily finitely
generated), the set of elements of M

ΓI,J(M) = {x ∈M | Inx ⊆ Jx for n� 1}

is a left exact functor, additive and covariant, from the category of all R-
modules, called (I, J)-torsion functor. For an integer i, the i-th right derived
functor of ΓI,J is denoted by H i

I,J and will be call to as i-th local cohomology
functor with respect to (I, J). For an R-module M , H i

I,J(M) refer as the
i-th local cohomology module of M , with respect to (I, J) and ΓI,J(M) as
the (I, J)- torsion part of M . When J = 0, the H i

I,J coincides with the usual
local homology functor H i

I .
In this paper too, the authors introduce a generalization of Čech com-

plexes, as follows. For an element x ∈ R, let Sa,J the set multiplicatively
closed subset of R, consisting of all elements of the form xn + j where j ∈ J
and n ∈ N. For an R-module M , let Mx,J = S−1x,JM . The complex Čx,J is
defined as

Čx,J : 0→ R→ Rx,J → 0
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where R is sitting in the 0th position and Rx,J in the 1st position in the
complex. For a system of elements of R x = x1, . . . , xs, define a complex
Čx,J =

⊗s
i=1 Čxi,J . If J = 0 this definition coincides with the usual Čech

complex with respect to x = x1, . . . , xs.
Now, we are able to introduce the new object of study and proof some

results.

2 Formal local cohomology with respect to a

pair of ideals

Again as done above, consider x = x1, . . . , xs is a system of elements
of R which generate the ideal I. Let Čx,J the Čech complex of R with
respect to (I, J). For an R-module M finitely generated and an ideal a
the projective system of {M/anM}n∈N induces a projective system of R-
complexes {Čx,J ⊗M/anM}. Let the projective limit lim

←−

(
Čx,J ⊗M/anM

)
.

Definition 2.1. Using the construction above, for an integer i ∈ Z, the
cohomology module H i(lim

←−

(
Čx,J ⊗M/anM)

)
is called the i-th a-formal co-

homology with respect to (I, J), denoted by F̌ia,I,J(M).

Note that, if J = 0, Čx,J coincides with the usual Čech complex Čx
with respect to x = x1, . . . , xs. Therefore F̌ia,I,0(M) ∼= F̌ia,I(M). Now,if

J = 0 and I = m we have F̌ia,m,0(M) ∼= F̌ia,m(M). This new definition is
a natural generalization of a-formal cohomology with respect to b and a-
formal cohomology, both introduced by Schenzel in [15] and discussed by
Mafi, Asgharzadeh and Divaaani-Aazar, Eghbali and Chu in other papers.

Proposition 2.2. Let R be a local Noetherian ring, x = x1, . . . , xs elements
of R, I = (x) ideal of R and M finitely generated R-module. If M is J-
torsion R-module, then F̌ia,I,J(M) ∼= F̌ia,I(M).

Proof. By Takahashi and etal, in [18, Corollary 2.5], we have

(Čx,J ⊗M/anM)) ∼= (Čx ⊗M/anM)).

Applying the inverse limit we obtain

lim
←−

(Čx,J ⊗M/anM)) ∼= lim
←−

(Čx ⊗M/anM)).
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Therefore,
F̌ia,I,J(M) = H i(lim

←−
(Čx,J ⊗M/anM))

= H i(lim
←−

(Čx ⊗M/anM))

= F̌ia,I(M).

Theorem 2.3. Let I and J be ideals of R as before. Consider φ : R → R′

be a ring homomorphism and let M ′ be an R′-module. If φ(J) = JR′, then
there is a natural isomorphism F̌ia,I,J(M ′) ∼= F̌iaR′,IR′,JR′(M

′).

Proof. Let I = (x1, . . . , xs)R and φ(x) = φ(x1), . . . , φ(xs). Let Sxi,J a multi-
plicatively closed subset of R, described in the construction of Čech complex
for an element. By hypothesis φ(Sxi,J) = Sφ(xi),JR′ for all i with 1 ≤ i ≤ s.
Thus we have Čx,J⊗M ′/anM ′ homotopic to Čφ(x),JR′⊗M ′/aR′nM ′. Applying
the inverse limit and cohomology we have the statement.

Is important to remember that the hypothesis φ(J) = JR′ in the theorem
above cannot be remove. For more details see [18, Remark 2.8].

Now, let the family of local cohomology modules {H i
I,J(M/anM)}n∈N. For

every n there is a natural homomorphism H i
I,J(M/an+1M)→ H i

I,J(M/anM)
such that the family forms a projective system. Their projective limit
lim
←−

H i
I,J(M/anM) is called the i-th formal local cohomoloy of M with respect

to a pair ideals I, J denoted by Fia,I,J(M).

The natural question is: When F̌ia,I,J(M) is isomorphic to Fia,I,J(M)?. For
try answer this question, following result is proved.

Proposition 2.4. Using the notation preceding, there is the short exact se-
quence

0→ lim
←−

1Hi−1
I,J (M/anM)→ Hi(lim

←−
(Čx,J ⊗M/anM))→ lim

←−
Hi

I,J(M/anM)→ 0

for all i ∈ Z.

Proof. Let the natural epimorphism M/an+1M → M/anM and using the
fact that Čech complex Čx,J is a complex of flat R-modules, we have an
R-morphism of R-complexes

Čx,J ⊗M/an+1M → Čx,J ⊗M/anM

4



(which is degree-wise an epimorphism). By the definition of the projective
limit, there is a short exact sequence of complexes

0→ lim
←−

(
Čx,J ⊗M/anM

)
→
∏(

Čx,J ⊗M/anM
)
→
∏(

Čx,J ⊗M/anM
)
→ 0.

So, there is the long exact cohomology sequence

· · · → H i(lim
←−

(Čx,J ⊗M/anM))→ H i(K•)→ H i(K•)→ · · ·

where K• =
∏

(Čx,J ⊗M/anM).
Applying [19, Theorem 3.5.8] in the complex C• : Čx,J ⊗M/anM follows

0→ lim
←−

1H i−1(C•)→ H i(C•)→ lim
←−

H i(C•)→ 0.

Since H i
I,J(M/anM) ∼= H i(Čx,J ⊗M/anM)(see [18, Theorem 2.4]), for all i

integer, the statement is proved.

Proposition 2.5. Let (R,m, k) be a local Noetherian ring, x = x1, . . . , xs
elements of R, I = (x), J ideals of R and M finitely generated R-module.

(a) If M is J-torsion R-module then H i
m,J(M) is an Artinian R-module .

(b) If M is J-torsion R-module and
√
I + J = m then H i

I,J(M) is an
Artinian R-module .

Proof. (a) Because H i
m,J(M) ∼= H i

m(M) (see [18, Corollary 2.5])and the fact
[3, Theorem 7.1.3], we have the statement.

(b) By Proposition 2.4. (vii) and (vi) in [13], H i
I,J(M) = H i√

I+J,J
(M) =

H i
m,J(M) = H i

m(M) which is an Artinian R-module.

Corollary 2.6. Let (R,m, k) be a local Noetherian ring, x = x1, . . . , xs ele-
ments of R, I = (x), J ideals of R and M finitely generated R-module.

(a) If M is a J- torsion R-module then, for all i ∈ Z, F̌ia,m,J(M) =
Fia,m,J(M).

(b) If M is a J- torsion R-module and
√
I + J = m then, for all i ∈ Z,

F̌ia,I,J(M) = Fia,I,J(M).
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(c) If M is an Artinian R-module then F̌ia,I,J(M) = Fia,I,J(M) for all i ∈ Z.

Proof. For proof of the statement (a) note that, because M is J-torsion R-
module, M/anM is too J-torsion R-module. Then, by proposition above,
H i

m,J(M/anM) is an Artinian R-module, for all i ∈ Z . So the family
{H i

m,J(M/anM)}n∈N, i ∈ N satisfies the Mittag-Leffler condition. By Propo-

sition 2.4 and using the fact that lim
←−

1 vanishes on the projective system of

Artinian R-modules, which proves the statement. The proof of (b) is analo-
gous.

For (c), use the remark above to proof that H i
I,J(M/anM) is an Artinian

R-module, for all i ∈ Z. Applying the previous idea finishes the proof.

Corollary 2.7. Let I and J be ideals of R as before. Consider φ : R→ R′ be
a ring homomorphism, M ′ be a finitely generated R′-module and φ(J) = JR′.

(a) If M ′ is a J-torsion R′- module then, for all i ∈ Z, Fia,m,J(M ′) =
FiaR′,mR′,JR′(M

′) .

(b) If M ′ is a J-torsion R′-module and
√
I + J = m then, for all i ∈ Z,

Fia,I,J(M ′) = FiaR′,IR′,JR′(M
′).

(c) If M ′ is an Artinian R′-module, then for all i ∈ Z, Fia,I,J(M ′) =
FiaR′,IR′,JR′(M

′).

Proof. Since M ′ is too JR′-torsion R′-module, by previous corollary and
Theorem 2.3 we have the proof of (a). The same idea can be used in assertions
(b) and (c).

3 Cohomological dimension

Let a local Noetherian ring (R,m, k), a, I, J ideals of R and M be a
R-module finitely generated. We now establish some preliminary results on
cohomological dimension of R-module M with respect to a pair of ideals
(I, J). First, is known that Divaani-Aazr, Naghipour and Tousi in [5] were
the precursors on the term ”cohomological dimension”, defined by

cd(a,M) = sup{i ∈ Z : H i
a(M) 6= 0}.
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In our context, Chu and Wang in [4] define the cohomological dimension
of R-module M with respect to a pair of ideals (I, J), defined by

cd(I, J,M) = sup{i ∈ Z : Hr
I,J(M) 6= 0}

and gives a characterization about this integer.
Chu and Wang in [4] too generalize the result of P. Schenzel [15, Lema

2.1], using this new concept. This result is gives below.

Proposition 3.1. Let I be a proper of a commutative Noetherian ring R
and M,N be a finitely generated R-modules such that SuppRN ⊆ SuppRM.
Then cd(I, J,N) ≤ cd(I, J,M).

Corollary 3.2. Let M be a finitely generated R-module. Then

cd(I, J,M) = cd(I, J, R/AnnRM) = max{cd(I, J, R/p) : p ∈ MinM}

Proof. The proof is similar to the [15, Corollary 2.2].

Lemma 3.3. Let (R,m, k) a local ring, x = x1, . . . , xs be a system of elements
of the ring R, a = (x), J ideals of R and M be a finitely generated R-module.
Then

cd((a, yR), J,M) ≤ cd(a, J,M) + 1

for any element y ∈ m.

Proof. By construction in [18], we can consider the Čech complex

Čx,y,J = (
s⊗
i=1

Čxi,J)
⊗

Čy,J .

Now, for the natural homomorphism Čx,J → Čx,J ⊗ Ry, let the complex
M(f) = Čx,J⊕(Čx,J⊗Ry[−1]) namely mapping cone. Note that the mapping
cone M(f) is isomorphic to Čx,y,J , then we can consider the following exact
sequence

0→ Čx,J ⊗Ry[−1]→ Čx,y,J → Čx,J → 0.

By [16, Lemma 1.1] and using [18, Theorem 2.4], for all n ∈ Z, there is a
short exact sequence

0→ H1
yR,J(Hn−1

a,J (M))→ Hn
(a,yR),J(M)→ H0

yR,J(Hn
a,J(M))→ 0.

7



Let j = cd(a, J,M), then by the exact sequence previous and definition of co-
homological dimension with respect to a pair of ideals, we haveH i+1

(a,yR),J(M) =

0 for all i > j. Therefore cd((a, yR), J,M) ≤ j + 1, and the proof is com-
pleted.

Theorem 3.4. Let (R,m, k) a local ring, x = x1, . . . , xs be a system of
elements of the ring R and a, I = (x) and J ideals of R. Let 0→ A→ B →
C → 0 denote a short exact sequence of finitely generated R-modules. Then
there is a long exact sequence

· · · → F̌ia,I,J(A)→ F̌ia,I,J(B)→ F̌ia,I,J(C)→ F̌i+1
a,I,J(A)→ · · ·

Proof. It is well known that the short exact sequence previous induces a
projective system of short exact sequences

0→ Čx,J ⊗ A/B ∩ anA→ Čx,J ⊗B/anB → Čx,J ⊗ C/anC → 0

for all n ∈ N. Because Čx,J is a complex of flat R-modules and the maps

A/B ∩ an+1A→ A/B ∩ anA

are surjective, it follows that the projective system of R-complexes {Čx,J ⊗
A/B ∩ anA} satisfies the Mittag-Leffler condition. Therefore, applying the
inverse limit, we have the exact sequence of complexes

0→ lim
←−

Čx,J ⊗ A/B ∩ anA→ lim
←−

Čx,J ⊗B/anB → lim
←−

Čx,J ⊗ C/anC → 0

In the case {B ∩ anA} is equivalent to the a-adic topology on A and by
Artin-Rees lemma [2, Ch. III,3, Cor. 1], we have

· · · → Hi(lim
←−

Čx,J ⊗A/anA)→ Hi(lim
←−

Čx,J ⊗B/anB)→ Hi(lim
←−

Čx,J ⊗ C/anC)→ · · · .

Using the definition of Formal local cohomology defined by a pair of ideals
finishes the proof.

Corollary 3.5. Using the same hypothesis of theorem above, there is the
long exact sequence:

(a)
· · · → Fia,m,J(A)→ Fia,m,J(B)→ Fia,m,J(C)→ Fi+1

a,m,J(A)→ · · ·
if B is a J-torsion R-modules.

8



(b)
· · · → Fia,I,J(A)→ Fia,I,J(B)→ Fia,I,J(C)→ Fi+1

a,I,J(A)→ · · ·

if B is a J-torsion R-modules and
√
I + J = m.

(c)
· · · → Fia,I,J(A)→ Fia,I,J(B)→ Fia,I,J(C)→ Fi+1

a,I,J(A)→ · · ·

if B is an Artinian R-module.

Proof. For proof of all the cases, apply Corollary 2.6 and theorem previous.

Proposition 3.6. Let (R,m, k) a local ring, x = x1, . . . , xn be a system of
elements of the ring R and a, I = (x) and J ideals of R. Consider M a finitely
generated R-module, N ⊆M be a R-module such that Supp N∩V (a) ⊆ V (m)
and M = M/N. Then there is a short exact sequence

0→ N a → F0
a,I,J(M)→ F0

a,I,J(M)→ 0

and isomorphisms Fia,I,J(M) ∼= Fia,I,J(M) for all i ≥ 1.

Proof. Consider the short sequence exact 0 → N → M → M → 0. As well
as in Theorem 3.4, there is the following long exact sequence

0→ Čx,J ⊗N/anN → Čx,J ⊗M/anM → Čx,J ⊗M/anM → 0

for all n ∈ N. By view of the long exact cohomology sequence it follows that
there is a long exact sequence

· · · → H i(Čx,J⊗N/anN)→ H i(Čx,J⊗M/anM)→ H i(Čx,J⊗M/anM)→ · · ·

By [18], H i(Čx,J ⊗X) ∼= H i
I,J(X) for all R-module X, so

· · · → H i
I,J(N/anN)→ H i

I,J(M/anM)→ H i
I,J(M/anM)→ · · · .

The assumption Supp N ∩V (a) ⊆ V (m) implies that N/anN is an R-module
of finite length, for all n ∈ N. By Theorem 4.7 in [18], for all i > 0,
H i
I,J(N/anN) = 0. Therefore we have

0→ H0
I,J(N/anN)→ H0

I,J(M/anM)→ H0
I,J(M/anM)→ 0
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and isomorphisms H i
I,J(M/anM) ∼= H i

I,J(M/anM) for all i > 0. Note that
the family {H0

I,J(N/anN)}n∈N of Artinian R-modules ( [13], Theorem 3.7
show that H0

I,J(N/anN) is Artinian), satisfy the Mittag-Leffler condition.
Passing to the projective limit in the exact sequence previous we have

0→ F0
a,I,J(N)→ F0

a,I,J(M)→ F0
a,I,J(M)→ 0

and isomorphisms Fia,I,J(M) ∼= Fia,I,J(M) for all i ≥ 1. Now, as for all i > 0
H i
I,J(N/anN) = 0, by Corollary 4.2 in [18], M is (I, J)-torsion R-module.

Therefore H0
I,J(N/anN) = N/anN and F0

a,I,J(N) = lim
←−

N/anN = N a.

Corollary 3.7. Consider the same hypothesis of proposition previous.

(a) If M is a J-torsion R-module there is a short exact sequence

0→ F̌0
a,m,J(N)→ F̌0

a,m,J(M)→ F̌0
a,m,J(M)→ 0

and isomorphisms F̌ia,m,J(M) ∼= F̌ia,m,J(M) = 0 for all i ≥ 1.

(b) If M is a J-torsion R-module and
√
I + J = m, there is a short exact

sequence

0→ F̌0
a,I,J(N)→ F̌0

a,I,J(M)→ F̌0
a,I,J(M)→ 0

and isomorphisms F̌ia,I,J(M) ∼= F̌ia,I,J(M) = 0 for all i ≥ 1.

Proof. Use the Corollary 2.6 and proposition above.

Theorem 3.8. Let M be a finitely generated R-module. Choose x ∈ m an
element such that x 6∈ p for all p ∈ AssRM\{m}, and let M ′ = M/xM .

(a) If M is a J-torsion R-module there are short exact sequence

0→ H0(x; lim
←−

Hi
m,JM/anM)→ lim

←−
Hi

m,J(M ′/anM ′)→ H1(x; lim
←−

Hi+1
m,JM/anM)→ 0

for all i ∈ Z.

(b) If M is a J-torsion R-module and
√
I + J = m, there are short exact

sequence

0→ H0(x; lim
←−

Hi
I,JM/anM)→ lim

←−
Hi

I,J(M ′/anM ′)→ H1(x; lim
←−

Hi+1
I,J M/anM)→ 0

for all i ∈ Z.
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Proof. We will proof of a), and b) is analogue. By the choice of x it follows
that 0 :M x is an R-module of finite length. Moreover the multiplication by
x induces an exact sequence

0→ 0 :M x→M
x→M →M ′ → 0

breaks into two short exact sequences 0 → N → M → M → 0, where
N = 0 :M x and M = M/N , and 0→M

x→M →M ′ → 0.
The first of this sequences induces the isomorphisms lim

←−
H i

m,J(M/anM) ∼=
lim
←−

H i
m,J(M/anM) for all i > 0 and a short exact sequence

0→ N a → lim
←−

H0
m,J(M/anM)→ lim

←−
H0

m,J(M/anM)→ 0

by Proposition 3.6. By Corollary 3.5, the second sequence induces a long
exact sequence for the formal cohomology modules

· · · → lim
←−

H i
m,J(M/anM)

x→ lim
←−

H i
m,J(M/anM)→ lim

←−
H i

m,J(M ′/anM ′)→ · · · .

With the isomorphisms above this proves the claim for i > 0. To this end
one has to break up the long exact sequence into short exact sequences. For
the proof in the case i = 0, the only remaining case, consider the composite
of the above short exact sequence with the previous one for i = 0. Then this
completes the proof for i = 0.

4 Non-vanishing

Let M be a finitely generated R-module. Let a, I = (x), J ideals in the
local ring (R,m, k). In this section, our purpose is to know the integers
sup{i ∈ Z | F̌ia,I,J(M) 6= 0} and sup{i ∈ Z | Fia,I,J(M) 6= 0}.

Proposition 4.1. Consider an ideal a such that dim(M/aM) = 0. Then

(a) Fia,I,J(M) =

{
0 if i 6= 0

M a if i = 0,

(b) Fia,I,J(M) = F̌ia,I,J(M), for all i ∈ Z.
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Proof. For (a), by [18, Theorem 4.7], H i
I,J(M/anM) = 0 for i 6= 0 and by [18,

Corollary 4.2], M/anM is (I, J)- torsion R-module. Then H0
I,J(M/anM) =

ΓI,J(M/anM) = M/anM. Passing to the projective limit finishes the proof.
For proof of (b), use Proposition 2.4.

Theorem 4.2. Let M be a finitely generated module over a local ring (R,m, k).
Let a, I, J ideals of R such that J 6= R and I+J is an m-primary ideal. Then,

dimRM/(a + J)M = sup{i ∈ Z | Fia,I,J(M) 6= 0}.

Proof. By [18, Theorem 4.3], H i
I,J(M/anM) = 0 for any i > dim M/anM

J(M/anM)
.

But, dim M/anM
J(M/anM)

= dim M
(J+a)M

for all n ∈ N. Therefore

dimRM/(a + J)M ≥ sup{i ∈ Z | Fia,I,J(M) 6= 0}.

On the other hand, let r = dim( M/anM
J(M/anM)

) = dim( M
(J+a)M

) for all n ∈ N.

Since I + J is an m-primary ideal, we have H i
I,J(M) = H i

m,J(M) for any

integer i. Thus we may assume I = m. Denote M = M/anM , then the short
exact sequence

0→ JM →M →M/JM → 0

induces an exact cohomology sequence

Hr
m,J(M)→ Hr

m,J(M/JM)→ Hr+1
m,J (JM).

Since dim JM/J2M ≤ dimM/J2M = dimM/JM = r, by [18, Theoren
4.3], Hr+1

m,J (JM) = 0. Because M/JM is a J-torsion R-module, by [18,
Corollary 2.5] and Grothendieck’s non-vanishing theorem

Hr
m,J(M/JM) ∼= Hr

m(M/JM) 6= 0.

Therefore Hr
m,J(M) 6= 0 and this implies that Fra,I,J(M) 6= 0. This proof

the statement.

Remark 4.3. If M be a finitely generated R-module then:

(a) Fia,I,J(M) = 0 for any i > dim(M/aM). (see [18], Theorem 4.7)
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(b) Fia,I,J(M) = 0 for any i > dim(M/(a + J)M), if J 6= R. (see [18],
Theorem 4.3)

(c) Fia,I,J(M) = 0 for any i > dimR/J . (see [18], Corollary 4.4)

(d) If M is (I, J)-torsion R, Fia,I,J(M) = 0 for any i integer. (see [18],
Corollary 1.13)

5 The Mayer-Vietoris sequence

Theorem 5.1. Let a, b, I, J ideals of a local ring (R,m, k), i ∈ Z and M a
finitely generated R-module. The there is the long exact sequence

· · · → F̌i
a∩b,I,J(M)→ F̌i

a,I,J(M)⊕ F̌i
b,I,J(M)→ F̌i

(a,b),I,J(M)→ F̌i+1
a∩b,I,J(M)→ · · · .

Proof. Let the following exact sequence

0→M/(anM ∩ bnM)→M/anM ⊕M/bnM →M/(an, bn)M → 0.

Its induces a short exact sequence

0→ Čx,J ⊗
M

(anM ∩ bnM)
→ (Čx,J ⊗

M

anM
)⊕ (Čx,J ⊗

M

bnM
)→ Čx,J ⊗

M

(an, bn)M
→ 0.

Because Čx,J is a complex of flat R-modules and the maps

M/(an+1 ∩ bn+1)M →M/(an ∩ bn)M

are surjective, it follows that the projective system of R-complexes {Čx,J ⊗
M/anM ∩ bnM} satisfies the Mittag-Leffler condition. Therefore, applying
the inverse limit, we have the exact sequence of complexes

0→ lim
←−

Čx,J ⊗
M

(anM ∩ bnM)
→ lim

←−
(Čx,J ⊗

M

anM
)⊕ lim

←−
(Čx,J ⊗

M

bnM
)→

→ lim
←−

Čx,J ⊗
M

(an, bn)M
→ 0.

We can observe that the (an, bn)-adic filtration is equivalent to the filtra-
tion {(an, bn)M}n∈N. Then to finish the proof we have to show the (a ∩ b)-
adic filtration on M is equivalent to the filtration {(an ∩ bn)M}n∈N. Note
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that (ab)nM ⊆ (an ∩ bn)M ⊆ anM ∩ bnM for all n ∈ N. Let m ∈ N denote
a given integer. By Artin-Rees Lemma [2, Ch. III,3, Cor. 1], there exists an
k ∈ N such that anN ∩ bmN ⊆ an−kbmN for all n ≥ k. Note too that the
ab-adic and the a∩b-adic topology on M are equivalent. If consider the long
exact cohomology sequence and the definition of Formal local cohomology
defined by a pair of ideals finishes the proof.

Corollary 5.2. Let a, b, I, J ideals of a local ring (R,m, k), i ∈ Z and M be
a finitely generated R-module.

(a) If M is J-torsion R-module, there is a long exact sequence

· · · → Fi
a∩b,m,J(M)→ Fi

a,m,J(M)⊕Fi
b,m,J(M)→ Fi

(a,b),m,J(M)→ Fi+1
a∩b,m,J(M)→ · · ·

(b) If M is J-torsion R-module and
√
I + J = m, there is a long exact

sequence

· · · → Fi
a∩b,I,J(M)→ Fi

a,I,J(M)⊕Fi
b,I,J(M)→ Fi

(a,b),I,J(M)→ Fi+1
a∩b,I,J(M)→ · · ·

(c) If M is Artinian R-module, there is a long exact sequence

· · · → Fi
a∩b,I,J(M)→ Fi

a,I,J(M)⊕Fi
b,I,J(M)→ Fi

(a,b),I,J(M)→ Fi+1
a∩b,I,J(M)→ · · · .

Proof. We will go show the proof of a) and the other cases are analogous. Be-
cause M is J-torsion, any quotient of M is too J-torsion. Then, by Corollary
2.6 and theorem previous we have the statement.

6 Local duality for an pair of ideals

Let (R,m,K) be a d-dimensional Cohen-Macaulay local ring with a canonical
module ω. Then, for 0 ≤ i ≤ d, it is well known the existence of isomorphisms

H i
m(M) = Extd−iR (M,ω)∨

where (−)∨ = HomR(−, ER(K)) and Hd
m(R) ∼= ω∨. This result is called local

duality Theorem. There is a generalization of this result in [18, Theorem
5.1].

The purpose of this section is give a another proof of Local Duality The-
orem for a pair of ideals and, in our context, obtain any results about formal
local cohomology defined by a pair of ideals.
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Lemma 6.1. Let (R,m) denote a local ring, x = x1, · · · , xn be a system of
elements of R such that m = (x) and J ideal of R. If M a finitely generated
R-module then, for all i ∈ Z, there are the isomorphisms

H i
m,J(M) ∼= HomR(H−i(HomR(M,Dx,J)), E)

where E denotes the injective hull of R/m and Dx,J = HomR(Čx,J , E).

Proof. Proceeding analogously the construction made in [16, Theorem 1.7],
change D.

x by Dx,J we obtain the result.

Lemma 6.2. Let (R,m,K) be a local ring of dimension d, J be a perfect
ideal of R of grade t, i.e, pdRR/J = grade(J,R) = t. If R is Gorenstein
then

H i
m,J(R) =


0 if i 6= d− t⊕

htp=d−t
p∈W (m,J)

ER(R/p) if i = d− t .

Proof. Let I• be a minimal injective resolution of R. Since R is Gorenstein,
for each i one has an isomorphism

I i =
⊕
htp=i

ER(R/p).

Applying the functor Γm,J(−) and using the Proposition 1.11 in [18] fol-
lows the complex

0→
⊕
htp=0

p∈W (m,J)

ER(R/p)→
⊕
htp=1

p∈W (m,J)

ER(R/p)→
⊕
htp=2

p∈W (m,J)

ER(R/p)→ · · ·

Now, by Corollary 4.4 and Lemma 5.2 in [18], H i
m,J(R) = 0 for i 6= d− t and

Hd−t
m,J (R) =

⊕
htp=d−t
p∈W (m,J)

ER(R/p). This finishes the proof.

Theorem 6.3. Let (R,m,K) be a Gorenstein local ring of dimension d, J
be a perfect ideal of R of grade t, i.e, pdRR/J = grade(J,R) = t. If M is a
finitely generated R-module, there are isomorphisms

H i
m,J(M) ∼= Extd−t−iR (M,S)∨

for all 0 ≤ i ≤ d− t, where (−)∨ = HomR(−, ER(K)) and S = Hd−t
m,J (R)∨.
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Proof. Let x = x1, · · · , xn elements of R such that m = (x). SinceH i(Čx,J) ∼=
H i

m,J(R), by Lemma 6.2 follows

H i(Čx,J) =


0 if i 6= d− t⊕

htp=d−t
p∈W (m,J)

ER(R/p) if i = d− t .

Denote E =
⊕

htp=d−t
p∈W (m,J)

ER(R/p), follows that Čx,J is a flat resolution of E

shifted d− t places to the right. Therefore Dx,J = HomR(Čx,J , ER(K)) is an
injective resolution of HomR(E,E) shifted d− t places to the right. Since

H−i(HomR(M,Dx,J)) ∼= Extd−t−iR (M,HomR(E,E))

and HomR(E,E) = H i
m,J(R)∨ by Lemma 6.2, applying Lemma 6.1 we have

the statement.

The natural question is : The same theorem is true when R is Cohen
Macaulay?.
For answer this we need a preliminary observations. Let R be a commutative
noetherian ring, I, J two ideals of R and M be a R-module. Let

depth(I, J,M) = inf{i ∈ N0 ; H i
I,J(M) 6= 0}.

If we considerM is a finitely generated module over a local ring (R,m) and
J 6= R, by Theorem 4.5 in [18] and definition above, we have H i

m,J(M) 6= 0
for all

depth(m, J,M) ≤ i ≤ dimM/JM.

When depth(m, J,M) = dimM/JM , the R-module M 6= 0 is called
(m, J)-Cohen Macaulay (or if M = 0). If R itself is an (m, J)-Cohen-
Macaulay R-module we say that R is an (m, J)-Cohen Macaulay ring. In this
definition its obvious that J 6= 0. Note too that if J = 0 this natural defini-
tion of (m, J)-Cohen-Macaulay coincides with definition of Cohen-Macaulay
R-modules. The same definition can be made for any I, J two ideals of R
and for this, for more details we recommend see [1]. Under this comments,
we will go answer the question previous.
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Theorem 6.4. Let M 6= 0 be a finitely generated module over a local ring
(R,m,K). Suppose that R is (I, J)-Cohen-Macaulay where I + J is an m-
primary ideal. Then, there are isomorphisms

H i
I,J(M)∨ ∼= Extd̂−iR (M,S)

for all 0 ≤ i ≤ d̂, where (−)∨ = HomR(−, ER(K)), S = H d̂
I,J(R)∨ and

d̂ := dim(M/JM).

Proof. First note that since I + J is is an m-primary ideal, by Proposition
1.4 (6),(7) in [18] we have H i

I,J(R) = H i
m,J(R) for any i integer, i.e, in this

case R is (I, J)-Cohen Macaulay if and only if M is (m, J)-Cohen-Macaulay.
Thus we may assume that I = m.

Let x = x1, · · · , xn elements of R such that m = (x). Since H i(Čx,J) ∼=
H i

m,J(R) and R is (m, J)-Cohen-Macaulay, Čx,J is a flat resolution of H d̂
m,J(R)

shifted d̂ places to the right because H i
m,J(R) = 0 for all i 6= d̂ (see [18,

Theorem 4.5] or [1, Corollary 4.13]). Now,

H i
m,J(M) ∼= H i(Čx,J [−d̂]⊗RM) ∼= Hd̂−i(Čx,J ⊗RM) ∼= TorR

d̂−i(H
d̂
m,J(R),M).

Let K• be a free resolution of M . Thus, as Hd̂−i(K
• ⊗R H d̂

m,J(R)) ∼=
TorR

d̂−i(M,H d̂
m,J(R)), follows H i

m,J(M) ∼= Hd̂−i(K
• ⊗R H d̂

m,J(R)). Therefore,
for all i, we have

H i
m,J(M)∨ ∼= Hd̂−i(K

• ⊗R H d̂
m,J(R))∨

∼= H d̂−i((K• ⊗R H d̂
m,J(R))∨)

∼= H d̂−i(HomR(K• ⊗R H d̂
m,J(R), ER(K)))

∼= H d̂−i(HomR(K•, H d̂
m,J(R)∨))

∼= Extd̂−iR (M,H d̂
m,J(R)∨).

Remark 6.5. Note that this theorem is a generalization of Theorem 5.1 in
[18] because, if (R,m) is a Cohen-Macaulay complete local ring of dimension d
and J be a perfect ideal of R such that grade(J,R) = t, then dimR/J = d−t.
Therefore

H i
m,J(M)∨ ∼= Extd−t−iR (M,H d̂

m,J(R)∨)

for all integer i by theorem above.
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Remark 6.6. Which the same hypothesis of theorem above and suppose
that R is (I, J)-torsion R-module we obtain, by Corollary 1.13 in [18], that
R/J is an Artinian R-module. Therefore ΓI,J(R) ∼= ΓI,J(R)∨.

We are interested here now, using this previous results, is an character-
ization of formal local cohomology defined by a pair of ideals using local
cohomology and Matlis duality functor. The next result show this relation.

Theorem 6.7. Let (R,m) denote a local ring, x = x1, · · · , xn be a system
of elements of R such that m = (x) and J ideal of R. If M is a finitely
generated R-module then, for all i ∈ Z, there are the isomorphisms

Fia,m,J(M) ∼= HomR(H−ia (HomR(M,Dx,J)), ER(K)).

Proof. By Lemma 6.1, for n ∈ N, there are the isomorphisms

H i
m,J(M/anM) ∼= HomR(H−i(HomR(M,Dx,J)), ER(K))

for all i ∈ Z. By passing the projective limit and using the fact that
lim
→

HomR(M/anM,Dx,J) ∼= Γa(HomR(M/anM,Dx,J)) we obtain the state-

ment.

Remark 6.8. In the other hand, using the same hypothesis in Theorem 6.4
we obtain

Fia,I,J(M) ∼= HomR(lim
−→

Extd̂−iR (M/anM,S), ER(K)).

Note that, for all i ∈ Z, lim
−→

Extd̂−iR (M/anM,S) is exactly the generalized

local cohomology with respect to a (denoted by H d̂−i
a (M,S)), introduced by

Herzog in [9]. Therefore

Fia,I,J(M) ∼= H d̂−i
a (M,S)∨

where (−)∨ = HomR(−, ER(K)), i ∈ Z. This show the relation between the
formal local cohomology defined by a pair of ideals and the Matlis’ dual of
certain generalized local cohomology with respect to a.

For the next result we first need any considerations. Using the natu-
ral homomorphism R → R̂, where (R̂, m̂) denote the m-adic completion of
(R,m,K), by Theorem 2.3 we may assume the existence of the complex
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Dx,J = HomR(Čx,J , ER(K)). Now if x ∈ m, we are interested to relate how
the a-formal local cohomology and (a, x)-formal local cohomology, both de-
fined by a pair of ideals, are connected. The long exact sequence below show
this relation.

Theorem 6.9. Let (R,m) denote a local ring, x = x1, · · · , xn and y =
y1, · · · , yn system of elements of R such that m = (x), a = (y) and J ideal
of R. If M a finitely generated R-module and x ∈ m element of R, there is
the long exact sequence

· · · → HomR(Rx,J ,F
i
a,m,J(M))→ Fia,m,J(M)→ Fi(a,x),m,J(M)→ · · ·

for all i ∈ Z.

Proof. By comment above, let the complex Dx,J and Čx,J the Čech complex
for an element x ∈ m. So there is the short exact sequence of flat R-modules.

0→ Rx,J [−1]→ Čx,J → R→ 0.

Let H̃ = HomR(M,Dx,J). Tensoring the exact sequence above with Čy,J⊗ H̃,
it induces the following exact sequence of R-modules

0→ Čy,J ⊗ H̃⊗Rx,J [−1]→ Čy,x,J ⊗ H̃→ Čy,J ⊗ H̃→ 0.

Now, seeing the long exact cohomology sequence together with Theorem 2.4
in [18] we obtain, for all i ∈ Z,

· · · → H i
(a,xR),J(H̃)→ H i

a,J(H̃)→ H i
a,J(H̃)⊗Rx,J → · · · .

By applying the functor HomR(−, ER(K)) and the Theorem 6.7 we obtain
the result.

The natural consequence and application of this Theorem follow taking
a = 0. This result relates the formal local cohomology with respect to an
ideal generated by a single element and local cohomology , both defined by
a pair of ideals.

Corollary 6.10. With the same hypothesis of Theorem above, there is a
short exact sequence

· · · → HomR(Rx,J , H
i
m,J(M))→ H i

m,J(M)→ FixR,m,J(M)→ · · ·

for all i ∈ Z.
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7 Formal grade with respect to a pair of ide-

als

Let (R,m) is a local ring, I, J, a ideals as above and M denote a finitely
generated R-module. The concept of formal grade was introduced by Peskine
and Szpiro in [14] and not so much is known about this tool. I our approach,
since some any cases Fia,I,J(M) ∼= F̌ia,I,J(M), we need to give two definitions
for formal grade, different for the approach given by Schenzel in [15].

Definition 7.1. For an ideal a of R define by

fgrade(a, I, J,M) = inf{i ∈ Z : Fia,I,J(M) 6= 0}

and
f̌grade(a, I, J,M) = inf{i ∈ Z : F̌ia,I,J(M) 6= 0}.

Theorem 7.2. Let (R,m,K) be a Cohen-Macaulay complete local ring of
dimension d and let J 6= 0 be a perfect ideal of R of grade t, i.e, pdR(R/J) =
grade(J,R) = t. Then, for M be a finitely generated R-module,

fgrade(a,m, J,M) + cda(M,S) + grade(J,R) = dimR,

where S = Hd−t
m,J (R)∨.

Proof. By Theorem 6.4 H i
m,J(M) ∼= HomR(Extd−t−iR (M,S), ER). Thus

Fia,m,J(M) = lim
←−

H i
m,J(M/anM)

∼= lim
←−

HomR(Extd−t−iR (M/anM,S), ER(K))

= HomR(lim
−→

Extd−t−iR (M/anM,S), ER(K))

and since H i
a(M,S) = lim

−→
Extd−t−iR (M/anM,S) (see [9]), for all i ∈ Z, there

are isomorphisms

Fia,m,J(M) ∼= HomR(Hd−t−i
a (M,S), ER(K)).

Therefore

inf{i ∈ Z : Fia,m,J(M) 6= 0} = inf{i ∈ Z : Hd−t−i
a (M,S) 6= 0}

= inf{d− t− j : Hj
a(M,S) 6= 0}

= d− t− sup{j : Hj
a(M,S) 6= 0}

= dimR− grade(J,R)− cda(M,S).
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