On formal local cohomology modules with respect to a pair of ideals

V. H. Jorge Pérez^{1, *} and T.H. Freitas $^{2 \dagger}$

¹ Universidade de São Paulo - ICMC, Caixa Postal 668, 13560-970, São Carlos-SP, Brazil (*e-mail: vhjperez@icmc.usp.br*).

² Universidade de São Paulo - ICMC, Caixa Postal 668, 13560-970, São Carlos-SP, Brazil (*e-mail: tfreitas@icmc.usp.br*).

Abstract

We introduce a generalization of formal local cohomology module, which we call a formal local cohomology module with respect to a pair of ideals and study its various properties. We analyze their structure, the upper and lower vanishing and non-vanishing. There are various exact sequences concerning the formal cohomology modules. Among them a MayerVietoris sequence for two ideals with respect to pairs ideals. We also give another proof the generalized version of the local duality theorem.

1 Introduction

Throughout this paper R is a commutative Noetherian (non-zero identity) ring and $\mathfrak{a}, \mathfrak{b}, I, J$ be ideals of R. For an R-module M, its well known, for $i \in \mathbb{N}, H^i_{\mathfrak{a}}(M)$ denote the *i*-th local cohomology module of M with respect to \mathfrak{a} (see [3], [8] for more details).

^{*}Work partially supported by CNPq-Brazil - Grants 309316/2011-1, and FAPESP Grant 2012/20304-1

[†]Work partially supported by FAPESP-Brazil - Grant 308915/2006-2. 2000 Mathematics Subject Classification: 13H15(primary). *Key words*: Local Cohomology, Formal Local Cohomology, Dual.

When (R, \mathfrak{m}, k) be a local ring and M an R-module, Schenzel in [15], defined an object of study as follows. Let $\underline{x} = x_1, \ldots, x_r$ a system of elements of R and $\mathfrak{b} = \operatorname{Rad}(\underline{x}R)$ and $\check{C}_{\underline{x}}$ denote the \check{C} ech complex of R with respect to \underline{x} . The projective system of R-modules $\{M/\mathfrak{a}^n M\}_{n \in \mathbb{N}}$ induces a projective system of R-complexes $\{\check{C}_{\underline{x}} \otimes M/\mathfrak{a}^n M\}$. Consider the projective limit $\lim_{\underline{\mu} \in \mathbb{N}} (\check{C}_{\underline{x}} \otimes M/\mathfrak{a}^n M)$.

For an integer $i \in \mathbb{Z}$, the cohomology module $H^i(\lim_{\leftarrow} (\check{C}_{\underline{x}} \otimes M/\mathfrak{a}^n M))$ is called the *i*-th \mathfrak{a} -formal cohomology with respect to \mathfrak{b} , denoted by $\check{\mathfrak{F}}^i_{\mathfrak{a},\mathfrak{b}}(M)$. In the case of $\mathfrak{b} = \mathfrak{m}$ we speak simply about the *i*th \mathfrak{a} -formal cohomology.

Now, consider the family of local cohomology modules $\{H^i_{\mathfrak{b}}(M/\mathfrak{a}^n M)\}_{n\in\mathbb{N}}$. For every *n*, there is a natural homomorphism $H^i_{\mathfrak{b}}(M/\mathfrak{a}^{n+1}M) \to H^i_{\mathfrak{b}}(M/\mathfrak{a}^n M)$ such that the family forms a projective system. Their projective limit $\lim_{\leftarrow} H^i_{\mathfrak{b}}(M/\mathfrak{a}^n M)$ is called the *i*-th formal local of M with respect to \mathfrak{b} denoted by $\mathfrak{F}^i_{\mathfrak{a},\mathfrak{b}}(M)$. In [15] too, when $\mathfrak{b} = \mathfrak{m}$, Schenzel has proved the following isomorphism $\check{\mathfrak{F}}^i_{\mathfrak{a},\mathfrak{m}}(M) \cong \mathfrak{F}^i_{\mathfrak{a},\mathfrak{m}}(M)$, showing the relation between formal local cohomology and projective limits of some local cohomology modules.

In [18], Takahashi, Yoshino and Yoshizawa introduced a generalization of the notion of local cohomology module, call a local cohomology module with respect to a pair of ideals (I, J), and obtained various results, important for our purpose. More accurately, for *R*-module *M* (not necessarily finitely generated), the set of elements of *M*

$$\Gamma_{I,J}(M) = \{ x \in M \mid I^n x \subseteq Jx \text{ for } n \gg 1 \}$$

is a left exact functor, additive and covariant, from the category of all Rmodules, called (I, J)-torsion functor. For an integer i, the i-th right derived functor of $\Gamma_{I,J}$ is denoted by $H^i_{I,J}$ and will be call to as i-th local cohomology functor with respect to (I, J). For an R-module M, $H^i_{I,J}(M)$ refer as the i-th local cohomology module of M, with respect to (I, J) and $\Gamma_{I,J}(M)$ as the (I, J)- torsion part of M. When J = 0, the $H^i_{I,J}$ coincides with the usual local homology functor H^i_I .

In this paper too, the authors introduce a generalization of \check{C} ech complexes, as follows. For an element $x \in R$, let $S_{a,J}$ the set multiplicatively closed subset of R, consisting of all elements of the form $x^n + j$ where $j \in J$ and $n \in \mathbb{N}$. For an R-module M, let $M_{x,J} = S_{x,J}^{-1}M$. The complex $\check{C}_{\underline{x},J}$ is defined as

$$\dot{C}_{x,J}: 0 \to R \to R_{x,J} \to 0$$

where R is sitting in the 0th position and $R_{x,J}$ in the 1st position in the complex. For a system of elements of $R \underline{x} = x_1, \ldots, x_s$, define a complex $\check{C}_{\underline{x},J} = \bigotimes_{i=1}^s \check{C}_{\underline{x}_i,J}$. If J = 0 this definition coincides with the usual \check{C} ech complex with respect to $\underline{x} = x_1, \ldots, x_s$.

Now, we are able to introduce the new object of study and proof some results.

2 Formal local cohomology with respect to a pair of ideals

Again as done above, consider $\underline{x} = x_1, \ldots, x_s$ is a system of elements of R which generate the ideal I. Let $\check{C}_{\underline{x},J}$ the \check{C} ech complex of R with respect to (I, J). For an R-module M finitely generated and an ideal \mathfrak{a} the projective system of $\{M/\mathfrak{a}^n M\}_{n\in\mathbb{N}}$ induces a projective system of Rcomplexes $\{\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M\}$. Let the projective limit $\lim_{k \to \infty} (\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M)$.

Definition 2.1. Using the construction above, for an integer $i \in \mathbb{Z}$, the cohomology module $H^i(\lim_{\leftarrow} (\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M))$ is called the *i*-th \mathfrak{a} -formal cohomology with respect to (I, J), denoted by $\check{\mathfrak{F}}^i_{\mathfrak{a},I,J}(M)$.

Note that, if J = 0, $\check{C}_{\underline{x},J}$ coincides with the usual \check{C} ech complex $\check{C}_{\underline{x}}$ with respect to $\underline{x} = x_1, \ldots, x_s$. Therefore $\check{\mathfrak{F}}^i_{\mathfrak{a},I,0}(M) \cong \check{\mathfrak{F}}^i_{\mathfrak{a},I}(M)$. Now,if J = 0 and $I = \mathfrak{m}$ we have $\check{\mathfrak{F}}^i_{\mathfrak{a},\mathfrak{m},0}(M) \cong \check{\mathfrak{F}}^i_{\mathfrak{a},\mathfrak{m}}(M)$. This new definition is a natural generalization of \mathfrak{a} -formal cohomology with respect to \mathfrak{b} and \mathfrak{a} formal cohomology, both introduced by Schenzel in [15] and discussed by Mafi, Asgharzadeh and Divaaani-Aazar, Eghbali and Chu in other papers.

Proposition 2.2. Let R be a local Noetherian ring, $\underline{x} = x_1, \ldots, x_s$ elements of R, $I = (\underline{x})$ ideal of R and M finitely generated R-module. If M is Jtorsion R-module, then $\check{\mathfrak{F}}^i_{\mathfrak{a},I,J}(M) \cong \check{\mathfrak{F}}^i_{\mathfrak{a},I}(M)$.

Proof. By Takahashi and etal, in [18, Corollary 2.5], we have

$$(\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M)) \cong (\check{C}_{\underline{x}} \otimes M/\mathfrak{a}^n M)).$$

Applying the inverse limit we obtain

$$\lim(\check{C}_{x,J} \otimes M/\mathfrak{a}^n M)) \cong \lim(\check{C}_x \otimes M/\mathfrak{a}^n M)).$$

Therefore,

$$\tilde{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M) = H^{i}(\lim_{\leftarrow} (\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^{n}M)) \\
= H^{i}(\lim_{\leftarrow} (\check{C}_{\underline{x}} \otimes M/\mathfrak{a}^{n}M)) \\
= \check{\mathfrak{F}}^{i}_{\mathfrak{a},I}(M).$$

Theorem 2.3. Let I and J be ideals of R as before. Consider $\phi : R \to R'$ be a ring homomorphism and let M' be an R'-module. If $\phi(J) = JR'$, then there is a natural isomorphism $\check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M') \cong \check{\mathfrak{F}}^{i}_{\mathfrak{a}R',IR',JR'}(M')$.

Proof. Let $I = (x_1, \ldots, x_s)R$ and $\phi(\underline{x}) = \phi(x_1), \ldots, \phi(x_s)$. Let $S_{x_i,J}$ a multiplicatively closed subset of R, described in the construction of Čech complex for an element. By hypothesis $\phi(S_{x_i,J}) = S_{\phi(x_i),JR'}$ for all i with $1 \le i \le s$. Thus we have $\check{C}_{\underline{x},J} \otimes M' / \mathfrak{a}^n M'$ homotopic to $\check{C}_{\phi(\underline{x}),JR'} \otimes M' / \mathfrak{a}R'^n M'$. Applying the inverse limit and cohomology we have the statement.

Is important to remember that the hypothesis $\phi(J) = JR'$ in the theorem above cannot be remove. For more details see [18, Remark 2.8].

Now, let the family of local cohomology modules $\{H^i_{I,J}(M/\mathfrak{a}^n M)\}_{n\in\mathbb{N}}$. For every *n* there is a natural homomorphism $H^i_{I,J}(M/\mathfrak{a}^{n+1}M) \to H^i_{I,J}(M/\mathfrak{a}^n M)$ such that the family forms a projective system. Their projective limit $\lim_{\leftarrow} H^i_{I,J}(M/\mathfrak{a}^n M)$ is called the *i*-th formal local cohomoloy of M with respect

to a pair ideals I, J denoted by $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M)$.

The natural question is: When $\tilde{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M)$ is isomorphic to $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M)$?. For try answer this question, following result is proved.

Proposition 2.4. Using the notation preceding, there is the short exact sequence

$$0 \to \varprojlim^{1} H^{i-1}_{I,J}(M/\mathfrak{a}^{n}M) \to H^{i}(\varprojlim(\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^{n}M)) \to \varprojlim H^{i}_{I,J}(M/\mathfrak{a}^{n}M) \to 0$$

for all $i \in \mathbb{Z}$.

Proof. Let the natural epimorphism $M/\mathfrak{a}^{n+1}M \to M/\mathfrak{a}^n M$ and using the fact that \check{C} ech complex $\check{C}_{\underline{x},J}$ is a complex of flat *R*-modules, we have an *R*-morphism of *R*-complexes

$$\check{C}_{x,J} \otimes M/\mathfrak{a}^{n+1}M \to \check{C}_{x,J} \otimes M/\mathfrak{a}^n M$$

(which is degree-wise an epimorphism). By the definition of the projective limit, there is a short exact sequence of complexes

$$0 \to \lim_{\leftarrow} \left(\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M\right) \to \prod \left(\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M\right) \to \prod \left(\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M\right) \to 0$$

So, there is the long exact cohomology sequence

$$\cdots \to H^i(\lim_{\leftarrow} (\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M)) \to H^i(K^{\bullet}) \to H^i(K^{\bullet}) \to \cdots$$

where $K^{\bullet} = \prod (\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M).$

Applying [19, Theorem 3.5.8] in the complex $\mathbf{C}^{\bullet}: \check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M$ follows

$$0 \to \lim_{\leftarrow} {}^{1}H^{i-1}(\mathbf{C}^{\bullet}) \to H^{i}(\mathbf{C}^{\bullet}) \to \lim_{\leftarrow} H^{i}(\mathbf{C}^{\bullet}) \to 0.$$

Since $H^i_{I,J}(M/\mathfrak{a}^n M) \cong H^i(\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M)$ (see [18, Theorem 2.4]), for all *i* integer, the statement is proved.

Proposition 2.5. Let (R, \mathfrak{m}, k) be a local Noetherian ring, $\underline{x} = x_1, \ldots, x_s$ elements of R, $I = (\underline{x})$, J ideals of R and M finitely generated R-module.

- (a) If M is J-torsion R-module then $H^i_{\mathfrak{m},J}(M)$ is an Artinian R-module.
- (b) If M is J-torsion R-module and $\sqrt{I+J} = \mathfrak{m}$ then $H^i_{I,J}(M)$ is an Artinian R-module.

Proof. (a) Because $H^i_{\mathfrak{m},J}(M) \cong H^i_{\mathfrak{m}}(M)$ (see [18, Corollary 2.5])and the fact [3, Theorem 7.1.3], we have the statement.

(b) By Proposition 2.4. (vii) and (vi) in [13], $H^i_{I,J}(M) = H^i_{\sqrt{I+J},J}(M) = H^i_{\mathfrak{m},J}(M) = H^i_{\mathfrak{m}}(M)$ which is an Artinian *R*-module.

Corollary 2.6. Let (R, \mathfrak{m}, k) be a local Noetherian ring, $\underline{x} = x_1, \ldots, x_s$ elements of R, $I = (\underline{x}), J$ ideals of R and M finitely generated R-module.

- (a) If M is a J- torsion R-module then, for all $i \in \mathbb{Z}$, $\check{\mathfrak{F}}^{i}_{\mathfrak{a},\mathfrak{m},J}(M) = \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(M)$.
- (b) If M is a J- torsion R-module and $\sqrt{I+J} = \mathfrak{m}$ then, for all $i \in \mathbb{Z}$, $\check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M) = \mathfrak{F}^{i}_{\mathfrak{a},I,J}(M)$.

(c) If M is an Artinian R-module then $\check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M) = \mathfrak{F}^{i}_{\mathfrak{a},I,J}(M)$ for all $i \in \mathbb{Z}$.

Proof. For proof of the statement (a) note that, because M is J-torsion R-module, $M/\mathfrak{a}^n M$ is too J-torsion R-module. Then, by proposition above, $H^i_{\mathfrak{m},J}(M/\mathfrak{a}^n M)$ is an Artinian R-module, for all $i \in \mathbb{Z}$. So the family $\{H^i_{\mathfrak{m},J}(M/\mathfrak{a}^n M)\}_{n\in\mathbb{N}}, i\in\mathbb{N}$ satisfies the Mittag-Leffler condition. By Proposition 2.4 and using the fact that $\lim_{\leftarrow} 1$ vanishes on the projective system of Artinian R-modules, which proves the statement. The proof of (b) is analogous.

For (c), use the remark above to proof that $H^i_{I,J}(M/\mathfrak{a}^n M)$ is an Artinian R-module, for all $i \in \mathbb{Z}$. Applying the previous idea finishes the proof. \Box

Corollary 2.7. Let I and J be ideals of R as before. Consider $\phi : R \to R'$ be a ring homomorphism, M' be a finitely generated R'-module and $\phi(J) = JR'$.

- (a) If M' is a J-torsion R'-module then, for all $i \in \mathbb{Z}$, $\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(M') = \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m}',JR'}(M')$.
- (b) If M' is a J-torsion R'-module and $\sqrt{I+J} = \mathfrak{m}$ then, for all $i \in \mathbb{Z}$, $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M') = \mathfrak{F}^{i}_{\mathfrak{a}R',IR',JR'}(M').$
- (c) If M' is an Artinian R'-module, then for all $i \in \mathbb{Z}$, $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M') = \mathfrak{F}^{i}_{\mathfrak{a},R',JR',JR'}(M')$.

Proof. Since M' is too JR'-torsion R'-module, by previous corollary and Theorem 2.3 we have the proof of (a). The same idea can be used in assertions (b) and (c).

3 Cohomological dimension

Let a local Noetherian ring (R, \mathfrak{m}, k) , \mathfrak{a}, I, J ideals of R and M be a R-module finitely generated. We now establish some preliminary results on cohomological dimension of R-module M with respect to a pair of ideals (I, J). First, is known that Divaani-Aazr, Naghipour and Tousi in [5] were the precursors on the term "cohomological dimension", defined by

$$\operatorname{cd}(\mathfrak{a}, M) = \sup\{i \in \mathbb{Z} : H^i_\mathfrak{a}(M) \neq 0\}.$$

In our context, Chu and Wang in [4] define the cohomological dimension of R-module M with respect to a pair of ideals (I, J), defined by

 $cd(I, J, M) = \sup\{i \in \mathbb{Z} : H^r_{I,J}(M) \neq 0\}$

and gives a characterization about this integer.

Chu and Wang in [4] too generalize the result of P. Schenzel [15, Lema 2.1], using this new concept. This result is gives below.

Proposition 3.1. Let I be a proper of a commutative Noetherian ring R and M, N be a finitely generated R-modules such that $Supp_RN \subseteq Supp_RM$. Then $cd(I, J, N) \leq cd(I, J, M)$.

Corollary 3.2. Let M be a finitely generated R-module. Then

$$cd(I, J, M) = cd(I, J, R/Ann_R M) = \max\{cd(I, J, R/\mathfrak{p}) : \mathfrak{p} \in MinM\}$$

Proof. The proof is similar to the [15, Corollary 2.2].

Lemma 3.3. Let (R, \mathfrak{m}, k) a local ring, $\underline{x} = x_1, \ldots, x_s$ be a system of elements of the ring R, $\mathfrak{a} = (\underline{x})$, J ideals of R and M be a finitely generated R-module. Then

$$\operatorname{cd}((\mathfrak{a}, yR), J, M) \le \operatorname{cd}(\mathfrak{a}, J, M) + 1$$

for any element $y \in \mathfrak{m}$.

Proof. By construction in [18], we can consider the Čech complex

$$\check{C}_{\underline{x},y,J} = \left(\bigotimes_{i=1}^{s} \check{C}_{x_i,J}\right) \bigotimes \check{C}_{y,J}.$$

Now, for the natural homomorphism $\check{C}_{\underline{x},J} \to \check{C}_{\underline{x},J} \otimes R_y$, let the complex $M(f) = \check{C}_{\underline{x},J} \oplus (\check{C}_{\underline{x},J} \otimes R_y[-1])$ namely mapping cone. Note that the mapping cone M(f) is isomorphic to $\check{C}_{\underline{x},y,J}$, then we can consider the following exact sequence

$$0 \to \check{C}_{\underline{x},J} \otimes R_y[-1] \to \check{C}_{\underline{x},y,J} \to \check{C}_{\underline{x},J} \to 0.$$

By [16, Lemma 1.1] and using [18, Theorem 2.4], for all $n \in \mathbb{Z}$, there is a short exact sequence

$$0 \to H^1_{yR,J}(H^{n-1}_{\mathfrak{a},J}(M)) \to H^n_{(\mathfrak{a},yR),J}(M) \to H^0_{yR,J}(H^n_{\mathfrak{a},J}(M)) \to 0.$$

Let $j = \operatorname{cd}(\mathfrak{a}, J, M)$, then by the exact sequence previous and definition of cohomological dimension with respect to a pair of ideals, we have $H^{i+1}_{(\mathfrak{a}, yR), J}(M) =$ 0 for all i > j. Therefore $\operatorname{cd}((\mathfrak{a}, yR), J, M) \leq j + 1$, and the proof is completed.

Theorem 3.4. Let (R, \mathfrak{m}, k) a local ring, $\underline{x} = x_1, \ldots, x_s$ be a system of elements of the ring R and $\mathfrak{a}, I = (\underline{x})$ and J ideals of R. Let $0 \to A \to B \to C \to 0$ denote a short exact sequence of finitely generated R-modules. Then there is a long exact sequence

$$\cdots \to \check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(A) \to \check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(B) \to \check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(C) \to \check{\mathfrak{F}}^{i+1}_{\mathfrak{a},I,J}(A) \to \cdots$$

Proof. It is well known that the short exact sequence previous induces a projective system of short exact sequences

$$0 \to \check{C}_{\underline{x},J} \otimes A/B \cap \mathfrak{a}^n A \to \check{C}_{\underline{x},J} \otimes B/\mathfrak{a}^n B \to \check{C}_{\underline{x},J} \otimes C/\mathfrak{a}^n C \to 0$$

for all $n \in \mathbb{N}$. Because $\check{C}_{\underline{x},J}$ is a complex of flat *R*-modules and the maps

$$A/B \cap \mathfrak{a}^{n+1}A \to A/B \cap \mathfrak{a}^nA$$

are surjective, it follows that the projective system of R-complexes $\{\check{C}_{\underline{x},J} \otimes A/B \cap \mathfrak{a}^n A\}$ satisfies the Mittag-Leffler condition. Therefore, applying the inverse limit, we have the exact sequence of complexes

$$0 \to \lim_{\longleftarrow} \check{C}_{\underline{x},J} \otimes A/B \cap \mathfrak{a}^n A \to \lim_{\longleftarrow} \check{C}_{\underline{x},J} \otimes B/\mathfrak{a}^n B \to \lim_{\longleftarrow} \check{C}_{\underline{x},J} \otimes C/\mathfrak{a}^n C \to 0$$

In the case $\{B \cap \mathfrak{a}^n A\}$ is equivalent to the \mathfrak{a} -adic topology on A and by Artin-Rees lemma [2, Ch. III,3, Cor. 1], we have

$$\cdots \to H^{i}(\lim_{\leftarrow} \check{C}_{\underline{x},J} \otimes A/\mathfrak{a}^{n}A) \to H^{i}(\lim_{\leftarrow} \check{C}_{\underline{x},J} \otimes B/\mathfrak{a}^{n}B) \to H^{i}(\lim_{\leftarrow} \check{C}_{\underline{x},J} \otimes C/\mathfrak{a}^{n}C) \to \cdots.$$

Using the definition of Formal local cohomology defined by a pair of ideals finishes the proof.

Corollary 3.5. Using the same hypothesis of theorem above, there is the long exact sequence:

(a)

$$\cdots \to \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(A) \to \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(B) \to \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(C) \to \mathfrak{F}^{i+1}_{\mathfrak{a},\mathfrak{m},J}(A) \to \cdots$$
if B is a J-torsion R-modules.

(b)

$$\cdots \to \mathfrak{F}^{i}_{\mathfrak{a},I,J}(A) \to \mathfrak{F}^{i}_{\mathfrak{a},I,J}(B) \to \mathfrak{F}^{i}_{\mathfrak{a},I,J}(C) \to \mathfrak{F}^{i+1}_{\mathfrak{a},I,J}(A) \to \cdots$$
if B is a J-torsion R-modules and $\sqrt{I+J} = \mathfrak{m}$.
(c)

$$\cdots \to \mathfrak{F}^{i}_{\mathfrak{a},I,J}(A) \to \mathfrak{F}^{i}_{\mathfrak{a},I,J}(B) \to \mathfrak{F}^{i}_{\mathfrak{a},I,J}(C) \to \mathfrak{F}^{i+1}_{\mathfrak{a},I,J}(A) \to \cdots$$

if B is an Artinian R-module.

Proof. For proof of all the cases, apply Corollary 2.6 and theorem previous. \Box

Proposition 3.6. Let (R, \mathfrak{m}, k) a local ring, $\underline{x} = x_1, \ldots, x_n$ be a system of elements of the ring R and $\mathfrak{a}, I = (\underline{x})$ and J ideals of R. Consider M a finitely generated R-module, $N \subseteq M$ be a R-module such that $Supp N \cap V(\mathfrak{a}) \subseteq V(\mathfrak{m})$ and $\overline{M} = M/N$. Then there is a short exact sequence

$$0 \to N^{\mathfrak{a}} \to \mathfrak{F}^{0}_{\mathfrak{a},I,J}(M) \to \mathfrak{F}^{0}_{\mathfrak{a},I,J}(\overline{M}) \to 0$$

and isomorphisms $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) \cong \mathfrak{F}^{i}_{\mathfrak{a},I,J}(\overline{M})$ for all $i \geq 1$.

Proof. Consider the short sequence exact $0 \to N \to M \to \overline{M} \to 0$. As well as in Theorem 3.4, there is the following long exact sequence

$$0 \to \check{C}_{\underline{x},J} \otimes N/\mathfrak{a}^n N \to \check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M \to \check{C}_{\underline{x},J} \otimes \overline{M}/\mathfrak{a}^n \overline{M} \to 0$$

for all $n \in \mathbb{N}$. By view of the long exact cohomology sequence it follows that there is a long exact sequence

$$\cdots \to H^{i}(\check{C}_{\underline{x},J} \otimes N/\mathfrak{a}^{n}N) \to H^{i}(\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^{n}M) \to H^{i}(\check{C}_{\underline{x},J} \otimes \overline{M}/\mathfrak{a}^{n}\overline{M}) \to \cdots$$

By [18], $H^i(\check{C}_{\underline{x},J} \otimes X) \cong H^i_{I,J}(X)$ for all *R*-module *X*, so

$$\cdots \to H^i_{I,J}(N/\mathfrak{a}^n N) \to H^i_{I,J}(M/\mathfrak{a}^n M) \to H^i_{I,J}(\overline{M}/\mathfrak{a}^n \overline{M}) \to \cdots$$

The assumption Supp $N \cap V(\mathfrak{a}) \subseteq V(\mathfrak{m})$ implies that $N/\mathfrak{a}^n N$ is an *R*-module of finite length, for all $n \in \mathbb{N}$. By Theorem 4.7 in [18], for all i > 0, $H^i_{I,J}(N/\mathfrak{a}^n N) = 0$. Therefore we have

$$0 \to H^0_{I,J}(N/\mathfrak{a}^n N) \to H^0_{I,J}(M/\mathfrak{a}^n M) \to H^0_{I,J}(\overline{M}/\mathfrak{a}^n \overline{M}) \to 0$$

and isomorphisms $H^i_{I,J}(M/\mathfrak{a}^n M) \cong H^i_{I,J}(\overline{M}/\mathfrak{a}^n \overline{M})$ for all i > 0. Note that the family $\{H^0_{I,J}(N/\mathfrak{a}^n N)\}_{n \in \mathbb{N}}$ of Artinian *R*-modules ([13], Theorem 3.7 show that $H^0_{I,J}(N/\mathfrak{a}^n N)$ is Artinian), satisfy the Mittag-Leffler condition. Passing to the projective limit in the exact sequence previous we have

$$0 \to \mathfrak{F}^0_{\mathfrak{a},I,J}(N) \to \mathfrak{F}^0_{\mathfrak{a},I,J}(M) \to \mathfrak{F}^0_{\mathfrak{a},I,J}(\overline{M}) \to 0$$

and isomorphisms $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) \cong \mathfrak{F}^{i}_{\mathfrak{a},I,J}(\overline{M})$ for all $i \geq 1$. Now, as for all i > 0 $H^{i}_{I,J}(N/\mathfrak{a}^{n}N) = 0$, by Corollary 4.2 in [18], M is (I, J)-torsion R-module. Therefore $H^{0}_{I,J}(N/\mathfrak{a}^{n}N) = N/\mathfrak{a}^{n}N$ and $\mathfrak{F}^{0}_{\mathfrak{a},I,J}(N) = \lim_{\longleftarrow} N/\mathfrak{a}^{n}N = N^{\mathfrak{a}}$.

Corollary 3.7. Consider the same hypothesis of proposition previous.

(a) If M is a J-torsion R-module there is a short exact sequence

$$0 \to \check{\mathfrak{F}}^0_{\mathfrak{a},\mathfrak{m},J}(N) \to \check{\mathfrak{F}}^0_{\mathfrak{a},\mathfrak{m},J}(M) \to \check{\mathfrak{F}}^0_{\mathfrak{a},\mathfrak{m},J}(\overline{M}) \to 0$$

and isomorphisms $\check{\mathfrak{F}}^{i}_{\mathfrak{a},\mathfrak{m},J}(M) \cong \check{\mathfrak{F}}^{i}_{\mathfrak{a},\mathfrak{m},J}(\overline{M}) = 0$ for all $i \ge 1$.

(b) If M is a J-torsion R-module and $\sqrt{I+J} = \mathfrak{m}$, there is a short exact sequence

$$0 \to \check{\mathfrak{F}}^0_{\mathfrak{a},I,J}(N) \to \check{\mathfrak{F}}^0_{\mathfrak{a},I,J}(M) \to \check{\mathfrak{F}}^0_{\mathfrak{a},I,J}(\overline{M}) \to 0$$

and isomorphisms $\check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M) \cong \check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(\overline{M}) = 0$ for all $i \geq 1$.

Proof. Use the Corollary 2.6 and proposition above.

Theorem 3.8. Let M be a finitely generated R-module. Choose $x \in \mathfrak{m}$ an element such that $x \notin \mathfrak{p}$ for all $\mathfrak{p} \in Ass_R M \setminus \{\mathfrak{m}\}$, and let M' = M/xM.

(a) If M is a J-torsion R-module there are short exact sequence

$$0 \to H_0(x; \varprojlim H^i_{\mathfrak{m},J}M/\mathfrak{a}^n M) \to \varprojlim H^i_{\mathfrak{m},J}(M'/\mathfrak{a}^n M') \to H_1(x; \varprojlim H^{i+1}_{\mathfrak{m},J}M/\mathfrak{a}^n M) \to 0$$

for all $i \in \mathbb{Z}$.

(b) If M is a J-torsion R-module and $\sqrt{I+J} = \mathfrak{m}$, there are short exact sequence

$$0 \to H_0(x; \varprojlim H^i_{I,J}M/\mathfrak{a}^n M) \to \varprojlim H^i_{I,J}(M'/\mathfrak{a}^n M') \to H_1(x; \varprojlim H^{i+1}_{I,J}M/\mathfrak{a}^n M) \to 0$$

for all $i \in \mathbb{Z}$.

Proof. We will proof of a), and b) is analogue. By the choice of x it follows that $0:_M x$ is an *R*-module of finite length. Moreover the multiplication by x induces an exact sequence

$$0 \to 0 :_M x \to M \xrightarrow{x} M \to M' \to 0$$

breaks into two short exact sequences $0 \to N \to M \to \overline{M} \to 0$, where $N = 0 :_M x$ and $\overline{M} = M/N$, and $0 \to \overline{M} \xrightarrow{x} M \to M' \to 0$.

The first of this sequences induces the isomorphisms $\lim_{\leftarrow} H^i_{\mathfrak{m},J}(M/\mathfrak{a}^n M) \cong$ $\lim_{\leftarrow} H^i_{\mathfrak{m},J}(\overline{M}/\mathfrak{a}^n \overline{M})$ for all i > 0 and a short exact sequence

$$0 \to N^{\mathfrak{a}} \to \lim H^0_{\mathfrak{m},J}(M/\mathfrak{a}^n M) \to \lim H^0_{\mathfrak{m},J}(\overline{M}/\mathfrak{a}^n \overline{M}) \to 0$$

by Proposition 3.6. By Corollary 3.5, the second sequence induces a long exact sequence for the formal cohomology modules

$$\cdots \to \lim_{\leftarrow} H^i_{\mathfrak{m},J}(\overline{M}/\mathfrak{a}^n\overline{M}) \xrightarrow{x} \lim_{\leftarrow} H^i_{\mathfrak{m},J}(M/\mathfrak{a}^nM) \to \lim_{\leftarrow} H^i_{\mathfrak{m},J}(\overline{M'}/\mathfrak{a}^n\overline{M'}) \to \cdots$$

With the isomorphisms above this proves the claim for i > 0. To this end one has to break up the long exact sequence into short exact sequences. For the proof in the case i = 0, the only remaining case, consider the composite of the above short exact sequence with the previous one for i = 0. Then this completes the proof for i = 0.

4 Non-vanishing

Let M be a finitely generated R-module. Let $\mathfrak{a}, I = (\underline{x}), J$ ideals in the local ring (R, \mathfrak{m}, k) . In this section, our purpose is to know the integers $\sup\{i \in \mathbb{Z} \mid \check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M) \neq 0\}$ and $\sup\{i \in \mathbb{Z} \mid \check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M) \neq 0\}$.

Proposition 4.1. Consider an ideal \mathfrak{a} such that $\dim(M/\mathfrak{a}M) = 0$. Then

(a)
$$\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) = \begin{cases} 0 & \text{if } i \neq 0\\ M^{\mathfrak{a}} & \text{if } i = 0, \end{cases}$$

(b) $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) = \check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M), \text{ for all } i \in \mathbb{Z}$

Proof. For (a), by [18, Theorem 4.7], $H^i_{I,J}(M/\mathfrak{a}^n M) = 0$ for $i \neq 0$ and by [18, Corollary 4.2], $M/\mathfrak{a}^n M$ is (I, J)- torsion *R*-module. Then $H^0_{I,J}(M/\mathfrak{a}^n M) = \Gamma_{I,J}(M/\mathfrak{a}^n M) = M/\mathfrak{a}^n M$. Passing to the projective limit finishes the proof. For proof of (b), use Proposition 2.4.

Theorem 4.2. Let M be a finitely generated module over a local ring (R, \mathfrak{m}, k) . Let \mathfrak{a}, I, J ideals of R such that $J \neq R$ and I+J is an \mathfrak{m} -primary ideal. Then,

$$\dim_R M/(\mathfrak{a}+J)M = \sup\{i \in \mathbb{Z} \mid \mathfrak{F}^i_{\mathfrak{a},I,J}(M) \neq 0\}.$$

Proof. By [18, Theorem 4.3], $H^i_{I,J}(M/\mathfrak{a}^n M) = 0$ for any $i > \dim \frac{M/\mathfrak{a}^n M}{J(M/\mathfrak{a}^n M)}$. But, $\dim \frac{M/\mathfrak{a}^n M}{J(M/\mathfrak{a}^n M)} = \dim \frac{M}{(J+\mathfrak{a})M}$ for all $n \in \mathbb{N}$. Therefore

$$\dim_R M/(\mathfrak{a}+J)M \ge \sup\{i \in \mathbb{Z} \mid \mathfrak{F}^i_{\mathfrak{a},I,J}(M) \neq 0\}.$$

On the other hand, let $r = \dim(\frac{M/\mathfrak{a}^n M}{J(M/\mathfrak{a}^n M)}) = \dim(\frac{M}{(J+\mathfrak{a})M})$ for all $n \in \mathbb{N}$. Since I + J is an \mathfrak{m} -primary ideal, we have $H^i_{I,J}(M) = H^i_{\mathfrak{m},J}(M)$ for any integer *i*. Thus we may assume $I = \mathfrak{m}$. Denote $\overline{M} = M/\mathfrak{a}^n M$, then the short exact sequence

$$0 \to J\overline{M} \to \overline{M} \to \overline{M}/J\overline{M} \to 0$$

induces an exact cohomology sequence

$$H^r_{\mathfrak{m},J}(\overline{M}) \to H^r_{\mathfrak{m},J}(\overline{M}/J\overline{M}) \to H^{r+1}_{\mathfrak{m},J}(J\overline{M}).$$

Since dim $J\overline{M}/J^2\overline{M} \leq \dim \overline{M}/J^2\overline{M} = \dim \overline{M}/J\overline{M} = r$, by [18, Theoren 4.3], $H^{r+1}_{\mathfrak{m},J}(J\overline{M}) = 0$. Because $\overline{M}/J\overline{M}$ is a *J*-torsion *R*-module, by [18, Corollary 2.5] and Grothendieck's non-vanishing theorem

$$H^r_{\mathfrak{m},J}(\overline{M}/J\overline{M}) \cong H^r_{\mathfrak{m}}(\overline{M}/J\overline{M}) \neq 0.$$

Therefore $H^r_{\mathfrak{m},J}(\overline{M}) \neq 0$ and this implies that $\mathfrak{F}^r_{\mathfrak{a},I,J}(M) \neq 0$. This proof the statement.

Remark 4.3. If M be a finitely generated R-module then:

(a) $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) = 0$ for any $i > \dim(M/\mathfrak{a}M)$. (see [18], Theorem 4.7)

- (b) $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) = 0$ for any $i > \dim(M/(\mathfrak{a} + J)M)$, if $J \neq R$. (see [18], Theorem 4.3)
- (c) $\mathfrak{F}^i_{\mathfrak{a},I,J}(M) = 0$ for any $i > \dim R/J$. (see [18], Corollary 4.4)
- (d) If M is (I, J)-torsion R, $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) = 0$ for any i integer. (see [18], Corollary 1.13)

5 The Mayer-Vietoris sequence

Theorem 5.1. Let $\mathfrak{a}, \mathfrak{b}, I, J$ ideals of a local ring (R, \mathfrak{m}, k) , $i \in \mathbb{Z}$ and M a finitely generated R-module. The there is the long exact sequence

$$\cdots \to \check{\mathfrak{F}}^{i}_{\mathfrak{a}\cap\mathfrak{b},I,J}(M) \to \check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M) \oplus \check{\mathfrak{F}}^{i}_{\mathfrak{b},I,J}(M) \to \check{\mathfrak{F}}^{i}_{(\mathfrak{a},\mathfrak{b}),I,J}(M) \to \check{\mathfrak{F}}^{i+1}_{\mathfrak{a}\cap\mathfrak{b},I,J}(M) \to \cdots$$

Proof. Let the following exact sequence

$$0 \to M/(\mathfrak{a}^n M \cap \mathfrak{b}^n M) \to M/\mathfrak{a}^n M \oplus M/\mathfrak{b}^n M \to M/(\mathfrak{a}^n, \mathfrak{b}^n) M \to 0.$$

Its induces a short exact sequence

$$0 \to \check{C}_{\underline{x},J} \otimes \frac{M}{(\mathfrak{a}^n M \cap \mathfrak{b}^n M)} \to (\check{C}_{\underline{x},J} \otimes \frac{M}{\mathfrak{a}^n M}) \oplus (\check{C}_{\underline{x},J} \otimes \frac{M}{\mathfrak{b}^n M}) \to \check{C}_{\underline{x},J} \otimes \frac{M}{(\mathfrak{a}^n, \mathfrak{b}^n) M} \to 0.$$

Because $\check{C}_{\underline{x},J}$ is a complex of flat *R*-modules and the maps

$$M/(\mathfrak{a}^{n+1} \cap \mathfrak{b}^{n+1})M \to M/(\mathfrak{a}^n \cap \mathfrak{b}^n)M$$

are surjective, it follows that the projective system of R-complexes $\{\check{C}_{\underline{x},J} \otimes M/\mathfrak{a}^n M \cap \mathfrak{b}^n M\}$ satisfies the Mittag-Leffler condition. Therefore, applying the inverse limit, we have the exact sequence of complexes

$$0 \to \varprojlim \check{C}_{\underline{x},J} \otimes \frac{M}{(\mathfrak{a}^n M \cap \mathfrak{b}^n M)} \to \varprojlim (\check{C}_{\underline{x},J} \otimes \frac{M}{\mathfrak{a}^n M}) \oplus \varprojlim (\check{C}_{\underline{x},J} \otimes \frac{M}{\mathfrak{b}^n M}) \to \\ \to \varprojlim \check{C}_{\underline{x},J} \otimes \frac{M}{(\mathfrak{a}^n, \mathfrak{b}^n)M} \to 0.$$

We can observe that the $(\mathfrak{a}^n, \mathfrak{b}^n)$ -adic filtration is equivalent to the filtration $\{(\mathfrak{a}^n, \mathfrak{b}^n)M\}_{n\in\mathbb{N}}$. Then to finish the proof we have to show the $(\mathfrak{a} \cap \mathfrak{b})$ adic filtration on M is equivalent to the filtration $\{(\mathfrak{a}^n \cap \mathfrak{b}^n)M\}_{n\in\mathbb{N}}$. Note that $(\mathfrak{ab})^n M \subseteq (\mathfrak{a}^n \cap \mathfrak{b}^n) M \subseteq \mathfrak{a}^n M \cap \mathfrak{b}^n M$ for all $n \in \mathbb{N}$. Let $m \in \mathbb{N}$ denote a given integer. By Artin-Rees Lemma [2, Ch. III,3, Cor. 1], there exists an $k \in \mathbb{N}$ such that $\mathfrak{a}^n N \cap \mathfrak{b}^m N \subseteq \mathfrak{a}^{n-k}\mathfrak{b}^m N$ for all $n \geq k$. Note too that the \mathfrak{ab} -adic and the $\mathfrak{a} \cap \mathfrak{b}$ -adic topology on M are equivalent. If consider the long exact cohomology sequence and the definition of Formal local cohomology defined by a pair of ideals finishes the proof.

Corollary 5.2. Let $\mathfrak{a}, \mathfrak{b}, I, J$ ideals of a local ring (R, \mathfrak{m}, k) , $i \in \mathbb{Z}$ and M be a finitely generated R-module.

(a) If M is J-torsion R-module, there is a long exact sequence

$$\cdots \to \mathfrak{F}^{i}_{\mathfrak{a}\cap\mathfrak{b},\mathfrak{m},J}(M) \to \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(M) \oplus \mathfrak{F}^{i}_{\mathfrak{b},\mathfrak{m},J}(M) \to \mathfrak{F}^{i}_{(\mathfrak{a},\mathfrak{b}),\mathfrak{m},J}(M) \to \mathfrak{F}^{i+1}_{\mathfrak{a}\cap\mathfrak{b},\mathfrak{m},J}(M) \to \cdots$$

(b) If M is J-torsion R-module and $\sqrt{I+J} = \mathfrak{m}$, there is a long exact sequence

$$\cdots \to \mathfrak{F}^{i}_{\mathfrak{a}\cap\mathfrak{b},I,J}(M) \to \mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) \oplus \mathfrak{F}^{i}_{\mathfrak{b},I,J}(M) \to \mathfrak{F}^{i}_{(\mathfrak{a},\mathfrak{b}),I,J}(M) \to \mathfrak{F}^{i+1}_{\mathfrak{a}\cap\mathfrak{b},I,J}(M) \to \cdots$$

(c) If M is Artinian R-module, there is a long exact sequence

$$\cdots \to \mathfrak{F}^{i}_{\mathfrak{a}\cap\mathfrak{b},I,J}(M) \to \mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) \oplus \mathfrak{F}^{i}_{\mathfrak{b},I,J}(M) \to \mathfrak{F}^{i}_{(\mathfrak{a},\mathfrak{b}),I,J}(M) \to \mathfrak{F}^{i+1}_{\mathfrak{a}\cap\mathfrak{b},I,J}(M) \to \cdots$$

Proof. We will go show the proof of a) and the other cases are analogous. Because M is J-torsion, any quotient of M is too J-torsion. Then, by Corollary 2.6 and theorem previous we have the statement.

6 Local duality for an pair of ideals

Let $(R, \mathfrak{m}, \mathbb{K})$ be a *d*-dimensional Cohen-Macaulay local ring with a canonical module ω . Then, for $0 \leq i \leq d$, it is well known the existence of isomorphisms

$$H^i_{\mathfrak{m}}(M) = \operatorname{Ext}_R^{d-i}(M,\omega)^{\vee}$$

where $(-)^{\vee} = \operatorname{Hom}_{R}(-, E_{R}(\mathbb{K}))$ and $H^{d}_{\mathfrak{m}}(R) \cong \omega^{\vee}$. This result is called local duality Theorem. There is a generalization of this result in [18, Theorem 5.1].

The purpose of this section is give a another proof of Local Duality Theorem for a pair of ideals and, in our context, obtain any results about formal local cohomology defined by a pair of ideals. **Lemma 6.1.** Let (R, \mathfrak{m}) denote a local ring, $\underline{x} = x_1, \dots, x_n$ be a system of elements of R such that $\mathfrak{m} = (\underline{x})$ and J ideal of R. If M a finitely generated R-module then, for all $i \in \mathbb{Z}$, there are the isomorphisms

$$H^{i}_{\mathfrak{m},J}(M) \cong \operatorname{Hom}_{R}(H^{-i}(\operatorname{Hom}_{R}(M, D_{x,J})), E)$$

where E denotes the injective hull of R/\mathfrak{m} and $D_{\underline{x},J} = \operatorname{Hom}_{R}(\check{C}_{\underline{x},J}, E)$.

Proof. Proceeding analogously the construction made in [16, Theorem 1.7], change D_x by $D_{\underline{x},J}$ we obtain the result.

Lemma 6.2. Let $(R, \mathfrak{m}, \mathbb{K})$ be a local ring of dimension d, J be a perfect ideal of R of grade t, i.e, $pd_R R/J = grade(J, R) = t$. If R is Gorenstein then

$$H^{i}_{\mathfrak{m},J}(R) = \begin{cases} 0 & \text{if } i \neq d-t \\ \bigoplus_{\substack{ht\mathfrak{p}=d-t\\\mathfrak{p}\in W(\mathfrak{m},J)}} E_{R}(R/\mathfrak{p}) & \text{if } i = d-t \end{cases}$$

Proof. Let I^{\bullet} be a minimal injective resolution of R. Since R is Gorenstein, for each i one has an isomorphism

$$I^i = \bigoplus_{ht\mathfrak{p}=i} E_R(R/\mathfrak{p}).$$

Applying the functor $\Gamma_{\mathfrak{m},J}(-)$ and using the Proposition 1.11 in [18] follows the complex

$$0 \to \bigoplus_{\substack{htp=0\\ \mathfrak{p}\in W(\mathfrak{m},J)}} E_R(R/\mathfrak{p}) \to \bigoplus_{\substack{htp=1\\ \mathfrak{p}\in W(\mathfrak{m},J)}} E_R(R/\mathfrak{p}) \to \bigoplus_{\substack{htp=2\\ \mathfrak{p}\in W(\mathfrak{m},J)}} E_R(R/\mathfrak{p}) \to \cdots$$

Now, by Corollary 4.4 and Lemma 5.2 in [18], $H^i_{\mathfrak{m},J}(R) = 0$ for $i \neq d-t$ and $H^{d-t}_{\mathfrak{m},J}(R) = \bigoplus_{\substack{ht\mathfrak{p}=d-t\\\mathfrak{p}\in W(\mathfrak{m},J)}} E_R(R/\mathfrak{p})$. This finishes the proof.

Theorem 6.3. Let $(R, \mathfrak{m}, \mathbb{K})$ be a Gorenstein local ring of dimension d, J be a perfect ideal of R of grade t, i.e., $pd_R R/J = grade(J, R) = t$. If M is a finitely generated R-module, there are isomorphisms

$$H^i_{\mathfrak{m},J}(M) \cong \operatorname{Ext}_R^{d-t-i}(M,S)^{\vee}$$

for all $0 \leq i \leq d-t$, where $(-)^{\vee} = \operatorname{Hom}_{R}(-, E_{R}(\mathbb{K}))$ and $S = H^{d-t}_{\mathfrak{m}, J}(R)^{\vee}$.

Proof. Let $\underline{x} = x_1, \dots, x_n$ elements of R such that $\mathfrak{m} = (\underline{x})$. Since $H^i(\check{C}_{\underline{x},J}) \cong H^i_{\mathfrak{m},J}(R)$, by Lemma 6.2 follows

$$H^{i}(\check{C}_{\underline{x},J}) = \begin{cases} 0 & \text{if } i \neq d-t \\ \bigoplus_{\substack{ht\mathfrak{p}=d-t\\\mathfrak{p}\in W(\mathfrak{m},J)}} E_{R}(R/\mathfrak{p}) & \text{if } i = d-t \end{cases}.$$

Denote $\overline{E} = \bigoplus_{\substack{ht \mathfrak{p}=d-t\\ \mathfrak{p}\in W(\mathfrak{m},J)}} E_R(R/\mathfrak{p})$, follows that $\check{C}_{\underline{x},J}$ is a flat resolution of \overline{E}

shifted d-t places to the right. Therefore $D_{\underline{x},J} = \operatorname{Hom}_R(\check{C}_{\underline{x},J}, E_R(\mathbb{K}))$ is an injective resolution of $\operatorname{Hom}_R(\overline{E}, E)$ shifted d-t places to the right. Since

$$H^{-i}(\operatorname{Hom}_R(M, D_{\underline{x}, J})) \cong \operatorname{Ext}_R^{d-t-i}(M, \operatorname{Hom}_R(\overline{E}, E))$$

and $\operatorname{Hom}_{R}(\overline{E}, E) = H^{i}_{\mathfrak{m},J}(R)^{\vee}$ by Lemma 6.2, applying Lemma 6.1 we have the statement.

The natural question is : The same theorem is true when R is Cohen Macaulay?.

For answer this we need a preliminary observations. Let R be a commutative noetherian ring, I, J two ideals of R and M be a R-module. Let

$$depth(I, J, M) = \inf\{i \in \mathbb{N}_0 ; H^i_{I,J}(M) \neq 0\}.$$

If we consider M is a finitely generated module over a local ring (R, \mathfrak{m}) and $J \neq R$, by Theorem 4.5 in [18] and definition above, we have $H^i_{\mathfrak{m},J}(M) \neq 0$ for all

$$\operatorname{depth}(\mathfrak{m}, J, M) \leq i \leq \dim M/JM.$$

When depth(\mathfrak{m}, J, M) = dim M/JM, the *R*-module $M \neq 0$ is called (\mathfrak{m}, J) -Cohen Macaulay (or if M = 0). If *R* itself is an (\mathfrak{m}, J) -Cohen-Macaulay *R*-module we say that *R* is an (\mathfrak{m}, J) -Cohen Macaulay ring. In this definition its obvious that $J \neq 0$. Note too that if J = 0 this natural definition of (\mathfrak{m}, J) -Cohen-Macaulay coincides with definition of Cohen-Macaulay *R*-modules. The same definition can be made for any *I*, *J* two ideals of *R* and for this, for more details we recommend see [1]. Under this comments, we will go answer the question previous.

Theorem 6.4. Let $M \neq 0$ be a finitely generated module over a local ring $(R, \mathfrak{m}, \mathbb{K})$. Suppose that R is (I, J)-Cohen-Macaulay where I + J is an \mathfrak{m} -primary ideal. Then, there are isomorphisms

$$H^i_{I,J}(M)^{\vee} \cong \operatorname{Ext}_R^{\widehat{d}-i}(M,S)$$

for all $0 \leq i \leq \hat{d}$, where $(-)^{\vee} = \operatorname{Hom}_R(-, E_R(\mathbb{K})), S = H_{I,J}^{\hat{d}}(R)^{\vee}$ and $\hat{d} := \dim(M/JM).$

Proof. First note that since I + J is is an **m**-primary ideal, by Proposition 1.4 (6),(7) in [18] we have $H^i_{I,J}(R) = H^i_{\mathfrak{m},J}(R)$ for any *i* integer, i.e, in this case R is (I, J)-Cohen Macaulay if and only if M is (\mathfrak{m}, J) -Cohen-Macaulay. Thus we may assume that $I = \mathfrak{m}$.

Let $\underline{x} = x_1, \dots, x_n$ elements of R such that $\mathfrak{m} = (\underline{x})$. Since $H^i(\check{C}_{\underline{x},J}) \cong H^i_{\mathfrak{m},J}(R)$ and R is (\mathfrak{m}, J) -Cohen-Macaulay, $\check{C}_{\underline{x},J}$ is a flat resolution of $H^{\widehat{d}}_{\mathfrak{m},J}(R)$ shifted \widehat{d} places to the right because $H^i_{\mathfrak{m},J}(R) = 0$ for all $i \neq \widehat{d}$ (see [18, Theorem 4.5] or [1, Corollary 4.13]). Now,

$$H^{i}_{\mathfrak{m},J}(M) \cong H^{i}(\check{C}_{\underline{x},J}[-\widehat{d}] \otimes_{R} M) \cong H_{\widehat{d}-i}(\check{C}_{\underline{x},J} \otimes_{R} M) \cong \operatorname{Tor}_{\widehat{d}-i}^{R}(H^{\widehat{d}}_{\mathfrak{m},J}(R), M).$$

Let K^{\bullet} be a free resolution of M. Thus, as $H_{\hat{d}-i}(K^{\bullet} \otimes_R H_{\mathfrak{m},J}^{\hat{d}}(R)) \cong$ $\operatorname{Tor}_{\hat{d}-i}^R(M, H_{\mathfrak{m},J}^{\hat{d}}(R))$, follows $H_{\mathfrak{m},J}^i(M) \cong H_{\hat{d}-i}(K^{\bullet} \otimes_R H_{\mathfrak{m},J}^{\hat{d}}(R))$. Therefore, for all i, we have

$$\begin{split} H^{i}_{\mathfrak{m},J}(M)^{\vee} &\cong H_{\widehat{d}-i}(K^{\bullet}\otimes_{R}H^{d}_{\mathfrak{m},J}(R))^{\vee} \\ &\cong H^{\widehat{d}-i}((K^{\bullet}\otimes_{R}H^{\widehat{d}}_{\mathfrak{m},J}(R))^{\vee}) \\ &\cong H^{\widehat{d}-i}(\operatorname{Hom}_{R}(K^{\bullet}\otimes_{R}H^{\widehat{d}}_{\mathfrak{m},J}(R),E_{R}(\mathbb{K}))) \\ &\cong H^{\widehat{d}-i}(\operatorname{Hom}_{R}(K^{\bullet},H^{\widehat{d}}_{\mathfrak{m},J}(R)^{\vee})) \\ &\cong \operatorname{Ext}_{R}^{\widehat{d}-i}(M,H^{\widehat{d}}_{\mathfrak{m},J}(R)^{\vee}). \end{split}$$

Remark 6.5. Note that this theorem is a generalization of Theorem 5.1 in [18] because, if (R, \mathfrak{m}) is a Cohen-Macaulay complete local ring of dimension d and J be a perfect ideal of R such that $\operatorname{grade}(J, R) = t$, then $\dim R/J = d-t$. Therefore

$$H^i_{\mathfrak{m},J}(M)^{\vee} \cong \operatorname{Ext}_R^{d-t-i}(M, H^d_{\mathfrak{m},J}(R)^{\vee})$$

for all integer i by theorem above.

Remark 6.6. Which the same hypothesis of theorem above and suppose that R is (I, J)-torsion R-module we obtain, by Corollary 1.13 in [18], that R/J is an Artinian R-module. Therefore $\Gamma_{I,J}(R) \cong \Gamma_{I,J}(R)^{\vee}$.

We are interested here now, using this previous results, is an characterization of formal local cohomology defined by a pair of ideals using local cohomology and Matlis duality functor. The next result show this relation.

Theorem 6.7. Let (R, \mathfrak{m}) denote a local ring, $\underline{x} = x_1, \dots, x_n$ be a system of elements of R such that $\mathfrak{m} = (\underline{x})$ and J ideal of R. If M is a finitely generated R-module then, for all $i \in \mathbb{Z}$, there are the isomorphisms

$$\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(M) \cong \operatorname{Hom}_{R}(H^{-i}_{\mathfrak{a}}(\operatorname{Hom}_{R}(M, D_{x,J})), E_{R}(\mathbb{K})).$$

Proof. By Lemma 6.1, for $n \in \mathbb{N}$, there are the isomorphisms

$$H^{i}_{\mathfrak{m},J}(M/\mathfrak{a}^{n}M) \cong \operatorname{Hom}_{R}(H^{-i}(\operatorname{Hom}_{R}(M, D_{x,J})), E_{R}(\mathbb{K}))$$

for all $i \in \mathbb{Z}$. By passing the projective limit and using the fact that $\lim_{\to} \operatorname{Hom}_R(M/\mathfrak{a}^n M, D_{\underline{x},J}) \cong \Gamma_{\mathfrak{a}}(\operatorname{Hom}_R(M/\mathfrak{a}^n M, D_{\underline{x},J}))$ we obtain the statement.

Remark 6.8. In the other hand, using the same hypothesis in Theorem 6.4 we obtain

$$\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) \cong \operatorname{Hom}_{R}(\underset{\longrightarrow}{\lim}\operatorname{Ext}_{R}^{d-i}(M/\mathfrak{a}^{n}M,S), E_{R}(\mathbb{K})).$$

Note that, for all $i \in \mathbb{Z}$, $\lim_{\to} \operatorname{Ext}_{R}^{\widehat{d}-i}(M/\mathfrak{a}^{n}M, S)$ is exactly the generalized local cohomology with respect to \mathfrak{a} (denoted by $H_{\mathfrak{a}}^{\widehat{d}-i}(M, S)$), introduced by Herzog in [9]. Therefore

$$\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) \cong H^{\widehat{d}-i}_{\mathfrak{a}}(M,S)^{\vee}$$

where $(-)^{\vee} = \operatorname{Hom}_{R}(-, E_{R}(\mathbb{K})), i \in \mathbb{Z}$. This show the relation between the formal local cohomology defined by a pair of ideals and the Matlis' dual of certain generalized local cohomology with respect to \mathfrak{a} .

For the next result we first need any considerations. Using the natural homomorphism $R \to \hat{R}$, where $(\hat{R}, \hat{\mathfrak{m}})$ denote the \mathfrak{m} -adic completion of $(R, \mathfrak{m}, \mathbb{K})$, by Theorem 2.3 we may assume the existence of the complex $D_{\underline{x},J} = \operatorname{Hom}_R(\check{C}_{\underline{x},J}, E_R(\mathbb{K}))$. Now if $x \in \mathfrak{m}$, we are interested to relate how the \mathfrak{a} -formal local cohomology and (\mathfrak{a}, x) -formal local cohomology, both defined by a pair of ideals, are connected. The long exact sequence below show this relation.

Theorem 6.9. Let (R, \mathfrak{m}) denote a local ring, $\underline{x} = x_1, \dots, x_n$ and $\underline{y} = y_1, \dots, y_n$ system of elements of R such that $\mathfrak{m} = (\underline{x}), \mathfrak{a} = (\underline{y})$ and J ideal of R. If M a finitely generated R-module and $x \in \mathfrak{m}$ element of R, there is the long exact sequence

$$\cdots \to \operatorname{Hom}_{R}(R_{x,J}, \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(M)) \to \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(M) \to \mathfrak{F}^{i}_{(\mathfrak{a},x),\mathfrak{m},J}(M) \to \cdots$$

for all $i \in \mathbb{Z}$.

Proof. By comment above, let the complex $D_{\underline{x},J}$ and $\check{C}_{x,J}$ the \check{C} ech complex for an element $x \in \mathfrak{m}$. So there is the short exact sequence of flat *R*-modules.

$$0 \to R_{x,J}[-1] \to C_{x,J} \to R \to 0.$$

Let $\widetilde{H} = \operatorname{Hom}_{R}(M, D_{\underline{x},J})$. Tensoring the exact sequence above with $\check{C}_{\underline{y},J} \otimes \widetilde{H}$, it induces the following exact sequence of *R*-modules

$$0 \to \check{C}_{\underline{y},J} \otimes \widetilde{\mathrm{H}} \otimes R_{x,J}[-1] \to \check{C}_{\underline{y},x,J} \otimes \widetilde{\mathrm{H}} \to \check{C}_{\underline{y},J} \otimes \widetilde{\mathrm{H}} \to 0.$$

Now, seeing the long exact cohomology sequence together with Theorem 2.4 in [18] we obtain, for all $i \in \mathbb{Z}$,

$$\cdots \to H^{i}_{(\mathfrak{a},xR),J}(\widetilde{\mathbf{H}}) \to H^{i}_{\mathfrak{a},J}(\widetilde{\mathbf{H}}) \to H^{i}_{\mathfrak{a},J}(\widetilde{\mathbf{H}}) \otimes R_{x,J} \to \cdots$$

By applying the functor $\operatorname{Hom}_R(-, E_R(\mathbb{K}))$ and the Theorem 6.7 we obtain the result.

The natural consequence and application of this Theorem follow taking $\mathfrak{a} = 0$. This result relates the formal local cohomology with respect to an ideal generated by a single element and local cohomology, both defined by a pair of ideals.

Corollary 6.10. With the same hypothesis of Theorem above, there is a short exact sequence

$$\cdots \to \operatorname{Hom}_{R}(R_{x,J}, H^{i}_{\mathfrak{m},J}(M)) \to H^{i}_{\mathfrak{m},J}(M) \to \mathfrak{F}^{i}_{xR,\mathfrak{m},J}(M) \to \cdots$$

for all $i \in \mathbb{Z}$.

7 Formal grade with respect to a pair of ideals

Let (R, \mathfrak{m}) is a local ring, I, J, \mathfrak{a} ideals as above and M denote a finitely generated R-module. The concept of formal grade was introduced by Peskine and Szpiro in [14] and not so much is known about this tool. I our approach, since some any cases $\mathfrak{F}^{i}_{\mathfrak{a},I,J}(M) \cong \check{\mathfrak{F}}^{i}_{\mathfrak{a},I,J}(M)$, we need to give two definitions for formal grade, different for the approach given by Schenzel in [15].

Definition 7.1. For an ideal \mathfrak{a} of R define by

$$fgrade(\mathfrak{a}, I, J, M) = \inf\{i \in \mathbb{Z} : \mathfrak{F}^{i}_{\mathfrak{a}, I, J}(M) \neq 0\}$$

and

$$\widetilde{f}$$
grade $(\mathfrak{a}, I, J, M) = \inf\{i \in \mathbb{Z} : \widetilde{\mathfrak{F}}^{i}_{\mathfrak{a}, I, J}(M) \neq 0\}.$

Theorem 7.2. Let $(R, \mathfrak{m}, \mathbb{K})$ be a Cohen-Macaulay complete local ring of dimension d and let $J \neq 0$ be a perfect ideal of R of grade t, i.e., $pd_R(R/J) = grade(J, R) = t$. Then, for M be a finitely generated R-module,

$$\operatorname{fgrade}(\mathfrak{a},\mathfrak{m},J,M) + \operatorname{cd}_{\mathfrak{a}}(M,S) + \operatorname{grade}(J,R) = \dim R_{\mathfrak{g}}$$

where $S = H^{d-t}_{\mathfrak{m},J}(R)^{\vee}$.

Proof. By Theorem 6.4 $H^i_{\mathfrak{m},J}(M) \cong \operatorname{Hom}_R(\operatorname{Ext}_R^{d-t-i}(M,S), E_R)$. Thus

$$\begin{aligned} \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(M) &= \lim_{\longleftarrow} H^{i}_{\mathfrak{m},J}(M/\mathfrak{a}^{n}M) \\ &\cong \lim_{\longleftarrow} \operatorname{Hom}_{R}(\operatorname{Ext}_{R}^{d-t-i}(M/\mathfrak{a}^{n}M,S),E_{R}(\mathbb{K})) \\ &= \operatorname{Hom}_{R}(\lim_{\longrightarrow} \operatorname{Ext}_{R}^{d-t-i}(M/\mathfrak{a}^{n}M,S),E_{R}(\mathbb{K})) \end{aligned}$$

and since $H^i_{\mathfrak{a}}(M, S) = \lim_{\longrightarrow} \operatorname{Ext}_R^{d-t-i}(M/\mathfrak{a}^n M, S)$ (see [9]), for all $i \in \mathbb{Z}$, there are isomorphisms

$$\mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(M) \cong \operatorname{Hom}_{R}(H^{d-t-i}_{\mathfrak{a}}(M,S), E_{R}(\mathbb{K})).$$

Therefore

$$\inf\{i \in \mathbb{Z} : \mathfrak{F}^{i}_{\mathfrak{a},\mathfrak{m},J}(M) \neq 0\} = \inf\{i \in \mathbb{Z} : H^{d-t-i}_{\mathfrak{a}}(M,S) \neq 0\}$$
$$= \inf\{d-t-j : H^{j}_{\mathfrak{a}}(M,S) \neq 0\}$$
$$= d-t - \sup\{j : H^{j}_{\mathfrak{a}}(M,S) \neq 0\}$$
$$= \dim R - \operatorname{grade}(J,R) - \operatorname{cd}_{\mathfrak{a}}(M,S).$$

References

- M. Aghapournahr, KH. Ahmadi-Amoli and M.Y. Sadegui, The concepts of depth of a pair of ideals (I, J) on modules and (I, J)-Cohen-Macaulay modules, arXiv:1301.1015, (2013).
- [2] N.Bourbaki, Algébre commutative, Hermann, Paris, 1961-1965.
- M.P Brodmann and R. Y. Sharp, Local cohomology- an algebraic introduction with geometric applications, Cambridge University Press,(1998).
- [4] L. Chu, and Q. Wang, Some results on local cohomology modules defined by a pair of ideals J.Math. Kyoto Univ, 49-1 (2009), 193-200.
- [5] K. Divaani- Aazr, R. Naghipour, M. Touse, Cohomological dimensionof certain algebraic varieties, Proc. Amer. Math. Soc., 130 (2002), 3537-3544.
- [6] K. Divaani- Aazr and P. Schenzel, *Ideal Topology, local cohomology and connectedness*, Math. Proc. Cambridge philos. Soc., **131** (2001), 211-226.
- [7] M. Eghbali, On Formal local cohomology, colocalization and endomorphism ring of top local cohomology modules, (2011) Thesis, Universitat Halle-Wittenberg.
- [8] A. Grothendieck, *Local Cohomology*, Notes by R. Hartshorne, Lecture Notes in Math., vol 20, Springer, 1966.
- [9] J. Herzog, Komplexe, Auflsungen und Dualitt in der lokalen Algebra, Habilitationsschrift, Universitt Regensburg (1970).
- [10] C. Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry, Res. Notes Math., 2 (1992), 93-108.
- [11] M. Mafi, Some results on the local cohomology modules, Arch Math (Basel), 87 (2006), 211-216.

- M. Mafi, Results on formal local cohomology modules, Bull. Malays. Math. Sci. Soc, (2) 36 (2013), n 1, 173-177.
- [13] T.T Nam and N. M. Tri, Some properties of generalized local cohomology modules with respect to a pair of ideals, (2013), arXiv:1011.4141.
- [14] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S, 42 (1972), 47-119.
- [15] P. Schenzel, On formal local cohomology and connectedness. J.Algebra. 315 (2007) 897-923.
- [16] P. Schenzel, On the use of local cohomology in Algebra and Geometry, Notes.
- [17] P. Schenzel, Proregular sequences, local cohomology, and completion. Math Scand.92 (2003), 161-180.
- [18] T. Takahashi, Y. Yoshino, and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals.J. Pure Appl. Algebra, 213,(2009), 582-600.
- [19] C.A, Weibel, An introduction to homological algebra, Cambridge University Press, 1994

Victor Hugo Jorge Pérez Universidade de São Paulo - ICMC email: vhjperez@icmc.usp.br

Thiago Henrique de Freitas Universidade de São Paulo - ICMC email: tfreitas@icmc.usp.br