On formal local cohomology modules with respect to a pair of ideals

V. H. Jorge Pérez ${ }^{1, *}$ and T.H. Freitas ${ }^{2} \dagger$
${ }^{1}$ Universidade de São Paulo - ICMC, Caixa Postal 668, 13560-970, São Carlos-SP, Brazil (e-mail: vhjperez@icmc.usp.br).
${ }^{2}$ Universidade de São Paulo - ICMC, Caixa Postal 668, 13560-970, São Carlos-SP, Brazil (e-mail: tfreitas@icmc.usp.br).

Abstract

We introduce a generalization of formal local cohomology module, which we call a formal local cohomology module with respect to a pair of ideals and study its various properties. We analyze their structure, the upper and lower vanishing and non-vanishing. There are various exact sequences concerning the formal cohomology modules. Among them a MayerVietoris sequence for two ideals with respect to pairs ideals. We also give another proof the generalized version of the local duality theorem.

1 Introduction

Throughout this paper R is a commutative Noetherian (non-zero identity) ring and $\mathfrak{a}, \mathfrak{b}, I, J$ be ideals of R. For an R-module M, its well known, for $i \in \mathbb{N}, H_{\mathfrak{a}}^{i}(M)$ denote the i-th local cohomology module of M with respect to \mathfrak{a} (see [3], [8] for more details).

[^0]When (R, \mathfrak{m}, k) be a local ring and M an R-module, Schenzel in [15], defined an object of study as follows. Let $\underline{x}=x_{1}, \ldots, x_{r}$ a system of elements of R and $\mathfrak{b}=\operatorname{Rad}(\underline{x} R)$ and $\check{C}_{\underline{x}}$ denote the \check{C} ech complex of R with respect to \underline{x}. The projective system of R-modules $\left\{M / \mathfrak{a}^{n} M\right\}_{n \in \mathbb{N}}$ induces a projective system of R-complexes $\left\{\check{C}_{\underline{x}} \otimes M / \mathfrak{a}^{n} M\right\}$. Consider the projective limit $\lim _{\leftarrow}\left(\check{C}_{\underline{x}} \otimes M / \mathfrak{a}^{n} M\right)$.

For an integer $i \in \mathbb{Z}$, the cohomology module $H^{i}\left(\lim _{\leftarrow}\left(\check{C}_{\underline{x}} \otimes M / \mathfrak{a}^{n} M\right)\right)$ is called the i-th \mathfrak{a}-formal cohomology with respect to \mathfrak{b}, denoted by $\breve{\mathfrak{F}}_{\mathfrak{a}, \mathfrak{b}}^{i}(M)$. In the case of $\mathfrak{b}=\mathfrak{m}$ we speak simply about the i th \mathfrak{a}-formal cohomology.

Now, consider the family of local cohomology modules $\left\{H_{\mathfrak{b}}^{i}\left(M / \mathfrak{a}^{n} M\right)\right\}_{n \in \mathbb{N}}$. For every n, there is a natural homomorphism $H_{\mathfrak{b}}^{i}\left(M / \mathfrak{a}^{n+1} M\right) \rightarrow H_{\mathfrak{b}}^{i}\left(M / \mathfrak{a}^{n} M\right)$ such that the family forms a projective system. Their projective limit $\lim _{\leftarrow} H_{\mathfrak{b}}^{i}\left(M / \mathfrak{a}^{n} M\right)$ is called the i-th formal local of M with respect to \mathfrak{b} denoted by $\mathfrak{F}_{\mathfrak{a}, \mathfrak{b}}^{i}(M)$. In [15] too, when $\mathfrak{b}=\mathfrak{m}$, Schenzel has proved the following isomorphism $\breve{\mathfrak{F}}_{\mathfrak{a}, \mathfrak{m}}^{i}(M) \cong \mathfrak{F}_{\mathfrak{a}, \mathfrak{m}}^{i}(M)$, showing the relation between formal local cohomology and projective limits of some local cohomology modules.

In [18], Takahashi, Yoshino and Yoshizawa introduced a generalization of the notion of local cohomology module, call a local cohomology module with respect to a pair of ideals (I, J), and obtained various results, important for our purpose. More accurately, for R-module M (not necessarily finitely generated), the set of elements of M

$$
\Gamma_{I, J}(M)=\left\{x \in M \mid I^{n} x \subseteq J x \text { for } n \gg 1\right\}
$$

is a left exact functor, additive and covariant, from the category of all R modules, called (I, J)-torsion functor. For an integer i, the i-th right derived functor of $\Gamma_{I, J}$ is denoted by $H_{I, J}^{i}$ and will be call to as i-th local cohomology functor with respect to (I, J). For an R-module $M, H_{I, J}^{i}(M)$ refer as the i-th local cohomology module of M, with respect to (I, J) and $\Gamma_{I, J}(M)$ as the (I, J) - torsion part of M. When $J=0$, the $H_{I, J}^{i}$ coincides with the usual local homology functor H_{I}^{i}.

In this paper too, the authors introduce a generalization of \check{C} ech complexes, as follows. For an element $x \in R$, let $S_{a, J}$ the set multiplicatively closed subset of R, consisting of all elements of the form $x^{n}+j$ where $j \in J$ and $n \in \mathbb{N}$. For an R-module M, let $M_{x, J}=S_{x, J}^{-1} M$. The complex $\check{C}_{\underline{x}, J}$ is defined as

$$
\check{C}_{\underline{x}, J}: 0 \rightarrow R \rightarrow R_{x, J} \rightarrow 0
$$

where R is sitting in the 0 th position and $R_{x, J}$ in the 1st position in the complex. For a system of elements of $R \underline{x}=x_{1}, \ldots, x_{s}$, define a complex $\check{C}_{\underline{x}, J}=\bigotimes_{i=1}^{s} \check{C}_{\underline{x}_{i}, J}$. If $J=0$ this definition coincides with the usual \check{C} ech complex with respect to $\underline{x}=x_{1}, \ldots, x_{s}$.

Now, we are able to introduce the new object of study and proof some results.

2 Formal local cohomology with respect to a pair of ideals

Again as done above, consider $\underline{x}=x_{1}, \ldots, x_{s}$ is a system of elements of R which generate the ideal I. Let $\check{C}_{x, J}$ the \check{C} ech complex of R with respect to (I, J). For an R-module M finitely generated and an ideal \mathfrak{a} the projective system of $\left\{M / \mathfrak{a}^{n} M\right\}_{n \in \mathbb{N}}$ induces a projective system of R complexes $\left\{\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right\}$. Let the projective limit $\lim _{\leftarrow}\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right)$.

Definition 2.1. Using the construction above, for an integer $i \in \mathbb{Z}$, the cohomology module $H^{i}\left(\underset{\leftarrow}{\lim }\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right)\right)$ is called the i-th \mathfrak{a}-formal cohomology with respect to (I, J), denoted by $\breve{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M)$.

Note that, if $J=0, \check{C}_{\underline{x}, J}$ coincides with the usual \check{C} ech complex $\check{C}_{\underline{x}}$ with respect to $\underline{x}=x_{1}, \ldots, x_{s}$. Therefore $\breve{\mathfrak{F}}_{\mathrm{a}, I, 0}^{i}(M) \cong \check{\mathfrak{F}}_{\mathrm{a}, I}^{i}(M)$. Now,if $J=0$ and $I=\mathfrak{m}$ we have $\breve{\mathfrak{F}}_{\mathfrak{a}, \mathfrak{m}, 0}^{i}(M) \cong \breve{\mathfrak{F}}_{\mathfrak{a}, \mathfrak{m}}^{i}(M)$. This new definition is a natural generalization of \mathfrak{a}-formal cohomology with respect to \mathfrak{b} and \mathfrak{a} formal cohomology, both introduced by Schenzel in [15] and discussed by Mafi, Asgharzadeh and Divaaani-Aazar, Eghbali and Chu in other papers.

Proposition 2.2. Let R be a local Noetherian ring, $\underline{x}=x_{1}, \ldots, x_{s}$ elements of $R, I=(\underline{x})$ ideal of R and M finitely generated R-module. If M is J torsion R-module, then $\check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M) \cong \breve{\mathfrak{F}}_{\mathfrak{a}, I}^{i}(M)$.

Proof. By Takahashi and etal, in [18, Corollary 2.5], we have

$$
\left.\left.\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right)\right) \cong\left(\check{C}_{\underline{x}} \otimes M / \mathfrak{a}^{n} M\right)\right) .
$$

Applying the inverse limit we obtain

$$
\left.\left.\lim _{\leftarrow}\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right)\right) \cong \lim _{\leftarrow}\left(\check{C}_{\underline{x}} \otimes M / \mathfrak{a}^{n} M\right)\right) .
$$

Therefore,

$$
\begin{aligned}
\check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M) & =H^{i}\left(\lim _{\overleftarrow{ }}\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right)\right) \\
& =H^{i}\left(\lim _{\overleftarrow{\prime}}\left(\check{C}_{\underline{x}} \otimes M / \mathfrak{a}^{n} M\right)\right) \\
& =\check{\mathfrak{F}}_{\mathfrak{a}, I}^{i}(M) .
\end{aligned}
$$

Theorem 2.3. Let I and J be ideals of R as before. Consider $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism and let M^{\prime} be an R^{\prime}-module. If $\phi(J)=J R^{\prime}$, then there is a natural isomorphism $\check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}\left(M^{\prime}\right) \cong \check{\mathfrak{F}}_{\mathfrak{a} R^{\prime}, I R^{\prime}, J R^{\prime}}^{i}\left(M^{\prime}\right)$.

Proof. Let $I=\left(x_{1}, \ldots, x_{s}\right) R$ and $\phi(\underline{x})=\phi\left(x_{1}\right), \ldots, \phi\left(x_{s}\right)$. Let $S_{x_{i}, J}$ a multiplicatively closed subset of R, described in the construction of \check{C} ech complex for an element. By hypothesis $\phi\left(S_{x_{i}, J}\right)=S_{\phi\left(x_{i}\right), J R^{\prime}}$ for all i with $1 \leq i \leq s$. Thus we have $\check{C}_{\underline{x}, J} \otimes M^{\prime} / \mathfrak{a}^{n} M^{\prime}$ homotopic to $\check{C}_{\phi(\underline{x}), J R^{\prime}} \otimes M^{\prime} / \mathfrak{a} R^{\prime n} M^{\prime}$. Applying the inverse limit and cohomology we have the statement.

Is important to remember that the hypothesis $\phi(J)=J R^{\prime}$ in the theorem above cannot be remove. For more details see [18, Remark 2.8].

Now, let the family of local cohomology modules $\left\{H_{I, J}^{i}\left(M / \mathfrak{a}^{n} M\right)\right\}_{n \in \mathbb{N}}$. For every n there is a natural homomorphism $H_{I, J}^{i}\left(M / \mathfrak{a}^{n+1} M\right) \rightarrow H_{I, J}^{i}\left(M / \mathfrak{a}^{n} M\right)$ such that the family forms a projective system. Their projective limit $\underset{\leftarrow}{\lim } H_{I, J}^{i}\left(M / \mathfrak{a}^{n} M\right)$ is called the i-th formal local cohomoloy of M with respect to a pair ideals I, J denoted by $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M)$.

The natural question is: When $\widetilde{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M)$ is isomorphic to $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M)$?. For try answer this question, following result is proved.
Proposition 2.4. Using the notation preceding, there is the short exact sequence

$$
0 \rightarrow \lim _{\leftarrow}^{1} H_{I, J}^{i-1}\left(M / \mathfrak{a}^{n} M\right) \rightarrow H^{i}\left(\lim _{\leftarrow}\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right)\right) \rightarrow \lim _{\leftarrow} H_{I, J}^{i}\left(M / \mathfrak{a}^{n} M\right) \rightarrow 0
$$

for all $i \in \mathbb{Z}$.
Proof. Let the natural epimorphism $M / \mathfrak{a}^{n+1} M \rightarrow M / \mathfrak{a}^{n} M$ and using the fact that \check{C} ech complex $\check{C}_{\underline{x}, J}$ is a complex of flat R-modules, we have an R-morphism of R-complexes

$$
\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n+1} M \rightarrow \check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M
$$

(which is degree-wise an epimorphism). By the definition of the projective limit, there is a short exact sequence of complexes
$0 \rightarrow \lim _{\leftarrow}\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right) \rightarrow \prod\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right) \rightarrow \prod\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right) \rightarrow 0$.
So, there is the long exact cohomology sequence

$$
\cdots \rightarrow H^{i}\left(\lim _{\leftarrow}\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right)\right) \rightarrow H^{i}\left(K^{\bullet}\right) \rightarrow H^{i}\left(K^{\bullet}\right) \rightarrow \cdots
$$

where $K^{\bullet}=\prod\left(\breve{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right)$.
Applying [19, Theorem 3.5.8] in the complex $\mathbf{C}^{\bullet}: \check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M$ follows

$$
0 \rightarrow \lim _{\leftarrow}^{1} H^{i-1}\left(\mathbf{C}^{\bullet}\right) \rightarrow H^{i}\left(\mathbf{C}^{\bullet}\right) \rightarrow \lim _{\leftarrow} H^{i}\left(\mathbf{C}^{\bullet}\right) \rightarrow 0 .
$$

Since $H_{I, J}^{i}\left(M / \mathfrak{a}^{n} M\right) \cong H^{i}\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right)$ (see [18, Theorem 2.4]), for all i integer, the statement is proved.

Proposition 2.5. Let (R, \mathfrak{m}, k) be a local Noetherian ring, $\underline{x}=x_{1}, \ldots, x_{s}$ elements of $R, I=(\underline{x})$, J ideals of R and M finitely generated R-module.
(a) If M is J-torsion R-module then $H_{\mathfrak{m}, J}^{i}(M)$ is an Artinian R-module.
(b) If M is J-torsion R-module and $\sqrt{I+J}=\mathfrak{m}$ then $H_{I, J}^{i}(M)$ is an Artinian R-module .

Proof. (a) Because $H_{\mathfrak{m}, J}^{i}(M) \cong H_{\mathfrak{m}}^{i}(M)$ (see [18, Corollary 2.5]) and the fact [3, Theorem 7.1.3], we have the statement.
(b) By Proposition 2.4. (vii) and (vi) in [13], $H_{I, J}^{i}(M)=H_{\sqrt{I+J}, J}^{i}(M)=$ $H_{\mathfrak{m}, J}^{i}(M)=H_{\mathfrak{m}}^{i}(M)$ which is an Artinian R-module.

Corollary 2.6. Let (R, \mathfrak{m}, k) be a local Noetherian ring, $\underline{x}=x_{1}, \ldots, x_{s}$ elements of $R, I=(\underline{x}), J$ ideals of R and M finitely generated R-module.
(a) If M is a J - torsion R-module then, for all $i \in \mathbb{Z}, \breve{\mathfrak{F}}_{\mathfrak{a}, \mathbf{m}, J}^{i}(M)=$ $\mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i}(M)$.
(b) If M is a J-torsion R-module and $\sqrt{I+J}=\mathfrak{m}$ then, for all $i \in \mathbb{Z}$, $\breve{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M)=\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M)$.
(c) If M is an Artinian R-module then $\check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M)=\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M)$ for all $i \in \mathbb{Z}$.

Proof. For proof of the statement (a) note that, because M is J-torsion R module, $M / \mathfrak{a}^{n} M$ is too J-torsion R-module. Then, by proposition above, $H_{\mathfrak{m}, J}^{i}\left(M / \mathfrak{a}^{n} M\right)$ is an Artinian R-module, for all $i \in \mathbb{Z}$. So the family $\left\{H_{\mathfrak{m}, J}^{i}\left(M / \mathfrak{a}^{n} M\right)\right\}_{n \in \mathbb{N}}, i \in \mathbb{N}$ satisfies the Mittag-Leffler condition. By Proposition 2.4 and using the fact that $\lim _{\leftarrow}^{1}$ vanishes on the projective system of Artinian R-modules, which proves the statement. The proof of (b) is analogous.

For (c), use the remark above to proof that $H_{I, J}^{i}\left(M / \mathfrak{a}^{n} M\right)$ is an Artinian R-module, for all $i \in \mathbb{Z}$. Applying the previous idea finishes the proof.

Corollary 2.7. Let I and J be ideals of R as before. Consider $\phi: R \rightarrow R^{\prime}$ be a ring homomorphism, M^{\prime} be a finitely generated R^{\prime}-module and $\phi(J)=J R^{\prime}$.
(a) If M^{\prime} is a J-torsion R^{\prime} - module then, for all $i \in \mathbb{Z}, \mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i}\left(M^{\prime}\right)=$ $\mathfrak{F}_{\mathfrak{a} R^{\prime}, \mathfrak{m} R^{\prime}, J R^{\prime}}^{i}\left(M^{\prime}\right)$.
(b) If M^{\prime} is a J-torsion R^{\prime}-module and $\sqrt{I+J}=\mathfrak{m}$ then, for all $i \in \mathbb{Z}$, $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}\left(M^{\prime}\right)=\mathfrak{F}_{\mathfrak{a} R^{\prime}, I R^{\prime}, J R^{\prime}}^{i}\left(M^{\prime}\right)$.
(c) If M^{\prime} is an Artinian R^{\prime}-module, then for all $i \in \mathbb{Z}, \mathfrak{F}_{\mathfrak{a}, I, J}^{i}\left(M^{\prime}\right)=$ $\mathfrak{F}_{\mathfrak{a} R^{\prime}, I R^{\prime}, J R^{\prime}}^{i}\left(M^{\prime}\right)$.

Proof. Since M^{\prime} is too $J R^{\prime}$-torsion R^{\prime}-module, by previous corollary and Theorem 2.3 we have the proof of (a). The same idea can be used in assertions (b) and (c).

3 Cohomological dimension

Let a local Noetherian ring $(R, \mathfrak{m}, k), \mathfrak{a}, I, J$ ideals of R and M be a R-module finitely generated. We now establish some preliminary results on cohomological dimension of R-module M with respect to a pair of ideals (I, J). First, is known that Divaani-Aazr, Naghipour and Tousi in [5] were the precursors on the term "cohomological dimension", defined by

$$
\operatorname{cd}(\mathfrak{a}, M)=\sup \left\{i \in \mathbb{Z}: H_{\mathfrak{a}}^{i}(M) \neq 0\right\}
$$

In our context, Chu and Wang in [4] define the cohomological dimension of R-module M with respect to a pair of ideals (I, J), defined by

$$
\operatorname{cd}(I, J, M)=\sup \left\{i \in \mathbb{Z}: H_{I, J}^{r}(M) \neq 0\right\}
$$

and gives a characterization about this integer.
Chu and Wang in [4] too generalize the result of P. Schenzel [15, Lema 2.1], using this new concept. This result is gives below.

Proposition 3.1. Let I be a proper of a commutative Noetherian ring R and M, N be a finitely generated R-modules such that $\operatorname{Supp}_{R} N \subseteq \operatorname{Supp}_{R} M$. Then $\operatorname{cd}(I, J, N) \leq \operatorname{cd}(I, J, M)$.

Corollary 3.2. Let M be a finitely generated R-module. Then

$$
\operatorname{cd}(I, J, M)=\operatorname{cd}\left(I, J, R / A n n_{R} M\right)=\max \{\operatorname{cd}(I, J, R / \mathfrak{p}): \mathfrak{p} \in \operatorname{Min} M\}
$$

Proof. The proof is similar to the [15, Corollary 2.2].

Lemma 3.3. Let (R, \mathfrak{m}, k) a local ring, $\underline{x}=x_{1}, \ldots, x_{s}$ be a system of elements of the ring $R, \mathfrak{a}=(\underline{x}), J$ ideals of R and M be a finitely generated R-module. Then

$$
\operatorname{cd}((\mathfrak{a}, y R), J, M) \leq \operatorname{cd}(\mathfrak{a}, J, M)+1
$$

for any element $y \in \mathfrak{m}$.
Proof. By construction in [18], we can consider the \check{C} ech complex

$$
\check{C}_{\underline{x}, y, J}=\left(\bigotimes_{i=1}^{s} \check{C}_{x_{i}, J}\right) \bigotimes \check{C}_{y, J}
$$

Now, for the natural homomorphism $\check{C}_{\underline{x}, J} \rightarrow \check{C}_{\underline{x}, J} \otimes R_{y}$, let the complex $M(f)=\check{C}_{\underline{x}, J} \oplus\left(\check{C}_{\underline{x}, J} \otimes R_{y}[-1]\right)$ namely mapping cone. Note that the mapping cone $M(f)$ is isomorphic to $C_{\underline{x}, y, J}$, then we can consider the following exact sequence

$$
0 \rightarrow \check{C}_{\underline{x}, J} \otimes R_{y}[-1] \rightarrow \check{C}_{\underline{x}, y, J} \rightarrow \check{C}_{\underline{x}, J} \rightarrow 0
$$

By [16, Lemma 1.1] and using [18, Theorem 2.4], for all $n \in \mathbb{Z}$, there is a short exact sequence

$$
0 \rightarrow H_{y R, J}^{1}\left(H_{\mathfrak{a}, J}^{n-1}(M)\right) \rightarrow H_{(\mathfrak{a}, y R), J}^{n}(M) \rightarrow H_{y R, J}^{0}\left(H_{\mathfrak{a}, J}^{n}(M)\right) \rightarrow 0 .
$$

Let $j=\operatorname{cd}(\mathfrak{a}, J, M)$, then by the exact sequence previous and definition of cohomological dimension with respect to a pair of ideals, we have $H_{(a, y R), J}^{i+1}(M)=$ 0 for all $i>j$. Therefore $\operatorname{cd}((\mathfrak{a}, y R), J, M) \leq j+1$, and the proof is completed.

Theorem 3.4. Let (R, \mathfrak{m}, k) a local ring, $\underline{x}=x_{1}, \ldots, x_{s}$ be a system of elements of the ring R and $\mathfrak{a}, I=(\underline{x})$ and J ideals of R. Let $0 \rightarrow A \rightarrow B \rightarrow$ $C \rightarrow 0$ denote a short exact sequence of finitely generated R-modules. Then there is a long exact sequence

$$
\cdots \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(A) \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(B) \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(C) \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i+1}(A) \rightarrow \cdots
$$

Proof. It is well known that the short exact sequence previous induces a projective system of short exact sequences

$$
0 \rightarrow \check{C}_{\underline{x}, J} \otimes A / B \cap \mathfrak{a}^{n} A \rightarrow \check{C}_{\underline{x}, J} \otimes B / \mathfrak{a}^{n} B \rightarrow \check{C}_{\underline{x}, J} \otimes C / \mathfrak{a}^{n} C \rightarrow 0
$$

for all $n \in \mathbb{N}$. Because $\check{C}_{\underline{x}, J}$ is a complex of flat R-modules and the maps

$$
A / B \cap \mathfrak{a}^{n+1} A \rightarrow A / B \cap \mathfrak{a}^{n} A
$$

are surjective, it follows that the projective system of R-complexes $\left\{\check{C}_{\underline{x}, J} \otimes\right.$ $\left.A / B \cap \mathfrak{a}^{n} A\right\}$ satisfies the Mittag-Leffler condition. Therefore, applying the inverse limit, we have the exact sequence of complexes

$$
0 \rightarrow \lim _{\leftarrow} \check{C}_{\underline{x}, J} \otimes A / B \cap \mathfrak{a}^{n} A \rightarrow \lim _{\leftarrow} \check{C}_{\underline{x}, J} \otimes B / \mathfrak{a}^{n} B \rightarrow \lim _{\leftarrow} \check{C}_{\underline{x}, J} \otimes C / \mathfrak{a}^{n} C \rightarrow 0
$$

In the case $\left\{B \cap \mathfrak{a}^{n} A\right\}$ is equivalent to the \mathfrak{a}-adic topology on A and by Artin-Rees lemma [2, Ch. III,3, Cor. 1], we have

$$
\cdots \rightarrow H^{i}\left(\lim _{\llbracket} \check{C}_{\underline{x}, J} \otimes A / \mathfrak{a}^{n} A\right) \rightarrow H^{i}\left(\lim _{\llbracket} \check{C}_{\underline{x}, J} \otimes B / \mathfrak{a}^{n} B\right) \rightarrow H^{i}\left(\lim _{\llbracket} \check{C}_{\underline{x}, J} \otimes C / \mathfrak{a}^{n} C\right) \rightarrow \cdots .
$$

Using the definition of Formal local cohomology defined by a pair of ideals finishes the proof.

Corollary 3.5. Using the same hypothesis of theorem above, there is the long exact sequence:
(a)

$$
\cdots \rightarrow \mathfrak{F}_{\mathfrak{a}, \mathbf{m}, J}^{i}(A) \rightarrow \mathfrak{F}_{\mathfrak{a}, \mathbf{m}, J}^{i}(B) \rightarrow \mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i}(C) \rightarrow \mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i+1}(A) \rightarrow \cdots
$$

if B is a J-torsion R-modules.
(b)

$$
\cdots \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(A) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(B) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(C) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{i+1}(A) \rightarrow \cdots
$$

if B is a J-torsion R-modules and $\sqrt{I+J}=\mathfrak{m}$.
(c)

$$
\cdots \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(A) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(B) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(C) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{i+1}(A) \rightarrow \cdots
$$

if B is an Artinian R-module.
Proof. For proof of all the cases, apply Corollary 2.6 and theorem previous.

Proposition 3.6. Let (R, \mathfrak{m}, k) a local ring, $\underline{x}=x_{1}, \ldots, x_{n}$ be a system of elements of the ring R and $\mathfrak{a}, I=(\underline{x})$ and J ideals of R. Consider M a finitely generated R-module, $N \subseteq M$ be a R-module such that Supp $N \cap V(\mathfrak{a}) \subseteq V(\mathfrak{m})$ and $\bar{M}=M / N$. Then there is a short exact sequence

$$
0 \rightarrow N^{\mathfrak{a}} \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{0}(M) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{0}(\bar{M}) \rightarrow 0
$$

and isomorphisms $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \cong \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(\bar{M})$ for all $i \geq 1$.
Proof. Consider the short sequence exact $0 \rightarrow N \rightarrow M \rightarrow \bar{M} \rightarrow 0$. As well as in Theorem 3.4, there is the following long exact sequence

$$
0 \rightarrow \check{C}_{\underline{x}, J} \otimes N / \mathfrak{a}^{n} N \rightarrow \check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M \rightarrow \check{C}_{\underline{x}, J} \otimes \bar{M} / \mathfrak{a}^{n} \bar{M} \rightarrow 0
$$

for all $n \in \mathbb{N}$. By view of the long exact cohomology sequence it follows that there is a long exact sequence
$\cdots \rightarrow H^{i}\left(\check{C}_{\underline{x}, J} \otimes N / \mathfrak{a}^{n} N\right) \rightarrow H^{i}\left(\check{C}_{\underline{x}, J} \otimes M / \mathfrak{a}^{n} M\right) \rightarrow H^{i}\left(\check{C}_{\underline{x}, J} \otimes \bar{M} / \mathfrak{a}^{n} \bar{M}\right) \rightarrow \cdots$
By [18], $H^{i}\left(\check{C}_{\underline{x}, J} \otimes X\right) \cong H_{I, J}^{i}(X)$ for all R-module X, so

$$
\cdots \rightarrow H_{I, J}^{i}\left(N / \mathfrak{a}^{n} N\right) \rightarrow H_{I, J}^{i}\left(M / \mathfrak{a}^{n} M\right) \rightarrow H_{I, J}^{i}\left(\bar{M} / \mathfrak{a}^{n} \bar{M}\right) \rightarrow \cdots .
$$

The assumption Supp $N \cap V(\mathfrak{a}) \subseteq V(\mathfrak{m})$ implies that $N / \mathfrak{a}^{n} N$ is an R-module of finite length, for all $n \in \mathbb{N}$. By Theorem 4.7 in [18], for all $i>0$, $H_{I, J}^{i}\left(N / \mathfrak{a}^{n} N\right)=0$. Therefore we have

$$
0 \rightarrow H_{I, J}^{0}\left(N / \mathfrak{a}^{n} N\right) \rightarrow H_{I, J}^{0}\left(M / \mathfrak{a}^{n} M\right) \rightarrow H_{I, J}^{0}\left(\bar{M} / \mathfrak{a}^{n} \bar{M}\right) \rightarrow 0
$$

and isomorphisms $H_{I, J}^{i}\left(M / \mathfrak{a}^{n} M\right) \cong H_{I, J}^{i}\left(\bar{M} / \mathfrak{a}^{n} \bar{M}\right)$ for all $i>0$. Note that the family $\left\{H_{I, J}^{0}\left(N / \mathfrak{a}^{n} N\right)\right\}_{n \in \mathbb{N}}$ of Artinian R-modules ([13], Theorem 3.7 show that $H_{I, J}^{0}\left(N / \mathfrak{a}^{n} N\right)$ is Artinian), satisfy the Mittag-Leffler condition. Passing to the projective limit in the exact sequence previous we have

$$
0 \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{0}(N) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{0}(M) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{0}(\bar{M}) \rightarrow 0
$$

and isomorphisms $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \cong \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(\bar{M})$ for all $i \geq 1$. Now, as for all $i>0$ $H_{I, J}^{i}\left(N / \mathfrak{a}^{n} N\right)=0$, by Corollary 4.2 in [18], M is (I, J)-torsion R-module. Therefore $H_{I, J}^{0}\left(N / \mathfrak{a}^{n} N\right)=N / \mathfrak{a}^{n} N$ and $\mathfrak{F}_{\mathfrak{a}, I, J}^{0}(N)=\lim _{\leftarrow} N / \mathfrak{a}^{n} N=N^{\mathfrak{a}}$.

Corollary 3.7. Consider the same hypothesis of proposition previous.
(a) If M is a J-torsion R-module there is a short exact sequence

$$
0 \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, \mathbf{m}, J}^{0}(N) \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, \mathbf{m}, J}^{0}(M) \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, \mathfrak{m}, J}^{0}(\bar{M}) \rightarrow 0
$$

and isomorphisms $\breve{\mathfrak{F}}_{\mathfrak{a}, \mathbf{m}, J}^{i}(M) \cong \breve{\mathfrak{F}}_{\mathfrak{a}, \mathbf{m}, J}^{i}(\bar{M})=0$ for all $i \geq 1$.
(b) If M is a J-torsion R-module and $\sqrt{I+J}=\mathfrak{m}$, there is a short exact sequence

$$
0 \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{0}(N) \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{0}(M) \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{0}(\bar{M}) \rightarrow 0
$$

and isomorphisms $\breve{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M) \cong \breve{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(\bar{M})=0$ for all $i \geq 1$.
Proof. Use the Corollary 2.6 and proposition above.
Theorem 3.8. Let M be a finitely generated R-module. Choose $x \in \mathfrak{m}$ an element such that $x \notin \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}_{R} M \backslash\{\mathfrak{m}\}$, and let $M^{\prime}=M / x M$.
(a) If M is a J-torsion R-module there are short exact sequence
$0 \rightarrow H_{0}\left(x ; \lim _{\leftarrow} H_{\mathbf{m}, J}^{i} M / \mathfrak{a}^{n} M\right) \rightarrow \lim _{\leftarrow} H_{\mathbf{m}, J}^{i}\left(M^{\prime} / \mathfrak{a}^{n} M^{\prime}\right) \rightarrow H_{1}\left(x ; \lim _{\leftarrow} H_{\mathbf{m}, J}^{i+1} M / \mathfrak{a}^{n} M\right) \rightarrow 0$ for all $i \in \mathbb{Z}$.
(b) If M is a J-torsion R-module and $\sqrt{I+J}=\mathfrak{m}$, there are short exact sequence
$0 \rightarrow H_{0}\left(x ; \lim H_{I, J}^{i} M / \mathfrak{a}^{n} M\right) \rightarrow \lim _{\leftrightarrows} H_{I, J}^{i}\left(M^{\prime} / \mathfrak{a}^{n} M^{\prime}\right) \rightarrow H_{1}\left(x ; \lim _{\leftrightarrows} H_{I, J}^{i+1} M / \mathfrak{a}^{n} M\right) \rightarrow 0$
for all $i \in \mathbb{Z}$.

Proof. We will proof of a), and b) is analogue. By the choice of x it follows that $0:_{M} x$ is an R-module of finite length. Moreover the multiplication by x induces an exact sequence

$$
0 \rightarrow 0:_{M} x \rightarrow M \xrightarrow{x} M \rightarrow M^{\prime} \rightarrow 0
$$

breaks into two short exact sequences $0 \rightarrow N \rightarrow M \rightarrow \bar{M} \rightarrow 0$, where $N=0:_{M} x$ and $\bar{M}=M / N$, and $0 \rightarrow \bar{M} \xrightarrow{x} M \rightarrow M^{\prime} \rightarrow 0$.

The first of this sequences induces the isomorphisms $\lim _{\leftarrow} H_{\mathfrak{m}, J}^{i}\left(M / \mathfrak{a}^{n} M\right) \cong$ $\lim _{\leftarrow} H_{\mathfrak{m}, J}^{i}\left(\bar{M} / \mathfrak{a}^{n} \bar{M}\right)$ for all $i>0$ and a short exact sequence

$$
0 \rightarrow N^{\mathfrak{a}} \rightarrow \lim _{\leftarrow} H_{\mathfrak{m}, J}^{0}\left(M / \mathfrak{a}^{n} M\right) \rightarrow \lim _{\leftarrow} H_{\mathfrak{m}, J}^{0}\left(\bar{M} / \mathfrak{a}^{n} \bar{M}\right) \rightarrow 0
$$

by Proposition 3.6. By Corollary 3.5, the second sequence induces a long exact sequence for the formal cohomology modules
$\cdots \rightarrow \lim _{\leftarrow} H_{\mathfrak{m}, J}^{i}\left(\bar{M} / \mathfrak{a}^{n} \bar{M}\right) \xrightarrow{x} \lim _{\leftarrow} H_{\mathfrak{m}, J}^{i}\left(M / \mathfrak{a}^{n} M\right) \rightarrow \lim _{\leftarrow} H_{\mathfrak{m}, J}^{i}\left(\overline{M^{\prime}} / \mathfrak{a}^{n} \overline{M^{\prime}}\right) \rightarrow \cdots$.
With the isomorphisms above this proves the claim for $i>0$. To this end one has to break up the long exact sequence into short exact sequences. For the proof in the case $i=0$, the only remaining case, consider the composite of the above short exact sequence with the previous one for $i=0$. Then this completes the proof for $i=0$.

4 Non-vanishing

Let M be a finitely generated R-module. Let $\mathfrak{a}, I=(\underline{x}), J$ ideals in the local ring (R, \mathfrak{m}, k). In this section, our purpose is to know the integers $\sup \left\{i \in \mathbb{Z} \mid \check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M) \neq 0\right\}$ and $\sup \left\{i \in \mathbb{Z} \mid \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \neq 0\right\}$.

Proposition 4.1. Consider an ideal \mathfrak{a} such that $\operatorname{dim}(M / \mathfrak{a} M)=0$. Then
(a) $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M)=\left\{\begin{array}{ccc}0 & \text { if } & i \neq 0 \\ M^{\mathfrak{a}} & \text { if } & i=0,\end{array}\right.$
(b) $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M)=\check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M)$, for all $i \in \mathbb{Z}$.

Proof. For (a), by [18, Theorem 4.7], $H_{I, J}^{i}\left(M / \mathfrak{a}^{n} M\right)=0$ for $i \neq 0$ and by [18, Corollary 4.2], $M / \mathfrak{a}^{n} M$ is (I, J) - torsion R-module. Then $H_{I, J}^{0}\left(M / \mathfrak{a}^{n} M\right)=$ $\Gamma_{I, J}\left(M / \mathfrak{a}^{n} M\right)=M / \mathfrak{a}^{n} M$. Passing to the projective limit finishes the proof. For proof of (b), use Proposition 2.4.

Theorem 4.2. Let M be a finitely generated module over a local ring (R, \mathfrak{m}, k). Let \mathfrak{a}, I, J ideals of R such that $J \neq R$ and $I+J$ is an \mathfrak{m}-primary ideal. Then,

$$
\operatorname{dim}_{R} M /(\mathfrak{a}+J) M=\sup \left\{i \in \mathbb{Z} \mid \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \neq 0\right\}
$$

Proof. By [18, Theorem 4.3], $H_{I, J}^{i}\left(M / \mathfrak{a}^{n} M\right)=0$ for any $i>\operatorname{dim} \frac{M / \mathfrak{a}^{n} M}{J\left(M / \mathfrak{a}^{n} M\right)}$. But, $\operatorname{dim} \frac{M / \mathfrak{a}^{n} M}{J\left(M / \mathbf{a}^{n} M\right)}=\operatorname{dim} \frac{M}{(J+\mathfrak{a}) M}$ for all $n \in \mathbb{N}$. Therefore

$$
\operatorname{dim}_{R} M /(\mathfrak{a}+J) M \geq \sup \left\{i \in \mathbb{Z} \mid \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \neq 0\right\}
$$

On the other hand, let $r=\operatorname{dim}\left(\frac{M / \mathfrak{a}^{n} M}{J\left(M / \mathbf{a}^{n} M\right)}\right)=\operatorname{dim}\left(\frac{M}{(J+\mathfrak{a}) M}\right)$ for all $n \in \mathbb{N}$. Since $I+J$ is an \mathfrak{m}-primary ideal, we have $H_{I, J}^{i}(M)=H_{\mathfrak{m}, J}^{i}(M)$ for any integer i. Thus we may assume $I=\mathfrak{m}$. Denote $\bar{M}=M / \mathfrak{a}^{n} M$, then the short exact sequence

$$
0 \rightarrow J \bar{M} \rightarrow \bar{M} \rightarrow \bar{M} / J \bar{M} \rightarrow 0
$$

induces an exact cohomology sequence

$$
H_{\mathfrak{m}, J}^{r}(\bar{M}) \rightarrow H_{\mathfrak{m}, J}^{r}(\bar{M} / J \bar{M}) \rightarrow H_{\mathfrak{m}, J}^{r+1}(J \bar{M})
$$

Since $\operatorname{dim} J \bar{M} / J^{2} \bar{M} \leq \operatorname{dim} \bar{M} / J^{2} \bar{M}=\operatorname{dim} \bar{M} / J \bar{M}=r$, by [18, Theoren 4.3], $H_{\mathfrak{m}, J}^{r+1}(J \bar{M})=0$. Because $\bar{M} / J \bar{M}$ is a J-torsion R-module, by [18, Corollary 2.5] and Grothendieck's non-vanishing theorem

$$
H_{\mathfrak{m}, J}^{r}(\bar{M} / J \bar{M}) \cong H_{\mathfrak{m}}^{r}(\bar{M} / J \bar{M}) \neq 0
$$

Therefore $H_{\mathfrak{m}, J}^{r}(\bar{M}) \neq 0$ and this implies that $\mathfrak{F}_{\mathfrak{a}, I, J}^{r}(M) \neq 0$. This proof the statement.

Remark 4.3. If M be a finitely generated R-module then:
(a) $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M)=0$ for any $i>\operatorname{dim}(M / \mathfrak{a} M)$. (see [18], Theorem 4.7)
(b) $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M)=0$ for any $i>\operatorname{dim}(M /(\mathfrak{a}+J) M)$, if $J \neq R$. (see [18], Theorem 4.3)
(c) $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M)=0$ for any $i>\operatorname{dim} R / J$. (see [18], Corollary 4.4)
(d) If M is (I, J)-torsion $R, \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M)=0$ for any i integer. (see [18], Corollary 1.13)

5 The Mayer-Vietoris sequence

Theorem 5.1. Let $\mathfrak{a}, \mathfrak{b}, I, J$ ideals of a local ring $(R, \mathfrak{m}, k), i \in \mathbb{Z}$ and $M a$ finitely generated R-module. The there is the long exact sequence

$$
\cdots \rightarrow \check{\mathfrak{F}}_{\mathbf{a} \cap \mathfrak{b}, I, J}^{i}(M) \rightarrow \check{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M) \oplus \check{\mathfrak{F}}_{\mathfrak{b}, I, J}^{i}(M) \rightarrow \check{\mathfrak{F}}_{(\mathbf{a}, \mathfrak{b}), I, J}^{i}(M) \rightarrow \check{\mathfrak{F}}_{\mathbf{a} \cap \mathfrak{b}, I, J}^{i+1}(M) \rightarrow \cdots .
$$

Proof. Let the following exact sequence

$$
0 \rightarrow M /\left(\mathfrak{a}^{n} M \cap \mathfrak{b}^{n} M\right) \rightarrow M / \mathfrak{a}^{n} M \oplus M / \mathfrak{b}^{n} M \rightarrow M /\left(\mathfrak{a}^{n}, \mathfrak{b}^{n}\right) M \rightarrow 0 .
$$

Its induces a short exact sequence
$0 \rightarrow \check{C}_{\underline{x}, J} \otimes \frac{M}{\left(\mathfrak{a}^{n} M \cap \mathfrak{b}^{n} M\right)} \rightarrow\left(\check{C}_{\underline{x}, J} \otimes \frac{M}{\mathfrak{a}^{n} M}\right) \oplus\left(\check{C}_{\underline{x}, J} \otimes \frac{M}{\mathfrak{b}^{n} M}\right) \rightarrow \check{C}_{\underline{x}, J} \otimes \frac{M}{\left(\mathfrak{a}^{n}, \mathfrak{b}^{n}\right) M} \rightarrow 0$.
Because $\check{C}_{\underline{x}, J}$ is a complex of flat R-modules and the maps

$$
M /\left(\mathfrak{a}^{n+1} \cap \mathfrak{b}^{n+1}\right) M \rightarrow M /\left(\mathfrak{a}^{n} \cap \mathfrak{b}^{n}\right) M
$$

are surjective, it follows that the projective system of R-complexes $\left\{\check{C}_{\underline{x}, J} \otimes\right.$ $\left.M / \mathfrak{a}^{n} M \cap \mathfrak{b}^{n} M\right\}$ satisfies the Mittag-Leffler condition. Therefore, applying the inverse limit, we have the exact sequence of complexes

$$
\begin{gathered}
0 \rightarrow \lim _{\leftarrow} \check{C}_{\underline{x}, J} \otimes \frac{M}{\left(\mathfrak{a}^{n} M \cap \mathfrak{b}^{n} M\right)} \rightarrow \lim _{\leftarrow}\left(\check{C}_{\underline{x}, J} \otimes \frac{M}{\mathfrak{a}^{n} M}\right) \oplus \lim _{\leftarrow}\left(\check{C}_{\underline{x}, J} \otimes \frac{M}{\mathfrak{b}^{n} M}\right) \rightarrow \\
\rightarrow \lim _{\leftarrow} \check{C}_{\underline{x}, J} \otimes \frac{M}{\left(\mathfrak{a}^{n}, \mathfrak{b}^{n}\right) M} \rightarrow 0 .
\end{gathered}
$$

We can observe that the $\left(\mathfrak{a}^{n}, \mathfrak{b}^{n}\right)$-adic filtration is equivalent to the filtration $\left\{\left(\mathfrak{a}^{n}, \mathfrak{b}^{n}\right) M\right\}_{n \in \mathbb{N}}$. Then to finish the proof we have to show the $(\mathfrak{a} \cap \mathfrak{b})$ adic filtration on M is equivalent to the filtration $\left\{\left(\mathfrak{a}^{n} \cap \mathfrak{b}^{n}\right) M\right\}_{n \in \mathbb{N}}$. Note
that $(\mathfrak{a b})^{n} M \subseteq\left(\mathfrak{a}^{n} \cap \mathfrak{b}^{n}\right) M \subseteq \mathfrak{a}^{n} M \cap \mathfrak{b}^{n} M$ for all $n \in \mathbb{N}$. Let $m \in \mathbb{N}$ denote a given integer. By Artin-Rees Lemma [2, Ch. III,3, Cor. 1], there exists an $k \in \mathbb{N}$ such that $\mathfrak{a}^{n} N \cap \mathfrak{b}^{m} N \subseteq \mathfrak{a}^{n-k} \mathfrak{b}^{m} N$ for all $n \geq k$. Note too that the $\mathfrak{a b}$-adic and the $\mathfrak{a} \cap \mathfrak{b}$-adic topology on M are equivalent. If consider the long exact cohomology sequence and the definition of Formal local cohomology defined by a pair of ideals finishes the proof.

Corollary 5.2. Let $\mathfrak{a}, \mathfrak{b}, I, J$ ideals of a local ring $(R, \mathfrak{m}, k), i \in \mathbb{Z}$ and M be a finitely generated R-module.
(a) If M is J-torsion R-module, there is a long exact sequence

$$
\cdots \rightarrow \mathfrak{F}_{\mathbf{a} \cap \mathfrak{b}, \mathfrak{m}, J}^{i}(M) \rightarrow \mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i}(M) \oplus \mathfrak{F}_{\mathfrak{b}, \mathfrak{m}, J}^{i}(M) \rightarrow \mathfrak{F}_{(\mathbf{a}, \mathfrak{b}), \mathfrak{m}, J}^{i}(M) \rightarrow \mathfrak{F}_{\mathfrak{a} \mathfrak{b} \mathfrak{b}, \mathbf{m}, J}^{i+1}(M) \rightarrow \cdots
$$

(b) If M is J-torsion R-module and $\sqrt{I+J}=\mathfrak{m}$, there is a long exact sequence

$$
\cdots \rightarrow \mathfrak{F}_{\mathfrak{a} \cap \mathfrak{b}, I, J}^{i}(M) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \oplus \mathfrak{F}_{\mathfrak{b}, I, J}^{i}(M) \rightarrow \mathfrak{F}_{(\mathfrak{a}, \mathfrak{b}), I, J}^{i}(M) \rightarrow \mathfrak{F}_{\mathfrak{a} \cap \mathfrak{b}, I, J}^{i+1}(M) \rightarrow \cdots
$$

(c) If M is Artinian R-module, there is a long exact sequence

$$
\cdots \rightarrow \mathfrak{F}_{\mathbf{a} \cap \mathfrak{b}, I, J}^{i}(M) \rightarrow \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \oplus \mathfrak{F}_{\mathfrak{b}, I, J}^{i}(M) \rightarrow \mathfrak{\mathfrak { F }}_{(\mathbf{a}, \mathfrak{b}), I, J}^{i}(M) \rightarrow \mathfrak{F}_{\mathbf{a} \cap \mathfrak{b}, I, J}^{i+1}(M) \rightarrow \cdots .
$$

Proof. We will go show the proof of a) and the other cases are analogous. Because M is J-torsion, any quotient of M is too J-torsion. Then, by Corollary 2.6 and theorem previous we have the statement.

6 Local duality for an pair of ideals

Let $(R, \mathfrak{m}, \mathbb{K})$ be a d-dimensional Cohen-Macaulay local ring with a canonical module ω. Then, for $0 \leq i \leq d$, it is well known the existence of isomorphisms

$$
H_{\mathfrak{m}}^{i}(M)=\operatorname{Ext}_{R}^{d-i}(M, \omega)^{\vee}
$$

where $(-)^{\vee}=\operatorname{Hom}_{R}\left(-, E_{R}(\mathbb{K})\right)$ and $H_{\mathfrak{m}}^{d}(R) \cong \omega^{\vee}$. This result is called local duality Theorem. There is a generalization of this result in [18, Theorem 5.1].

The purpose of this section is give a another proof of Local Duality Theorem for a pair of ideals and, in our context, obtain any results about formal local cohomology defined by a pair of ideals.

Lemma 6.1. Let (R, \mathfrak{m}) denote a local ring, $\underline{x}=x_{1}, \cdots, x_{n}$ be a system of elements of R such that $\mathfrak{m}=(\underline{x})$ and J ideal of R. If M a finitely generated R-module then, for all $i \in \mathbb{Z}$, there are the isomorphisms

$$
H_{\mathfrak{m}, J}^{i}(M) \cong \operatorname{Hom}_{R}\left(H^{-i}\left(\operatorname{Hom}_{R}\left(M, D_{\underline{x}, J}\right)\right), E\right)
$$

where E denotes the injective hull of R / \mathfrak{m} and $D_{\underline{x}, J}=\operatorname{Hom}_{R}\left(\check{C}_{\underline{x}, J}, E\right)$.
Proof. Proceeding analogously the construction made in [16, Theorem 1.7], change $D_{\underline{x}}^{\cdot}$ by $D_{\underline{x}, J}$ we obtain the result.

Lemma 6.2. Let $(R, \mathfrak{m}, \mathbb{K})$ be a local ring of dimension d, J be a perfect ideal of R of grade t, i.e, $\operatorname{pd}_{R} R / J=\operatorname{grade}(J, R)=t$. If R is Gorenstein then

$$
H_{\mathfrak{m}, J}^{i}(R)=\left\{\begin{array}{cl}
0 & \text { if } \quad i \neq d-t \\
\bigoplus_{\substack{h \neq p \\
p \in W-t \\
p \in W(\mathfrak{m}, J)}} E_{R}(R / \mathfrak{p}) & \text { if } \quad i=d-t
\end{array}\right.
$$

Proof. Let I^{\bullet} be a minimal injective resolution of R. Since R is Gorenstein, for each i one has an isomorphism

$$
I^{i}=\bigoplus_{h t \mathfrak{p}=i} E_{R}(R / \mathfrak{p})
$$

Applying the functor $\Gamma_{\mathfrak{m}, J}(-)$ and using the Proposition 1.11 in [18] follows the complex

$$
0 \rightarrow \bigoplus_{\substack{h t p=0 \\ \mathfrak{p} \in W(\mathbf{m}, J)}} E_{R}(R / \mathfrak{p}) \rightarrow \bigoplus_{\substack{h \not p=1 \\ p \in W(\mathbf{m}, J)}} E_{R}(R / \mathfrak{p}) \rightarrow \bigoplus_{\substack{h p==\\ \mathfrak{p} \in W(\mathbf{m}, J)}} E_{R}(R / \mathfrak{p}) \rightarrow \cdots
$$

Now, by Corollary 4.4 and Lemma 5.2 in [18], $H_{\mathfrak{m}, J}^{i}(R)=0$ for $i \neq d-t$ and $H_{\mathfrak{m}, J}^{d-t}(R)=\bigoplus_{\substack{h \mathfrak{p}=d-t \\ \mathfrak{p} \in W(\mathrm{~m}, J)}} E_{R}(R / \mathfrak{p})$. This finishes the proof.

Theorem 6.3. Let $(R, \mathfrak{m}, \mathbb{K})$ be a Gorenstein local ring of dimension d, J be a perfect ideal of R of grade t, i.e, $\operatorname{pd}_{R} R / J=\operatorname{grade}(J, R)=t$. If M is a finitely generated R-module, there are isomorphisms

$$
H_{\mathfrak{m}, J}^{i}(M) \cong \operatorname{Ext}_{R}^{d-t-i}(M, S)^{\vee}
$$

for all $0 \leq i \leq d-t$, where $(-)^{\vee}=\operatorname{Hom}_{R}\left(-, E_{R}(\mathbb{K})\right)$ and $S=H_{\mathfrak{m}, J}^{d-t}(R)^{\vee}$.

Proof. Let $\underline{x}=x_{1}, \cdots, x_{n}$ elements of R such that $\mathfrak{m}=(\underline{x})$. Since $H^{i}\left(\check{C}_{\underline{x}, J}\right) \cong$ $H_{\mathfrak{m}, J}^{i}(R)$, by Lemma 6.2 follows

$$
H^{i}\left(\check{C}_{\underline{x}, J}\right)=\left\{\begin{array}{cl}
0 & \text { if } i \neq d-t \\
\bigoplus_{\substack{h \neq p=-t \\
p \in W(m, J)}} E_{R}(R / \mathfrak{p}) & \text { if } \quad i=d-t
\end{array}\right.
$$

Denote $\bar{E}=\bigoplus_{\substack{t \boldsymbol{p}=d-t \\ p \in W(\mathbf{m}, J)}} E_{R}(R / \mathfrak{p})$, follows that $\check{C}_{\underline{x}, J}$ is a flat resolution of \bar{E} shifted $d-t$ places to the right. Therefore $D_{\underline{x}, J}=\operatorname{Hom}_{R}\left(\check{C}_{\underline{x}, J}, E_{R}(\mathbb{K})\right)$ is an injective resolution of $\operatorname{Hom}_{R}(\bar{E}, E)$ shifted $d-t$ places to the right. Since

$$
H^{-i}\left(\operatorname{Hom}_{R}\left(M, D_{\underline{x}, J}\right)\right) \cong \operatorname{Ext}_{R}^{d-t-i}\left(M, \operatorname{Hom}_{R}(\bar{E}, E)\right)
$$

and $\operatorname{Hom}_{R}(\bar{E}, E)=H_{\mathfrak{m}, J}^{i}(R)^{\vee}$ by Lemma 6.2, applying Lemma 6.1 we have the statement.

The natural question is : The same theorem is true when R is Cohen Macaulay?.
For answer this we need a preliminary observations. Let R be a commutative noetherian ring, I, J two ideals of R and M be a R-module. Let

$$
\operatorname{depth}(I, J, M)=\inf \left\{i \in \mathbb{N}_{0} ; H_{I, J}^{i}(M) \neq 0\right\}
$$

If we consider M is a finitely generated module over a local ring (R, \mathfrak{m}) and $J \neq R$, by Theorem 4.5 in [18] and definition above, we have $H_{\mathfrak{m}, J}^{i}(M) \neq 0$ for all

$$
\operatorname{depth}(\mathfrak{m}, J, M) \leq i \leq \operatorname{dim} M / J M
$$

When $\operatorname{depth}(\mathfrak{m}, J, M)=\operatorname{dim} M / J M$, the R-module $M \neq 0$ is called (\mathfrak{m}, J)-Cohen Macaulay (or if $M=0$). If R itself is an (\mathfrak{m}, J)-CohenMacaulay R-module we say that R is an (\mathfrak{m}, J)-Cohen Macaulay ring. In this definition its obvious that $J \neq 0$. Note too that if $J=0$ this natural definition of (\mathfrak{m}, J)-Cohen-Macaulay coincides with definition of Cohen-Macaulay R-modules. The same definition can be made for any I, J two ideals of R and for this, for more details we recommend see [1]. Under this comments, we will go answer the question previous.

Theorem 6.4. Let $M \neq 0$ be a finitely generated module over a local ring $(R, \mathfrak{m}, \mathbb{K})$. Suppose that R is (I, J)-Cohen-Macaulay where $I+J$ is an \mathfrak{m} primary ideal. Then, there are isomorphisms

$$
H_{I, J}^{i}(M)^{\vee} \cong \operatorname{Ext}_{R}^{\widehat{d}-i}(M, S)
$$

for all $0 \leq i \leq \widehat{d}$, where $(-)^{\vee}=\operatorname{Hom}_{R}\left(-, E_{R}(\mathbb{K})\right)$, $S=H_{I, J}^{\widehat{d}}(R)^{\vee}$ and $\widehat{d}:=\operatorname{dim}(M / J M)$.

Proof. First note that since $I+J$ is is an \mathfrak{m}-primary ideal, by Proposition $1.4(6),(7)$ in [18] we have $H_{I, J}^{i}(R)=H_{\mathfrak{m}, J}^{i}(R)$ for any i integer, i.e, in this case R is (I, J)-Cohen Macaulay if and only if M is (\mathfrak{m}, J)-Cohen-Macaulay. Thus we may assume that $I=\mathfrak{m}$.

Let $\underline{x}=x_{1}, \cdots, x_{n}$ elements of R such that $\mathfrak{m}=(\underline{x})$. Since $H^{i}\left(\check{C}_{\underline{x}, J}\right) \cong$ $H_{\mathfrak{m}, J}^{i}(R)$ and R is (\mathfrak{m}, J)-Cohen-Macaulay, $\check{C}_{\underline{x}, J}$ is a flat resolution of $H_{\mathfrak{m}, J}^{\widehat{d}}(R)$ shifted \widehat{d} places to the right because $H_{\mathrm{m}, J}^{i}(R)=0$ for all $i \neq \widehat{d}$ (see [18, Theorem 4.5] or [1, Corollary 4.13]). Now,
$H_{\mathfrak{m}, J}^{i}(M) \cong H^{i}\left(\check{C}_{\underline{x}, J}[-\widehat{d}] \otimes_{R} M\right) \cong H_{\widehat{d}-i}\left(\check{C}_{\underline{x}, J} \otimes_{R} M\right) \cong \operatorname{Tor}_{\widehat{d}-i}^{R}\left(H_{\mathfrak{m}, J}^{\widehat{d}}(R), M\right)$.
Let K^{\bullet} be a free resolution of M. Thus, as $H_{\widehat{d}-i}\left(K^{\bullet} \otimes_{R} H_{\mathbf{m}, J}^{\widehat{d}}(R)\right) \cong$ $\operatorname{Tor}_{\widehat{d}-i}^{R}\left(M, H_{\mathfrak{m}, J}^{\widehat{d}}(R)\right)$, follows $H_{\mathfrak{m}, J}^{i}(M) \cong H_{\widehat{d}-i}\left(K^{\bullet} \otimes_{R} H_{\mathfrak{m}, J}^{\widehat{d}}(R)\right)$. Therefore, for all i, we have

$$
\begin{aligned}
H_{\mathfrak{m}, J}^{i}(M)^{\vee} & \cong H_{\widehat{d}-i}\left(K^{\bullet} \otimes_{R} H_{\mathfrak{m}, J}^{\widehat{d}}(R)\right)^{\vee} \\
& \cong H^{\widehat{d}-i}\left(\left(K^{\bullet} \otimes_{R} H_{\mathfrak{m}, J}^{d}(R)\right)^{\vee}\right) \\
& \cong H^{\widehat{d}-i}\left(\operatorname{Hom}_{R}\left(K^{\bullet} \otimes_{R} H_{\mathfrak{m}, J}^{\widehat{d}}(R), E_{R}(\mathbb{K})\right)\right) \\
& \cong H^{\widehat{d}-i}\left(\operatorname{Hom}_{R}\left(K^{\bullet}, H_{\mathfrak{m}, J}^{\widehat{d}}(R)^{\vee}\right)\right) \\
& \cong \operatorname{Ext}_{R}^{\widehat{d}-i}\left(M, H_{\mathfrak{m}, J}^{\widehat{d}}(R)^{\vee}\right)
\end{aligned}
$$

Remark 6.5. Note that this theorem is a generalization of Theorem 5.1 in [18] because, if (R, \mathfrak{m}) is a Cohen-Macaulay complete local ring of dimension d and J be a perfect ideal of R such that grade $(J, R)=t$, then $\operatorname{dim} R / J=d-t$. Therefore

$$
H_{\mathfrak{m}, J}^{i}(M)^{\vee} \cong \operatorname{Ext}_{R}^{d-t-i}\left(M, H_{\mathfrak{m}, J}^{\widehat{d}}(R)^{\vee}\right)
$$

for all integer i by theorem above.

Remark 6.6. Which the same hypothesis of theorem above and suppose that R is (I, J)-torsion R-module we obtain, by Corollary 1.13 in [18], that R / J is an Artinian R-module. Therefore $\Gamma_{I, J}(R) \cong \Gamma_{I, J}(R)^{\vee}$.

We are interested here now, using this previous results, is an characterization of formal local cohomology defined by a pair of ideals using local cohomology and Matlis duality functor. The next result show this relation.

Theorem 6.7. Let (R, \mathfrak{m}) denote a local ring, $\underline{x}=x_{1}, \cdots, x_{n}$ be a system of elements of R such that $\mathfrak{m}=(\underline{x})$ and J ideal of R. If M is a finitely generated R-module then, for all $i \in \mathbb{Z}$, there are the isomorphisms

$$
\mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i}(M) \cong \operatorname{Hom}_{R}\left(H_{\mathfrak{a}}^{-i}\left(\operatorname{Hom}_{R}\left(M, D_{\underline{x}, J}\right)\right), E_{R}(\mathbb{K})\right) .
$$

Proof. By Lemma 6.1, for $n \in \mathbb{N}$, there are the isomorphisms

$$
H_{\mathfrak{m}, J}^{i}\left(M / \mathfrak{a}^{n} M\right) \cong \operatorname{Hom}_{R}\left(H^{-i}\left(\operatorname{Hom}_{R}\left(M, D_{\underline{x}, J}\right)\right), E_{R}(\mathbb{K})\right)
$$

for all $i \in \mathbb{Z}$. By passing the projective limit and using the fact that $\lim _{\rightarrow} \operatorname{Hom}_{R}\left(M / \mathfrak{a}^{n} M, D_{\underline{x}, J}\right) \cong \Gamma_{\mathfrak{a}}\left(\operatorname{Hom}_{R}\left(M / \mathfrak{a}^{n} M, D_{\underline{x}, J}\right)\right)$ we obtain the state$\overrightarrow{m e n t}$.

Remark 6.8. In the other hand, using the same hypothesis in Theorem 6.4 we obtain

$$
\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \cong \operatorname{Hom}_{R}\left(\lim _{\longrightarrow} \operatorname{Ext}_{R}^{\widehat{d}-i}\left(M / \mathfrak{a}^{n} M, S\right), E_{R}(\mathbb{K})\right) .
$$

Note that, for all $i \in \mathbb{Z}, \lim _{\rightarrow} \operatorname{Ext}_{R}^{\hat{d}-i}\left(M / \mathfrak{a}^{n} M, S\right)$ is exactly the generalized local cohomology with respect to \mathfrak{a} (denoted by $H_{\mathfrak{a}}^{\widehat{d}-i}(M, S)$), introduced by Herzog in [9]. Therefore

$$
\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \cong H_{\mathfrak{a}}^{\widehat{d}-i}(M, S)^{\vee}
$$

where $(-)^{\vee}=\operatorname{Hom}_{R}\left(-, E_{R}(\mathbb{K})\right), i \in \mathbb{Z}$. This show the relation between the formal local cohomology defined by a pair of ideals and the Matlis' dual of certain generalized local cohomology with respect to \mathfrak{a}.

For the next result we first need any considerations. Using the natural homomorphism $R \rightarrow \widehat{R}$, where ($\widehat{R}, \widehat{\mathfrak{m}}$) denote the \mathfrak{m}-adic completion of $(R, \mathfrak{m}, \mathbb{K})$, by Theorem 2.3 we may assume the existence of the complex
$D_{\underline{x}, J}=\operatorname{Hom}_{R}\left(\check{C}_{\underline{x}, J}, E_{R}(\mathbb{K})\right)$. Now if $x \in \mathfrak{m}$, we are interested to relate how the \mathfrak{a}-formal local cohomology and ($\mathfrak{a}, x)$-formal local cohomology, both defined by a pair of ideals, are connected. The long exact sequence below show this relation.

Theorem 6.9. Let (R, \mathfrak{m}) denote a local ring, $\underline{x}=x_{1}, \cdots, x_{n}$ and $\underline{y}=$ y_{1}, \cdots, y_{n} system of elements of R such that $\mathfrak{m}=(\underline{x}), \mathfrak{a}=(\underline{y})$ and J ideal of R. If M a finitely generated R-module and $x \in \mathfrak{m}$ element of R, there is the long exact sequence

$$
\cdots \rightarrow \operatorname{Hom}_{R}\left(R_{x, J}, \mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i}(M)\right) \rightarrow \mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i}(M) \rightarrow \mathfrak{F}_{(\mathfrak{a}, x), \mathfrak{m}, J}^{i}(M) \rightarrow \cdots
$$

for all $i \in \mathbb{Z}$.
Proof. By comment above, let the complex $D_{\underline{x}, J}$ and $\check{C}_{x, J}$ the \check{C} ech complex for an element $x \in \mathfrak{m}$. So there is the short exact sequence of flat R-modules.

$$
0 \rightarrow R_{x, J}[-1] \rightarrow \check{C}_{x, J} \rightarrow R \rightarrow 0 .
$$

Let $\widetilde{\mathrm{H}}=\operatorname{Hom}_{R}\left(M, D_{\underline{x}, J}\right)$. Tensoring the exact sequence above with $\check{C}_{\underline{y}, J} \otimes \widetilde{\mathrm{H}}$, it induces the following exact sequence of R-modules

$$
0 \rightarrow \check{C}_{\underline{y}, J} \otimes \widetilde{\mathrm{H}} \otimes R_{x, J}[-1] \rightarrow \check{C}_{\underline{y}, x, J} \otimes \widetilde{\mathrm{H}} \rightarrow \check{C}_{\underline{y}, J} \otimes \widetilde{\mathrm{H}} \rightarrow 0
$$

Now, seeing the long exact cohomology sequence together with Theorem 2.4 in [18] we obtain, for all $i \in \mathbb{Z}$,

$$
\cdots \rightarrow H_{(\mathfrak{a}, x R), J}^{i}(\widetilde{\mathrm{H}}) \rightarrow H_{\mathfrak{a}, J}^{i}(\widetilde{\mathrm{H}}) \rightarrow H_{\mathfrak{a}, J}^{i}(\widetilde{\mathrm{H}}) \otimes R_{x, J} \rightarrow \cdots
$$

By applying the functor $\operatorname{Hom}_{R}\left(-, E_{R}(\mathbb{K})\right)$ and the Theorem 6.7 we obtain the result.

The natural consequence and application of this Theorem follow taking $\mathfrak{a}=0$. This result relates the formal local cohomology with respect to an ideal generated by a single element and local cohomology, both defined by a pair of ideals.

Corollary 6.10. With the same hypothesis of Theorem above, there is a short exact sequence

$$
\cdots \rightarrow \operatorname{Hom}_{R}\left(R_{x, J}, H_{\mathfrak{m}, J}^{i}(M)\right) \rightarrow H_{\mathfrak{m}, J}^{i}(M) \rightarrow \mathfrak{F}_{x R, \mathfrak{m}, J}^{i}(M) \rightarrow \cdots
$$

for all $i \in \mathbb{Z}$.

7 Formal grade with respect to a pair of ideals

Let (R, \mathfrak{m}) is a local ring, I, J, \mathfrak{a} ideals as above and M denote a finitely generated R-module. The concept of formal grade was introduced by Peskine and Szpiro in [14] and not so much is known about this tool. I our approach, since some any cases $\mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \cong \breve{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M)$, we need to give two definitions for formal grade, different for the approach given by Schenzel in [15].

Definition 7.1. For an ideal \mathfrak{a} of R define by

$$
\operatorname{fgrade}(\mathfrak{a}, I, J, M)=\inf \left\{i \in \mathbb{Z}: \mathfrak{F}_{\mathfrak{a}, I, J}^{i}(M) \neq 0\right\}
$$

and

$$
\check{f} \operatorname{grade}(\mathfrak{a}, I, J, M)=\inf \left\{i \in \mathbb{Z}: \breve{\mathfrak{F}}_{\mathfrak{a}, I, J}^{i}(M) \neq 0\right\} .
$$

Theorem 7.2. Let $(R, \mathfrak{m}, \mathbb{K})$ be a Cohen-Macaulay complete local ring of dimension d and let $J \neq 0$ be a perfect ideal of R of grade t, i.e, $\operatorname{pd}_{R}(R / J)=$ grade $(J, R)=t$. Then, for M be a finitely generated R-module,

$$
\operatorname{fgrade}(\mathfrak{a}, \mathfrak{m}, J, M)+\operatorname{cd}_{\mathfrak{a}}(M, S)+\operatorname{grade}(J, R)=\operatorname{dim} R,
$$

where $S=H_{\mathrm{m}, J}^{d-t}(R)^{\vee}$.
Proof. By Theorem 6.4 $H_{\mathfrak{m}, J}^{i}(M) \cong \operatorname{Hom}_{R}\left(\operatorname{Ext}_{R}^{d-t-i}(M, S), E_{R}\right)$. Thus

$$
\begin{aligned}
\mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i}(M) & =\underset{\leftarrow}{\lim } H_{\mathfrak{m}, J}^{i}\left(M / \mathfrak{a}^{n} M\right) \\
& \cong \underset{\leftarrow}{\lim _{R}\left(\operatorname{Ext}_{R}^{d-t-i}\left(M / \mathfrak{a}^{n} M, S\right), E_{R}(\mathbb{K})\right)} \\
& =\operatorname{Hom}_{R}\left(\lim \operatorname{Ext}_{R}^{d-t-i}\left(M / \mathfrak{a}^{n} M, S\right), E_{R}(\mathbb{K})\right)
\end{aligned}
$$

and since $H_{\mathfrak{a}}^{i}(M, S)=\lim _{\longrightarrow} \operatorname{Ext}_{R}^{d-t-i}\left(M / \mathfrak{a}^{n} M, S\right)$ (see [9]), for all $i \in \mathbb{Z}$, there are isomorphisms

$$
\mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i}(M) \cong \operatorname{Hom}_{R}\left(H_{\mathfrak{a}}^{d-t-i}(M, S), E_{R}(\mathbb{K})\right) .
$$

Therefore

$$
\begin{aligned}
\inf \left\{i \in \mathbb{Z}: \mathfrak{F}_{\mathfrak{a}, \mathfrak{m}, J}^{i}(M) \neq 0\right\} & =\inf \left\{i \in \mathbb{Z}: H_{\mathfrak{a}}^{d-t-i}(M, S) \neq 0\right\} \\
& =\inf \left\{d-t-j: H_{\mathfrak{a}}^{j}(M, S) \neq 0\right\} \\
& =d-t-\sup \left\{j: H_{\mathfrak{a}}^{j}(M, S) \neq 0\right\} \\
& =\operatorname{dim} R-\operatorname{grade}(J, R)-\operatorname{cd}_{\mathfrak{a}}(M, S) .
\end{aligned}
$$

References

[1] M. Aghapournahr, KH. Ahmadi-Amoli and M.Y. Sadegui, The concepts of depth of a pair of ideals (I, J) on modules and (I, J) -Cohen-Macaulay modules, arXiv:1301.1015, (2013).
[2] N.Bourbaki, Algébre commutative, Hermann, Paris, 1961-1965.
[3] M.P Brodmann and R. Y. Sharp, Local cohomology- an algebraic introduction with geometric applications, Cambridge University Press,(1998).
[4] L. Chu, and Q. Wang, , Some results on local cohomology modules defined by a pair of ideals J.Math. Kyoto Univ, 49-1 (2009), 193200.
[5] K. Divaani- Aazr, R. Naghipour, M. Touse, Cohomological dimensionof certain algebraic varieties, Proc. Amer. Math. Soc., 130 (2002), 3537-3544.
[6] K. Divaani- Aazr and P. Schenzel, Ideal Topology, local cohomology and connectedness, Math. Proc. Cambridge philos. Soc., 131 (2001), 211-226.
[7] M. Eghbali, On Formal local cohomology, colocalization and endomorphism ring of top local cohomology modules, (2011) Thesis, Universitat Halle-Wittenberg.
[8] A. Grothendieck, Local Cohomology, Notes by R. Hartshorne, Lecture Notes in Math., vol 20, Springer, 1966.
[9] J. Herzog, Komplexe, Auflsungen und Dualitt in der lokalen Algebra, Habilitationsschrift, Universitt Regensburg (1970).
[10] C. Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry, Res. Notes Math., 2 (1992), 93-108.
[11] M. Mafi, Some results on the local cohomology modules, Arch Math (Basel), 87 (2006), 211-216.
[12] M. Mafi, Results on formal local cohomology modules, Bull. Malays. Math. Sci. Soc, (2) 36 (2013),n 1, 173-177.
[13] T.T Nam and N. M. Tri, Some properties of generalized local cohomology modules with respect to a pair of ideals,(2013), arXiv:1011.4141 .
[14] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S, 42 (1972), 47-119.
[15] P. Schenzel, On formal local cohomology and connectedness. J.Algebra. 315 (2007) 897-923.
[16] P. Schenzel, On the use of local cohomology in Algebra and Geometry, Notes.
[17] P. Schenzel, Proregular sequences, local cohomology, and completion. Math Scand. 92 (2003), 161-180.
[18] T. Takahashi, Y. Yoshino, and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals.J. Pure Appl. Algebra, 213,(2009), 582-600.
[19] C.A, Weibel, An introduction to homological algebra, Cambridge University Press, 1994

Victor Hugo Jorge Pérez
Universidade de São Paulo - ICMC
email: vhjperez@icmc.usp.br
Thiago Henrique de Freitas
Universidade de São Paulo - ICMC
email: tfreitas@icmc.usp.br

[^0]: *Work partially supported by CNPq-Brazil - Grants 309316/2011-1, and FAPESP Grant 2012/20304-1
 ${ }^{\dagger}$ Work partially supported by FAPESP-Brazil - Grant 308915/2006-2. 2000 Mathematics Subject Classification: 13H15(primary). Key words: Local Cohomology, Formal Local Cohomology, Dual.

